Recovery of Polyphenols from Vineyard Pruning Wastes—Shoots and Cane of Hybrid Grapevine (Vitis sp.) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Collection of Shoots and Canes and Preparation of Samples
2.3. Identification and Quantification of Polyphenols by LC-MS Method
2.4. Statistical Analysis
3. Results
3.1. The Sum of Polyphenols and Individual Polyphenolic Compounds in Shoots
3.2. Individual Polyphenols, Flavonoids and Stilbenoids in Canes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Wine market observatory. Off. J. Eur. Communities 2019, 11, 1–15. [Google Scholar]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable viticulture: First determination of the environmental footprint of grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Tulcan, C.; Alexa, E.; Morar, D.; Dumitrescu, E.; Muselin, F.; Radulov, I.; Puvača, N.; Cristina, R.T. Sea buckthorn and grape extract might be helpful and sustainable phyto-resources as associated hypolipidemic agents—Preliminary study. Sustainability 2020, 12, 9297. [Google Scholar] [CrossRef]
- Acquadro, S.; Appleton, S.; Marengo, A.; Bicchi, C.; Sgorbini, B.; Mandrone, M.; Gai, F.; Peiretti, P.G.; Cagliero, C.; Rubiolo, P. Grapevine green pruning residues as a promising and sustainable source of bioactive phenolic compounds. Molecules 2020, 25, 464. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, M.; Yadollahi, A.; Ford, C.M.; Shojaeiyan, A.; Ayyari, M.; Hokmabadi, H. Chemodiversity evaluation of grape (Vitis vinifera) vegetative parts during summer and early fall. Ind. Crops Prod. 2017, 108, 267–277. [Google Scholar] [CrossRef]
- Goufo, P.; Singh, R.K.; Cortez, I. A reference list of phenolic compounds (Including stilbenes) in grapevine (vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Production of lactic acid from vine-trimming wastes and viticulture lees using a simultaneous saccharification fermentation method. J. Sci. Food Agric. 2005, 85, 466–472. [Google Scholar] [CrossRef]
- Cebrián, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Zalacain, A. Effect of post-pruning vine-shoots storage on the evolution of high-value compounds. Ind. Crops Prod. 2017, 109, 730–736. [Google Scholar] [CrossRef]
- Billet, K.; Houillé, B.; Besseau, S.; Mélin, C.; Oudin, A.; Papon, N.; Courdavault, V.; Clastre, M.; Giglioli-Guivarc’h, N.; Lanoue, A. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chem. 2018, 240, 1022–1027. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Salinas, M.R.; Alonso, G.L.; Oliva, J.; Zalacain, A. Toasted vine-shoot chips as enological additive. Food Chem. 2018, 263, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Cruz, S.; Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdán, T.; Puertas, B.; Gonzalo-Diago, A.; Moreno-Rojas, J.M.; Cantos-Villar, E. Grapevine-shoot stilbene extract as a preservative in white wine. Food Packag. Shelf Life 2018, 18, 164–172. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetin, E.S.; Altinöz, D.; Tarçan, E.; Göktürk Baydar, N. Chemical composition of grape canes. Ind. Crops Prod. 2011, 34, 994–998. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Biais, B.; Richard, T.; Puertas, B.; Waffo-Teguo, P.; Merillon, J.M.; Cantos-Villar, E. Grapevine cane’s waste is a source of bioactive stilbenes. Ind. Crops Prod. 2016, 94, 884–892. [Google Scholar] [CrossRef]
- Ewald, P.; Delker, U.; Winterhalter, P. Quantification of stilbenoids in grapevine canes and grape cluster stems with a focus on long-term storage effects on stilbenoid concentration in grapevine canes. Food Res. Int. 2017, 100, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Zwingelstein, M.; Draye, M.; Besombes, J.L.; Piot, C.; Chatel, G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. Waste Manag. 2020, 102, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Püssa, T.; Floren, J.; Kuldkepp, P.; Raal, A. Survey of grapevine Vitis vinifera stem polyphenols by liquid chromatography-diode array detection-tandem mass spectrometry. J. Agric. Food Chem. 2006, 54, 7488–7494. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Tassone, S. Nutritive Value of Leaves and Pruning Residues of Red and White Grapevine (Vitis vinifera L.) Varieties. In Grapevines at a Glance; Estrada, J., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019; pp. 111–126. ISBN 978-1-53616-399-5. [Google Scholar]
- Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009, 177, 143–155. [Google Scholar] [CrossRef]
- Doshi, P.; Adsule, P.; Banerjee, K. Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Shared Seedless) during maturation. Int. J. Food Sci. Technol. 2006, 41, 1–9. [Google Scholar] [CrossRef]
- Bábíková, P.; Vrchotová, N.; Tříska, J.; Kyseláková, M. Content of trans-resveratrol in leaves and berries of interspecific grapevine (Vitis sp.) varieties. Czech J. Food Sci. 2009, 26, S13–S17. [Google Scholar] [CrossRef]
- Rusjan, D.; Halbwirth, H.; Stich, K.; Mikulič-Petkovšek, M.; Veberič, R. Biochemical response of grapevine variety “Chardonnay” (Vitis vinifera L.) to infection with grapevine yellows (Bois noir). Eur. J. Plant Pathol. 2012, 134, 231–237. [Google Scholar] [CrossRef]
- Aaviksaar, A.; Haga, M.; Püssa, T.; Roasto, M.; Tsoupras, G. Purification of resveratrol from vine stems. Proc. Est. Acad. Sci. Chem. 2003, 52, 155–164. [Google Scholar]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Evolution of proanthocyanidins in bunch stems during berry development (Vitis vinifera L.). Vitis 2001, 40, 17–22. [Google Scholar]
- Loupit, G.; Prigent, S.; Franc, C.; De Revel, G.; Richard, T.; Cookson, S.J.; Fonayet, J.V. Polyphenol Profiles of Just Pruned Grapevine Canes from Wild Vitis Accessions and Vitis vinifera Cultivars. J. Agric. Food Chem. 2020, 68, 13397–13407. [Google Scholar] [CrossRef] [PubMed]
- Rätsep, R.; Karp, K.; Maante-kuljus, M.; Aluvee, A.; Bhat, R. Polyphenols and resveratrol from discarded leaf biomass of grapevine (Vitis sp.): Effect of cultivar and viticultural practices in Estonia. Agriculture 2020, 10, 393. [Google Scholar] [CrossRef]
- Ben Mohamed, H.; Vadel, A.M.; Geuns, J.M.C.; Khemira, H. Biochemical changes in dormant grapevine shoot tissues in response to chilling: Possible role in dormancy release. Sci. Hortic. 2010, 124, 440–447. [Google Scholar] [CrossRef]
- Piñeiro, Z.; Marrufo-Curtido, A.; Vela, C.; Palma, M. Microwave-assisted extraction of stilbenes from woody vine material. Food Bioprod. Process. 2017, 103, 18–26. [Google Scholar] [CrossRef]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Maante-Kuljus, M.; Rätsep, R.; Mainla, L.; Moor, U.; Starast, M.; Põldma, P.; Karp, K. Technological maturity of hybrid vine (Vitis) fruits under Estonian climate conditions. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 706–714. [Google Scholar] [CrossRef]
- Ben-othman, S.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of Ultrasound-Assisted Extraction of Phloretin and Other Phenolic Compounds from Apple Tree Leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia. Antioxidants 2021, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Pugajeva, I.; Perkons, I.; Górnaś, P. Identification and determination of stilbenes by Q-TOF in grape skins, seeds, juice and stems. J. Food Compos. Anal. 2018, 74, 44–52. [Google Scholar] [CrossRef]
- Lachman, J.; Kotikova, Z.; Hejtmankova, A.; Pivec, V.; Psenienaja, O.; Sulc, M.; Stoalkova, R.; Didina, M. Resveratrol and piceid isomers concentrations in grapevine shoots, leaves, and tendrils. Hortic. Sci. 2016, 43, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Biais, B.; Krisa, S.; Cluzet, S.; Da Costa, G.; Waffo-Teguo, P.; Mérillon, J.M.; Richard, T. Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. J. Agric. Food Chem. 2017, 65, 4952–4960. [Google Scholar] [CrossRef] [PubMed]
Year | Month | Temperatures, °C | Precipitation, mm | ||||
---|---|---|---|---|---|---|---|
Mean | Min | Max | Average of 30 Years | Monthly Sum | Average of 30 Years | ||
2019 | January | −5.7 | −19.6 | 3.0 | −4.1 | 50 | 48 |
February | −0.2 | −9.8 | 7.6 | −4.4 | 43 | 39 | |
March | 1.2 | −10.6 | 11.8 | −0.5 | 50 | 36 | |
April | 8.1 | −3.0 | 24.6 | 5.9 | 4 | 35 | |
May | 11.6 | −0.9 | 27.8 | 11.5 | 50 | 54 | |
June | 18.8 | 6.3 | 30.1 | 15.5 | 70 | 88 | |
July | 16.4 | 7.0 | 31.1 | 18.0 | 76 | 67 | |
August | 16.8 | 6.5 | 26.6 | 16.7 | 58 | 79 | |
September | 12.0 | −0.6 | 25.8 | 11.8 | 83 | 55 | |
October | 7.0 | −4.4 | 15.0 | 6.0 | 87 | 68 | |
November | 2.6 | −7.6 | 11.2 | 1.2 | 73 | 55 | |
December | 1.8 | −5.6 | 9.0 | −2.1 | 46 | 51 | |
2020 | January | 2.4 | −4.1 | 8.6 | −4.1 | 27 | 39 |
February | 1.1 | −7.6 | 9.0 | −4.4 | 78 | 36 | |
March | 2.5 | −6.0 | 14.1 | −0.5 | 30 | 35 |
Compound | Retention Time (min) | Parent Ion [M + H]+ | Parent Ion [M − H]− | Product Ion (m/z) |
---|---|---|---|---|
Gallic acid | 2.33 | 169 | 125 | |
Pyrogallol | 2.34 | 125 | 79 | |
Catechin | 5.47 | 291 | 139 | |
Procyanidin B | 5.68 | 579 | 127 | |
Chlorogenic acid | 6.44 | 355 | 163 | |
Syringic acid | 8.25 | 199 | 140 | |
Epicatechin | 8.38 | 291 | 139 | |
Ferulic acid | 11.04 | 195 | 177 | |
Piceatannol | 12.84 | 245 | 107 | |
Quercetin-3-glucuronide | 14.08 | 479 | 303 | |
Quercetin-3-galactoside | 14.24 | 465 | 303 | |
Naringin | 14.36 | 581 | 273 | |
Quercetin-3-glucoside | 14.26 | 465 | 303 | |
Rutin | 14.15 | 611 | 303 | |
Resveratrol | 15.28 | 229 | 107 | |
ɛ-Viniferin | 18.31 | 455 | 107 | |
Quercetin | 19.10 | 303 | 153 | |
Naringenin | 19.25 | 273 | 153 | |
Kaempferol | 21.34 | 287 | 153 | |
Apigenin | 21.48 | 271 | 153 |
Polyphenolic Compounds (mg kg−1 dw) | Grapevine Cultivars | |||
---|---|---|---|---|
Zilga | Hasansky Sladky | Rondo | ||
Flavanols | (+)-Catechin | 29.2 ± 1.0 a | 14.9 ± 1.6 b | 30.2 ± 1.9 a |
(−)-Epicatechin | 40.0 ± 1.3 a | 21.9 ± 2.4 b | 5.2 ± 0.5 c | |
Procyanidin B | 74.4 ± 2.8 a | 23.8 ± 2.8 b | 21.6 ± 3.5 b | |
Flavonols | Quercetin-3-glucoside+ Quercetin-3-galactoside | 807.9 ± 46.1 b | 456.8 ± 51.2 c | 1201.4 ± 80.1 a |
Quercetin-3-glucuronide | 4809.4 ± 283.9 b | 4782.8 ± 711.5 b | 7353.4 ± 579.7 a | |
Quercetin | 420.4 ± 8.0 a | 98.1 ± 8.9 c | 192.0 ± 13.3 b | |
Kaempferol | 74.4 ± 3.6 b | 35.4 ± 4.2 c | 116.4 ± 5.4 a | |
Rutin | 193.8 ± 6.6 b | 75.5 ± 11.7 c | 517.3 ± 44.0 a | |
Flavanones | Naringenin | 3.2 ± 0.0 b | 2.0 ± 0.2 c | 4.9 ± 0.3 a |
Flavones | Apigenin | 20.9 ± 0.6 a | 8.6 ± 1.2 b | 5.3 ± 0.2 c |
Stilbenoids | ε-viniferin | 4.2 ± 0.5 a | 1.9 ± 0.2 c | 2.1 ± 0.2 b |
Resveratrol | n.d. | n.d. | n.d. | |
Sum of individual polyphenols | 6477.8 ± 341.6 b | 5521.5 ± 788.0 c | 9449.8 ± 727.7 a |
Polyphenols, mg kg−1 dw | Grapevine Cultivars | ||||||
---|---|---|---|---|---|---|---|
Zilga | Hasansky Sladky | Mean Effect of | |||||
Compounds | Endo- | Eco- | Endo- | Eco- | cv | Dormancy Phase | |
Dormacy | Dormancy | Dormancy | Dormancy | ||||
Flavanols | (+)-Catechin | 36.0 ± 5.3 b | 224.5 ± 35.3 a | 31.3 ± 1.7 b | 213.7 ± 21.5 a | n.s. | *** |
(−)-Epicatechin | 6.1 ± 1.4 c | 61.8 ± 7.2 a | 2.7 ± 0.2 c | 37.2 ± 1.8 b | *** | *** | |
Procyanidin B | 3.2 ± 1.4 c | 49.2 ± 8.6 a | 1.3 ± 0.3 c | 32.4 ± 3.2 b | ** | *** | |
Flavonols | Quercetin-3-glucoside +Quercetin-3-galactoside | 3.6 ± 1.6 b | 0.9 ± 0.1 c | 5.5 ± 0.4 a | 2.2 ± 0.2 c | * | ** |
Quercetin-3-glucuronide | 16.7 ± 8.4 a | 1.5 ± 0.2 b | 11.9 ± 0.8 a | 2.1 ± 0.2 b | n.s. | ** | |
Quercetin | 9.5 ± 0.8 a | 1.3 ± 0.4 c | 7.2 ± 0.3 b | 0.1 ± 0.0 d | *** | *** | |
Kaempferol | 2.4 ± 0.7 a | 0.1 ± 0.0 c | 1.6 ± 0.3 b | 0.1 ± 0.0 c | n.s. | *** | |
Rutin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Flavanones | Naringenin | 1.0 ± 0.1 b | 1.0 ± 0.1 b | 1.3 ± 0.0 a | 1.2 ± 0.1 a | *** | n.s. |
Flavones | Apigenin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Stilbenoids | ε-viniferin | 595.5 ± 69.6 c | 931.6 ± 72.8 a | 765.6 ± 87.4 b | 1042.8 ± 24.2 a | ** | *** |
Resveratrol | 21.4 ± 2.9 d | 44.0 ± 2.4 b | 32.4 ± 7.9 c | 186.9 ± 3.4 a | *** | *** | |
Sum of individual polyphenols | 696.2 ± 73.5 d | 1267.1 ± 108.8 b | 861.2 ± 94.9 c | 1518.9 ± 34.5 a | * | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rätsep, R.; Karp, K.; Maante-Kuljus, M.; Aluvee, A.; Kaldmäe, H.; Bhat, R. Recovery of Polyphenols from Vineyard Pruning Wastes—Shoots and Cane of Hybrid Grapevine (Vitis sp.) Cultivars. Antioxidants 2021, 10, 1059. https://doi.org/10.3390/antiox10071059
Rätsep R, Karp K, Maante-Kuljus M, Aluvee A, Kaldmäe H, Bhat R. Recovery of Polyphenols from Vineyard Pruning Wastes—Shoots and Cane of Hybrid Grapevine (Vitis sp.) Cultivars. Antioxidants. 2021; 10(7):1059. https://doi.org/10.3390/antiox10071059
Chicago/Turabian StyleRätsep, Reelika, Kadri Karp, Mariana Maante-Kuljus, Alar Aluvee, Hedi Kaldmäe, and Rajeev Bhat. 2021. "Recovery of Polyphenols from Vineyard Pruning Wastes—Shoots and Cane of Hybrid Grapevine (Vitis sp.) Cultivars" Antioxidants 10, no. 7: 1059. https://doi.org/10.3390/antiox10071059