Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Cognitive Assessments
2.3. Covariates
2.4. Statistical Analyses
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, J.A.; Verghese, J.; Zwerling, J.L. Cognition and gait in older people. Maturitas 2016, 93, 73–77. [Google Scholar] [CrossRef]
- Prince, M.; Bryce, R.; Albanese, E.; Wimo, A.; Ribeiro, W.; Ferri, C. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer Dement. 2013, 9, 63–75.e2. [Google Scholar] [CrossRef]
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 20 December 2019).
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Harman, M.F.; Martín, M.G. Epigenetic mechanisms related to cognitive decline during aging. J. Neurosci. Res. 2020, 98, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Bruins, M.J.; Van Dael, P.; Eggersdorfer, M. The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients 2019, 11, 85. [Google Scholar] [CrossRef]
- Li, S.; Sun, W.; Zhang, D. Association of Zinc, Iron, Copper, and Selenium Intakes with Low Cognitive Performance in Older Adults: A Cross-Sectional Study from National Health and Nutrition Examination Survey (NHANES). J. Alzheimers Dis. 2019, 72, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Raboy, V. myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 2003, 64, 1033–1043. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.R.; Sathe, S.K. Food Phytates; CRC Press: Boca Raton, FL, USA, 2001; 282p. [Google Scholar]
- Graf, E.; Empson, K.L.; Eaton, J.W. Phytic acid. A natural antioxidant. J. Biol. Chem. 1987, 262, 11647–11650. [Google Scholar] [CrossRef]
- Anekonda, T.S.; Wadsworth, T.L.; Sabin, R.; Frahler, K.; Harris, C.; Petriko, B.; Ralle, M.; Woltjer, R.; Quinn, J.F. Phytic Acid as a Potential Treatment for Alzheimer’s Pathology: Evidence from Animal and in vitro Models. J. Alzheimers Dis. 2011, 23, 21–35. [Google Scholar] [CrossRef]
- Silva, E.O.; Bracarense, A.P.F.R.L. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J. Food Sci. 2016, 81, R1357–R1362. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, R.; O’Brien, P.T.; Wong, I.S. Microchemical detection of niacin, aromatic amine, and phytin reserves in cereal bran. Cereal. Chem. 1981, 58, 130–135. [Google Scholar]
- O’Dell, B.L.; De Boland, A.R.; Koirtyohann, S.R. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. J. Agric. Food Chem. 1972, 20, 718–723. [Google Scholar] [CrossRef]
- Talarowska, M.; Gałecki, P.; Maes, M.; Gardner, A.; Chamielec, M.; Orzechowska, A.; Bobińska, K.; Kowalczyk, E. Malondialdehyde plasma concentration correlates with declarative and working memory in patients with recurrent depressive disorder. Mol. Biol. Rep. 2011, 39, 5359–5366. [Google Scholar] [CrossRef] [PubMed]
- Zabel, M.; Nackenoff, A.; Kirsch, W.M.; Harrison, F.E.; Perry, G.; Schrag, M. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer’s disease brain: A meta-analysis in human pathological specimens. Free Radic. Biol. Med. 2018, 115, 351–360. [Google Scholar] [CrossRef]
- González-Fraguela, M.E.; Blanco-Lezcano, L.; Fernandez-Verdecia, C.I.; Serrano Sanchez, T.; Robinson Agramonte, M.D.L.A.; Cardellá Rosales, L.L. Cellular Redox Imbalance and Neurochemical Effect in Cognitive-Deficient Old Rats. Behav. Sci. 2018, 8, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Kanthasamy, A.G.; Reddy, M.B. Phytic Acid Protects against 6-Hydroxydopamine-Induced Dopaminergic Neuron Apoptosis in Normal and Iron Excess Conditions in a Cell Culture Model. Parkinson’s Disease. 2011. Available online: https://www.hindawi.com/journals/pd/2011/431068/abs/ (accessed on 22 December 2019).
- NHANES 2013–2014 Overview. Available online: https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Overview.aspx?BeginYear=2013 (accessed on 4 November 2019).
- International Zinc Nutrition Consultative Group (IZiNCG); Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar]
- Armah, S.M. Association between Phytate Intake and C-Reactive Protein Concentration among People with Overweight or Obesity: A Cross-Sectional Study Using NHANES 2009/2010. Int. J. Environ. Res. Public Health 2019, 16, 1549. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, Z.; Fu, Z.; Yan, M.; Wu, N.; Wu, H.; Yin, P. Associations between blood cadmium levels and cognitive function in a cross-sectional study of US adults aged 60 years or older. BMJ Open 2018, 8, e020533. [Google Scholar] [CrossRef]
- NHANES 2013–2014: Cognitive Functioning Data Documentation, Codebook, and Frequencies. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/CFQ_H.htm (accessed on 17 December 2019).
- Rosano, C.; Simonsick, E.M.; Harris, T.B.; Kritchevsky, S.B.; Brach, J.; Visser, M.; Yaffe, K.; Newman, A.B. Association between Physical and Cognitive Function in Healthy Elderly: The Health, Aging and Body Composition Study. Neuroepidemiology 2004, 24, 8–14. [Google Scholar] [CrossRef]
- Tsai, C.-K.; Kao, T.-W.; Lee, J.-T.; Wu, C.-J.; Hueng, D.-Y.; Liang, C.-S.; Wang, G.-C.; Yang, F.-C.; Chen, W.-L. Increased risk of cognitive impairment in patients with components of metabolic syndrome. Medicine 2016, 95, e4791. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Buades Fuster, J.M.; Sanchís Cortés, P.; Perelló Bestard, J.; Grases Freixedas, F. Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrol. Engl. Ed. 2017, 37, 8. [Google Scholar] [CrossRef]
- Amirabdollahian, F.; Ash, R. An estimate of phytate intake and molar ratio of phytate to zinc in the diet of the people in the United Kingdom. Public Health Nutr. 2010, 13, 1380–1388. [Google Scholar] [CrossRef] [Green Version]
- Harland, B.F.; Peterson, M. Nutritional status of lacto-ovo vegetarian Trappist monks. J. Am. Diet. Assoc. 1978, 72, 259–264. [Google Scholar]
- Kwun, I.-S.; Kwon, C.-S. Dietary Molar Ratios of Phytate: Zinc and Millimolar Ratios of Phytate × Calcium:Zinc in South Koreans. Biol. Trace Elem. Res. 2000, 75, 29–41. [Google Scholar] [CrossRef]
- Obisesan, T.; Gillum, R.F. Cognitive function, social integration and mortality in a U.S. national cohort study of older adults. BMC Geriatr. 2009, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Lo Coco, D.; Lopez, G.; Corrao, S. Cognitive impairment and stroke in elderly patients. Vasc. Health Risk Manag. 2016, 12, 105–116. [Google Scholar]
- Landau, S.M.; Marks, S.M.; Mormino, E.C.; Rabinovici, G.D.; Oh, H.; O’Neil, J.P.; Wilson, R.S.; Jagust, W.J. Association of Lifetime Cognitive Engagement and Low β-Amyloid Deposition. Arch Neurol Am. Med Assoc. 2012, 69, 623–629. [Google Scholar]
- Rovner, B.W.; Casten, R.J.; Leiby, B.E. Determinants of Activity Levels in African Americans With Mild Cognitive Impairment. Alzheimer Dis. Assoc. Disord. 2016, 30, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Cherian, L.; Wang, Y.; Fakuda, K.; Leurgans, S.; Aggarwal, N.; Morris, M. Mediterranean-Dash Intervention for Neurodegenerative Delay (MIND) Diet Slows Cognitive Decline After Stroke. J. Prev. Alzheimers Dis. 2019, 6, 267–273. [Google Scholar] [PubMed]
- Rahmati, B.; Khalili, M.; Hamoleh-Shalali, Z.; Roghani, M.; Baluchnejadmojarad, T. Phytic Acid Mitigates Motor Asymmetry in Male Rat with Unilateral 6-Hydroxydopamine Striatal Lesion. J. Basic Clin. Pathophysiol. 2015, 3, 25–28. [Google Scholar]
- Grases, F.; Simonet, B.M.; Prieto, R.M.; March, J. Phytate levels in diverse rat tissues: Influence of dietary phytate. Br. J. Nutr. 2001, 86, 225–231. [Google Scholar] [CrossRef] [Green Version]
- McCormick, B.; Caulfield, L.; Richard, S.; Pendergast, L.; Murray-Kolb, L. MAL-ED Network Investigators Nurturing Environments and Nutrient-Rich Diets May Improve Cognitive Development: Analysis of Cognitive Trajectories from Six to Sixty Months from the MAL-ED Study (OR10-01-19). Curr. Dev. Nutr. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
Demographic Data | n (Unadjusted) | Percentage (Adjusted) 1 |
---|---|---|
Total | 1841 | 100 |
Sex | ||
Male | 967 | 54 |
Female | 874 | 46 |
Ethnicity 2 | ||
Non-Hispanic White | 896 | 77 |
Non-Hispanic Black | 388 | 9 |
Non-Hispanic Asian | 168 | 4 |
Mexican-American | 210 | 4 |
Smoking status | ||
Never | 917 | 50 |
Current user | 232 | 10 |
Former user | 690 | 40 |
Medical history 3 | ||
None | 507 | 30 |
At least one | 1334 | 70 |
Demographic Data | Phytate Intake (g/day) | Fiber Intake (g/day) | Digit Symbol Substitution Score (DSST) | Animal Fluency Score | CERAD Recall Score | CERAD Learning Score | Principal Component Score |
---|---|---|---|---|---|---|---|
Total | 0.65 (0.61, 0.71) | 15 (14.4, 15.8) | 53 (51, 54) | 18 (17, 18) | 7 (6,7) | 7 (6.7, 7) | 1.35 (1.07, 1.66) |
Sex | |||||||
Women | 0.6 (0.54, 0.65) a | 13.7 (13, 14.5) a | 54 (53, 56) a | 18 (17, 18) a | 7 (7, 7) a | 7.3 (7, 7.3) a | 1.35 (1.07, 1.62) a |
Men | 0.74 (0.68, 0.79) b | 17 (15.8, 18.3) b | 51 (49, 53) b | 18 (17, 19) a | 6 (6, 7) b | 6.7 (6.3,7) b | 1.33 (0.97, 1.7) a |
Ethnicity 2 | |||||||
Non-Hispanic White | 0.67 (0.62, 0.73) a | 15 (14.4, 16) a | 54 (53, 56) a | 18 (18, 19) a,b | 7 (7, 7) b | 7 (7, 7.3) b | 1.85 (1.68, 2) a |
Non-Hispanic Black | 0.5 (0.45, 0.59) b | 13 (12, 14.1) b | 40 (36, 44) b | 14 (13, 15) b | 6 (6, 7) a | 6.7 (6.3, 7) a | −1.2 (−1.62, −0.87) b |
Non-Hispanic Asian | 0.8 (0.67, 0.91) a | 17.2 (15.2, 18.8) a | 53 (52, 55) a,b | 14 (13, 15) b | 7 (7, 8) b | 7 (6.7, 7) b | −0.31 (−0.64, −0.11) a,b |
Mexican-American | 0.69 (0.59, 0.84) a | 17.6 (14.5, 20.4) a,b | 41 (37, 45) b | 17 (16, 17) a | 6 (5, 7) a | 6.3 (5.7, 6.7) a,b | −1.5 (−1.96, −1.18) b |
Smoking status | |||||||
Never | 0.67 (0.61, 0.75) a | 15.6 (14.7, 16.1) a | 54 (52, 56) a | 18 (17, 19) a | 7 (7, 7) a | 7 (6.7, 7.3) a | 1.33 (1.03, 1.68) a |
Current user | 0.5 (0.45, 0.6) b | 10.8 (9.4, 12.3) b | 49 (44, 53) b | 16 (15, 18) b | 7 (6, 7) b | 7 (6.7, 7) b | 0.79 (0.25, 1.53) b |
Former user | 0.66 (0.61, 0.73) a | 15.6 (14.7, 16.7) a | 51 (48, 54) a | 18 (17, 19) a | 7 (6, 7) b | 7 (6.7, 7) b | 1.48 (1.07, 1.81) a |
Medical history 3 | |||||||
None | 0.75 (0.71, 0.8) a | 16.3 (15, 17.4) a | 57 (54, 59) a | 19 (18, 20) a | 7 (7, 7) a | 7.3 (7, 7.3) a | 1.7 (1.38, 1.99) a |
At least one | 0.62 (0.58, 0.65) b | 14.4 (13.3, 15.2) b | 51 (49, 53) b | 17 (17, 18) b | 7 (6, 7) b | 6.7 (6.7, 7) b | 1.18 (0.89, 1.41) b |
Demographic/Nutrient Intake | Digit Symbol Substitution Score | Principal Component Score | ||||
---|---|---|---|---|---|---|
Predictors | β | CI | p | β | CI | p |
(Intercept) | 35.33 | 27.14, 43.52 | <0.001 | −1.12 | −1.66, −0.58 | 0.005 |
Phytate intake (g/day) 2 | 1.90 | 0.73, 3.07 | 0.015 | 0.23 | 0.13, 0.33 | 0.003 |
Sex | ||||||
Male | RG | |||||
Female | 5.16 | 3.48, 6.83 | 0.001 | 0.26 | 0.12, 0.40 | 0.009 |
Fiber intake (g/day) 2 | 1.10 | −0.51, 2.71 | 0.222 | −0.04 | −0.21, 0.13 | 0.675 |
Age group | ||||||
Old adult (60–70 years) | RG | |||||
Older adult (71–80 years) | −9.83 | −11.40, −8.26 | <0.001 | −0.77 | −0.92, −0.62 | <0.001 |
Medical condition history 3 | ||||||
None | RG | |||||
At least one | −2.74 | −4.52, −0.96 | 0.020 | −0.21 | −0.35, −0.06 | 0.025 |
Income to poverty ratio | ||||||
≤0.99 | RG | |||||
≥1.00 | 8.44 | 6.02, 10.87 | <0.001 | 1.24 | 1.01, 1.48 | <0.001 |
Educational status | ||||||
College educated | RG | |||||
High school | −8.02 | −9.99, −6.05 | <0.001 | −0.63 | −0.82, −0.45 | <0.001 |
Less than high school | −22.08 | −26.71, −17.45 | <0.001 | −1.67 | −2.32, −1.03 | 0.001 |
Observations | 1353 | 1340 | ||||
R2 | 0.322 | 0.277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larvie, D.Y.; Armah, S.M. Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014. Antioxidants 2021, 10, 1104. https://doi.org/10.3390/antiox10071104
Larvie DY, Armah SM. Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014. Antioxidants. 2021; 10(7):1104. https://doi.org/10.3390/antiox10071104
Chicago/Turabian StyleLarvie, Doreen Y, and Seth M Armah. 2021. "Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014" Antioxidants 10, no. 7: 1104. https://doi.org/10.3390/antiox10071104
APA StyleLarvie, D. Y., & Armah, S. M. (2021). Estimated Phytate Intake Is Associated with Improved Cognitive Function in the Elderly, NHANES 2013–2014. Antioxidants, 10(7), 1104. https://doi.org/10.3390/antiox10071104