Plasma Vitamin C and Risk of Late Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Biobank and Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Kidney Transplant Recipients’ Characteristics
2.3. Clinical and Laboratory Measurements and Definitions
2.4. Endpoints
2.5. Statistical Analyses
2.5.1. Prospective Analyses
2.5.2. Sensitivity Analyses
2.5.3. Interaction Analyses
3. Results
3.1. Baseline Characteristics
3.2. Prospective Analyses
3.3. Sensitivity Analyses
3.4. Interaction Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic Review: Kidney Transplantation Compared With Dialysis in Clinically Relevant Outcomes. Am. J. Transpl. 2011, 11, 2093–2109. [Google Scholar] [CrossRef]
- Laupacis, A.; Keown, P.; Pus, N.; Krueger, H.; Ferguson, B.; Wong, C.; Muirhead, N. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 1996, 50, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, M.; Forsberg, A.; Lennerling, A.; Persson, L.-O. Coping in relation to perceived threat of the risk of graft rejection and Health-Related Quality of Life of organ transplant recipients. Scand. J. Caring Sci. 2013, 27, 935–944. [Google Scholar] [CrossRef]
- Forsberg, A.; Lennerling, A.; Fridh, I.; Karlsson, V.; Nilsson, M. Understanding the Perceived Threat of the Risk of Graft Rejections. Glob. Qual. Nurs. Res. 2015, 2, 233339361456382. [Google Scholar] [CrossRef] [PubMed]
- Howell, M.; Wong, G.; Rose, J.; Tong, A.; Craig, J.C.; Howard, K. Patient Preferences for Outcomes After Kidney Transplantation. Transplantation 2017, 101, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020, 75, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Mohnen, S.M.; van Oosten, M.J.M.; Los, J.; Leegte, M.J.H.; Jager, K.J.; Hemmelder, M.H.; Logtenberg, S.J.J.; Stel, V.S.; Hakkaart-van Roijen, L.; de Wit, G.A. Healthcare costs of patients on different renal replacement modalities–Analysis of Dutch health insurance claims data. PLoS ONE 2019, 14, 0220800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, E.F.; Rabelink, T.J.; van den Hout, W.B. Modelling the Cost-Effectiveness of Delaying End-Stage Renal Disease. Nephron 2016, 133, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Klarenbach, S.W.; Tonelli, M.; Chui, B.; Manns, B.J. Economic evaluation of dialysis therapies. Nat. Rev. Nephrol. 2014, 10, 644–652. [Google Scholar] [CrossRef]
- Brar, A.; Markell, M.; Stefanov, D.G.; Timpo, E.; Jindal, R.M.; Nee, R.; Sumrani, N.; John, D.; Tedla, F.; Salifu, M.O. Mortality after Renal Allograft Failure and Return to Dialysis. Am. J. Nephrol. 2017, 45, 180–186. [Google Scholar] [CrossRef]
- United States Renal Data System 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. Natl. Inst. Health 2020.
- Viklicky, O.; Novotny, M.; Hruba, P. Future developments in kidney transplantation. Curr. Opin. Organ. Transplant. 2020, 25, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Bucay, A.; Gordon, C.E.; Francis, J.M. Non-immunological complications following kidney transplantation. F1000Research 2019, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Cottone, S.; Palermo, A.; Vaccaro, F.; Mulè, G.; Guarneri, M.; Arsena, R.; Vadalà, A.; Cerasola, G. Inflammation and endothelial activation are linked to renal function in long-term kidney transplantation. Transpl. Int. 2007, 20, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.S.C.; Lim, G.; Levi, M.; Qualls, C.; Jain, S.K. Advanced glycation end products and oxidative stress are increased in chronic allograft nephropathy. Am. J. Kidney Dis. 2004, 43, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Cottone, S.; Palermo, A.; Vaccaro, F.; Raspanti, F.; Buscemi, B.; Incalcaterra, F.; Cerasola, G. In Renal Transplanted Patients Inflammation and Oxidative Stress Are Interrelated. Transplant. Proc. 2006, 38, 1026–1030. [Google Scholar] [CrossRef]
- Pippias, M.; Jager, K.J.; Kramer, A.; Leivestad, T.; Benítez Sánchez, M.; Caskey, F.J.; Collart, F.; Couchoud, C.; Dekker, F.W.; Finne, P.; et al. The changing trends and outcomes in renal replacement therapy: Data from the ERA-EDTA Registry. Nephrol. Dial. Transpl. 2016, 31, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Stoyanova, E.; Sandoval, S.B.; Zuniga, L.A.; El-Yamani, N.; Coll, E.; Pastor, S.; Reyes, J.; Andres, E.; Ballarin, J.; Xamena, N.; et al. Oxidative DNA damage in chronic renal failure patients. Nephrol. Dial. Transplant. 2010, 25, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Vural, A.; Yilmaz, M.I.; Caglar, K.; Aydin, A.; Sonmez, A.; Eyileten, T.; Acikel, C.; Gulec, B.; Kozak, O.; Oner, K. Assessment of Oxidative Stress in the Early Posttransplant Period: Comparison of Cyclosporine A and Tacrolimus-Based Regimens. Am. J. Nephrol. 2005, 25, 250–255. [Google Scholar] [CrossRef]
- Kocak, H.; Ceken, K.; Yavuz, A.; Yucel, S.; Gurkan, A.; Erdogan, O.; Ersoy, F.; Yakupoglu, G.; Demirbas, A.; Tuncer, M. Effect of renal transplantation on endothelial function in haemodialysis patients. Nephrol. Dial. Transplant. 2006, 21, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Ocak, N.; Dirican, M.; Ersoy, A.; Sarandol, E. Adiponectin, leptin, nitric oxide, and C-reactive protein levels in kidney transplant recipients: Comparison with the hemodialysis and chronic renal failure. Ren. Fail. 2016, 38, 1639–1646. [Google Scholar] [CrossRef]
- Turkmen, K.; Tonbul, H.Z.; Toker, A.; Gaipov, A.; Erdur, F.M.; Cicekler, H.; Anil, M.; Ozbek, O.; Selcuk, N.Y.; Yeksan, M.; et al. The relationship between oxidative stress, inflammation, and atherosclerosis in renal transplant and end-stage renal disease patients. Ren. Fail. 2012, 34, 1229–1237. [Google Scholar] [CrossRef]
- Ott, U.; Aschoff, A.; Fünfstück, R.; Jirikowski, G.; Wolf, G. DNA Fragmentation in Acute and Chronic Rejection After Renal Transplantation. Transplant. Proc. 2007, 39, 73–77. [Google Scholar] [CrossRef]
- Robea, M.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Ciobica, A.S.; Solcan, C.; Audira, G.; Hsiao, C.-D.; Strungaru, S.-A. Vitamin C Attenuates Oxidative Stress and Behavioral Abnormalities Triggered by Fipronil and Pyriproxyfen Insecticide Chronic Exposure on Zebrafish Juvenile. Antioxidants 2020, 9, 944. [Google Scholar] [CrossRef]
- Rodrigo, R.; Guichard, C.; Charles, R. Clinical pharmacology and therapeutic use of antioxidant vitamins. Fundam. Clin. Pharmacol. 2007, 21, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Honore, P.M.; Spapen, H.D.; Marik, P.; Boer, W.; Oudemans-van Straaten, H. Dosing vitamin C in critically ill patients with special attention to renal replacement therapy: A narrative review. Ann. Intensive Care 2020, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Arnal-Levron, M.; Hullin-Matsuda, F.; Knibbe, C.; Moulin, P.; Luquain-Costaz, C.; Delton, I. In vitro oxidized HDL and HDL from type 2 diabetes patients have reduced ability to efflux oxysterols from THP-1 macrophages. Biochimie 2018, 153, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Heinecke, J.W. HDL, lipid peroxidation, and atherosclerosis. J. Lipid Res. 2009, 50, 599–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillstrom, R.J.; Yacapin-Ammons, A.K.; Lynch, S.M. Vitamin C Inhibits Lipid Oxidation in Human HDL. J. Nutr. 2003, 133, 3047–3051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annema, W.; Dikkers, A.; de Boer, J.F.; Dullaart, R.P.F.; Sanders, J.-S.F.; Bakker, S.J.L.; Tietge, U.J.F. HDL Cholesterol Efflux Predicts Graft Failure in Renal Transplant Recipients. J. Am. Soc. Nephrol. 2016, 27, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leberkühne, L.J.; Ebtehaj, S.; Dimova, L.G.; Dikkers, A.; Dullaart, R.P.F.; Bakker, S.J.L.; Tietge, U.J.F. The predictive value of the antioxidative function of HDL for cardiovascular disease and graft failure in renal transplant recipients. Atherosclerosis 2016, 249, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Sotomayor, C.G.; Eisenga, M.F.; Gomes Neto, A.W.; Ozyilmaz, A.; Gans, R.O.B.; de Jong, W.H.A.; Zelle, D.M.; Berger, S.P.; Gaillard, C.A.J.M.; Navis, G.J.; et al. Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients. Nutrients 2017, 9, 568. [Google Scholar] [CrossRef] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group KDIGO Clinical Practice Guideline for the Care of Kidney Transplant Recipients. Am. J. Transplant. 2009, 9, 1–155. [CrossRef] [PubMed]
- Sinkeler, S.J.; Zelle, D.M.; Homan van der Heide, J.J.; Gans, R.O.B.; Navis, G.; Bakker, S.J.L. Endogenous Plasma Erythropoietin, Cardiovascular Mortality and All-Cause Mortality in Renal Transplant Recipients. Am. J. Transplant. 2012, 12, 485–491. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Gomes-Neto, A.W.; Eisenga, M.F.; Nolte, I.M.; Anderson, J.L.C.; de Borst, M.H.; Osté, M.C.J.; Rodrigo, R.; Gans, R.O.B.; Berger, S.P.; et al. Consumption of fruits and vegetables and cardiovascular mortality in renal transplant recipients: A prospective cohort study. Nephrol. Dial. Transplant. 2020, 35, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Speek, A.J.; Schrijver, J.; Schreurs, W.H.P. Fluorometric determination of total vitamin C in whole blood by high-performance liquid chromatography with pre-column derivatization. J. Chromatogr. B Biomed. Sci. Appl. 1984, 305, 53–60. [Google Scholar] [CrossRef]
- De Leeuw, K. Accelerated atherosclerosis in patients with Wegener’s granulomatosis. Ann. Rheum. Dis. 2005, 64, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, C.G.; te Velde-Keyzer, C.A.; Diepstra, A.; van Londen, M.; Pol, R.A.; Post, A.; Gans, R.O.B.; Nolte, I.M.; Slart, R.H.J.A.; de Borst, M.H.; et al. Galectin-3 and risk of late graft failure in kidney transplant recipients. Transplantation 2020. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26, 5–20. [CrossRef] [Green Version]
- Harrell, F.E.; Lee, K.L.; Mark, D.B. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977; ISBN 0-20-1076-1609-7802-0107-6165. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbrouche, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, X.; Zhang, Y.; Sun, X.; Liu, H.; Zhang, Y. Reporting and methodological quality of survival analysis in articles published in Chinese oncology journals. Medicine (Baltimore) 2017, 96, 9204. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Velde-Keyzer, C.A.T.; de Borst, M.H.; Navis, G.J.; Bakker, S.J.L. Lifestyle, inflammation, and vascular calcification in kidney transplant recipients: Perspectives on long-term outcomes. J. Clin. Med. 2020, 9, 1911. [Google Scholar] [CrossRef]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Adamus-Grabicka, A.; Karwowski, B.T. Two faces of vitamin c—Antioxidative and pro-oxidative agent. Nutrients 2020, 12, 1501. [Google Scholar] [CrossRef]
- Gacitúa, T.A.; Sotomayor, C.G.; Groothof, D.; Eisenga, M.F.; Pol, R.A.; de Borst, M.H.; Gans, R.O.B.; Berger, S.P.; Rodrigo, R.; Navis, G.J.; et al. Plasma vitamin C and cancer mortality in kidney transplant recipients. J. Clin. Med. 2019, 8, 2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.H.; Russ, G.R.; Wong, G.; Pilmore, H.; Kanellis, J.; Chadban, S.J. The risk of cancer in kidney transplant recipients may be reduced in those maintained on everolimus and reduced cyclosporine. Kidney Int. 2017, 91, 954–963. [Google Scholar] [CrossRef]
- Blackhall, M.L.; Fassett, R.G.; Sharman, J.E.; Geraghty, D.P.; Coombes, J.S. Effects of antioxidant supplementation on blood cyclosporin A and glomerular filtration rate in renal transplant recipients. Nephrol. Dial. Transplant. 2005, 20, 1970–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, A.P.J.; Oterdoom, L.H.; Gans, R.O.B.; Bakker, S.J.L. Supplementation with anti-oxidants Vitamin C and E decreases cyclosporine A trough-levels in renal transplant recipients. Nephrol. Dial. Transplant. 2006, 21, 231–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, J.F.; Sadovnic, M.J.; Cottington, E.M. Plasma oxalate levels rise in hemodialysis patients despite increased oxalate removal. J. Am. Soc. Nephrol. 1991, 1, 1289–1298. [Google Scholar] [PubMed]
- Pru, C.; Eaton, J.; Kjellstrand, C. Vitamin C intoxication and hyperoxalemia in chronic hemodialysis patients. Nephron 1985, 39, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Laposata, M. Laboratory Medicine Diagnosis of Disease in Clinical Laboratory, 2nd ed.; McGraw-Hill Professional Publishing: New York, NY, USA, 2014. [Google Scholar]
- Nankivell, B.J.; Murali, K.M. Renal Failure from Vitamin C after Transplantation. N. Engl. J. Med. 2008, 358, 4. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.N.; Libby, P. Vascular remodeling in transplant vasculopathy. Circ. Res. 2007, 100, 967–978. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Chapman, J.R. Chronic allograft nephropathy: Current concepts and future directions. Transplantation 2006, 81, 643–654. [Google Scholar] [CrossRef]
- Shepherd, J. Raising HDL-cholesterol and lowering CHD risk: Does intervention work? Eur. Hear. J. Suppl. 2005, 7, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R.; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Miri, R.; Saadati, H.; Ardi, P.; Firuzi, O. Alterations in oxidative stress biomarkers associated with mild hyperlipidemia and smoking. Food Chem. Toxicol. 2012, 50, 920–926. [Google Scholar] [CrossRef]
- Velmurugan, S.; Gan, J.M.; Rathod, K.S.; Khambata, R.S.; Ghosh, S.M.; Hartley, A.; Van Eijl, S.; Sagi-Kiss, V.; Chowdhury, T.A.; Curtis, M.; et al. Dietary nitrate improves vascular function in patients with hypercholesterolemia: A randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr. 2016, 103, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhang, X.M.; Tarnawski, L.; Peleli, M.; Zhuge, Z.; Terrando, N.; Harris, R.A.; Olofsson, P.S.; Larsson, E.; Persson, A.E.G.; et al. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox. Biol. 2017, 13, 320–330. [Google Scholar] [CrossRef]
- Ashor, A.W.; Shannon, O.M.; Werner, A.D.; Scialo, F.; Gilliard, C.N.; Cassel, K.S.; Seal, C.J.; Zheng, D.; Mathers, J.C.; Siervo, M. Effects of inorganic nitrate and vitamin C co-supplementation on blood pressure and vascular function in younger and older healthy adults: A randomised double-blind crossover trial. Clin. Nutr. 2020, 39, 708–717. [Google Scholar] [CrossRef]
- Carlström, M.; Persson, A.E.G.; Larsson, E.; Hezel, M.; Scheffer, P.G.; Teerlink, T.; Weitzberg, E.; Lundberg, J.O. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc. Res. 2011, 89, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Wink, D.A.; Miranda, K.M.; Espey, M.G.; Pluta, R.M.; Hewett, S.J.; Colton, C.; Vitek, M.; Feelisch, M.; Grisham, M.B. Mechanisms of the antioxidant effects of nitric oxide. Antioxid. Redox Signal 2001, 3, 203–213. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug. Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Wiklund, N.P.; Engstrand, L.; Weitzberg, E.; Lundberg, J.O.N. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide Biol. Chem. 2001, 5, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Basaqr, R.; Skleres, M.; Jayswal, R.; Thomas, D.T. The effect of dietary nitrate and vitamin C on endothelial function, oxidative stress and blood lipids in untreated hypercholesterolemic subjects: A randomized double-blind crossover study. Clin. Nutr. 2020, 40, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
Plasma Vitamin C, Tertiles | p | ||||||
---|---|---|---|---|---|---|---|
Tertile 1 (n = 197) | Tertile 2 (n = 202) | Tertile 3 (n = 199) | |||||
<35 µmol/L | 35‒51 µmol/L | ≥51 µmol/L | |||||
Plasma vitamin C, µmol/L | 23.4 | (8.2) | 43.5 | (4.6) | 66.3 | (13.9) | – |
Demographics | |||||||
Age, years, mean (SD) | 52 | (12) | 51 | (12) | 52 | (12) | 0.70 |
Sex, male, n (%) | 129 | (66) | 117 | (58) | 82 | (41) †‡ | <0.001 |
Caucasian ethnicity, n (%) | 190 | (96) | 192 | (95) | 195 | (98) | 0.28 |
Body mass index, kg/m2, mean (SD) | 26.4 | (4.8) | 26.0 | (4.1) | 25.6 | (4.0) | 0.21 |
Waist circumference, cms, mean (SD) a | 99.9 | (13.8) | 96.6 | (13.5) | 94.8 | (13.4) † | <0.001 |
Kidney allograft function | |||||||
eGFR, mL/min/1.73 m2, mean (SD) | 44 | (15) | 48 | (17) | 49 | (15) † | 0.03 |
Proteinuria ≥0.5 g/24 h, n (%) b | 70 | (36) | 59 | (29) | 37 | (19) †‡ | 0.001 |
Cardiovascular history | |||||||
History of cardiovascular disease, n (%) c | 25 | (13) | 26 | (13) | 23 | (12) | 0.89 |
Systolic BP, mmHg, mean (SD) | 158 | (25) | 152 | (21) † | 150 | (22) † | 0.001 |
Diastolic BP, mmHg, mean (SD) | 92 | (10) | 89 | (10) † | 89 | (9) † | 0.003 |
Use of antihypertensives, n (%) | 177 | (90) | 180 | (89) | 165 | (83) | 0.07 |
Use of ACE inhibitor or ARB, n (%) | 68 | (35) | 133 | (66) | 135 | (68) | 0.87 |
Use of β-blockers, n (%) | 124 | (63) | 124 | (61) | 120 | (60) | 0.86 |
Use of calcium-antagonists, n (%) | 78 | (40) | 80 | (40) | 70 | (35) | 0.58 |
Lifestyle | |||||||
Current or former-smoker, n (%) | 130 | (66) | 131 | (65) | 121 | (61) | 0.53 |
Alcohol use | 0.57 | ||||||
None, n (%) d | 95 | (48) | 92 | (46) | 96 | (48) | |
1‒7 units/week, n (%) d | 72 | (37) | 83 | (41) | 66 | (33) | |
>7 units/week, n (%) d | 27 | (14) | 25 | (12) | 32 | (16) | |
Physical activity, MET-min/day, median (IQR) e | 197 | (34–562) | 286 | (68–647) | 212 | (46–549) | 0.69 |
Fruit consumption, servings/day, median (IQR) f | 1 | (1–2) | 2 | (1–2) † | 2 | (1–2) † | <0.001 |
Vegetable consumption, tablespoons/day, median (IQR) f | 2 | (2–3) | 3 | (2–3) | 2 | (2–3) | 0.23 |
Diabetes and glucose homeostasis | |||||||
Diabetes mellitus, n (%) | 42 | (21) | 38 | (19) | 25 | (13) | 0.06 |
HbA1C, %, mean (SD) a | 6.6 | (1.1) | 6.5 | (1.1) | 6.4 | (1.0) | 0.003 |
Insulin, µU/mL, median (IQR) | 11.9 | (7.9–16.8) | 11.2 | (8.3–17.0) | 10.8 | (7.7–14.8) ‡ | 0.01 |
HOMA-IR, score, median (IQR) | 2.3 | (1.6–3.9) | 2.3 | (1.7–3.8) | 2.2 | (1.5–3.2) ‡ | 0.01 |
Laboratory measurements | |||||||
hs-CRP, mg/L, median (IQR) | 3.1 | (1.4–7.4) | 1.5 | (0.5–4.1) † | 1.8 | (0.8–4.0) † | 0.02 |
Total cholesterol, mmol/L, mean (SD) | 5.6 | (1.3) | 5.7 | (1.1) | 5.6 | (0.8) | 0.40 |
HDL cholesterol, mmol/L, mean (SD) | 1.0 | (0.3) | 1.1 | (0.3) | 1.2 | (0.4) †‡ | <0.001 |
LDL cholesterol, mmol/L, mean (SD) | 3.5 | (1.2) | 3.6 | (1.0) | 3.5 | (0.7) | 0.30 |
Triglycerides, mmol/L, mean (SD) | 2.3 | (1.1) | 2.2 | (1.5) | 2.0 | (1.1) † | 0.01 |
Kidney transplant and immunosuppressive therapy | |||||||
Dialysis vintage | |||||||
<1 year, n (%) | 42 | (21) | 44 | (22) | 55 | (28)† | 0.04 |
1–5 year, n (%) | 115 | (58) | 129 | (64) | 119 | (60)† | |
>5 year, n (%) | 40 | (20) | 29 | (14) | 25 | (13)† | |
Time since transplantation, years, median (IQR) | 4.6 | (1.9–9.5) | 5.9 | (2.7–10.6) † | 7.6 | (3.8–13.9) †‡ | <0.001 |
Donor type (living), n (%) | 26 | (13) | 27 | (13) | 30 | (15) | 0.84 |
Use of calcineurin inhibitor, n (%) | 168 | (85) | 156 | (77) † | 146 | (73)† | 0.01 |
Use of proliferation inhibitor, n (%) | 140 | (71) | 149 | (74) | 152 | (76) | 0.23 |
Cumulative prednisolone, grams, median (IQR) b | 16.7 | (8.4–31.5) | 21.4 | (11.5–37.9) † | 14.8 | (23.7–44.8) † | <0.001 |
Models | Plasma Vitamin C | ||||
---|---|---|---|---|---|
Tertiles | Per 1-SD, Relative Increment | ||||
Tertile 1 | Tertile 2 | Tertile 3 | |||
Ref. | HR (95% CI) | HR (95% CI) | HR (95% CI) | p | |
Model 1 | 1.00 | 0.68 (0.41–1.13) | 0.37 (0.20–0.68) | 0.69 (0.54–0.89) | 0.004 |
Model 2 | 1.00 | 0.64 (0.38–1.07) | 0.36 (0.19–0.67) | 0.67 (0.51–0.87) | 0.002 |
Model 3 | 1.00 | 0.61 (0.32–1.17) | 0.32 (0.15–0.70) | 0.61 (0.44–0.85) | 0.004 |
Model 4 | 1.00 | 0.64 (0.38–1.08) | 0.39 (0.21–0.73) | 0.68 (0.52–0.89) | 0.005 |
Model 5 | 1.00 | 0.66 (0.39–1.10) | 0.38 (0.20–0.71) | 0.69 (0.53–0.91) | 0.007 |
Model 6 | 1.00 | 0.69 (0.40–1.16) | 0.42 (0.22–0.80) | 0.70 (0.53–0.92) | 0.011 |
Model 7 | 1.00 | 0.45 (0.17–1.14) | 0.25 (0.08–0.78) | 0.54 (0.33–0.88) | 0.013 |
Model 8 | 1.00 | 0.70 (0.40–1.22) | 0.42 (0.21–0.83) | 0.72 (0.54–0.95) | 0.022 |
Models | Plasma Vitamin C | ||
---|---|---|---|
Tertiles | |||
Tertile 1 | Tertile 2 | Tertile 3 | |
Ref. | HR (95% CI) | HR (95% CI) | |
Triglycerides (pinteraction = 0.01) | |||
<1.9 mmol/L (nevents = 38) | 1.00 | 0.38 (0.18–0.79) | 0.10 (0.03–0.36) |
≥1.9 mmol/L (nevents = 37) | 1.00 | 1.18 (0.49–2.56) | 1.97 (0.79–4.89) |
HDL (pinteraction = 0.04) | |||
<0.91 mmol/L (nevents = 37) | 1.00 | 0.79 (0.35–1.79) | 2.09 (0.84–5.17) |
≥0.91 mmol/L (nevents = 38) | 1.00 | 0.51 (0.24–1.05) | 0.17 (0.05–0.51) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotomayor, C.G.; Bustos, N.I.; Yepes-Calderon, M.; Arauna, D.; de Borst, M.H.; Berger, S.P.; Rodrigo, R.; Dullaart, R.P.F.; Navis, G.J.; Bakker, S.J.L. Plasma Vitamin C and Risk of Late Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Biobank and Cohort Study. Antioxidants 2021, 10, 631. https://doi.org/10.3390/antiox10050631
Sotomayor CG, Bustos NI, Yepes-Calderon M, Arauna D, de Borst MH, Berger SP, Rodrigo R, Dullaart RPF, Navis GJ, Bakker SJL. Plasma Vitamin C and Risk of Late Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Biobank and Cohort Study. Antioxidants. 2021; 10(5):631. https://doi.org/10.3390/antiox10050631
Chicago/Turabian StyleSotomayor, Camilo G., Nicolas I. Bustos, Manuela Yepes-Calderon, Diego Arauna, Martin H. de Borst, Stefan P. Berger, Ramón Rodrigo, Robin P. F. Dullaart, Gerjan J. Navis, and Stephan J. L. Bakker. 2021. "Plasma Vitamin C and Risk of Late Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Biobank and Cohort Study" Antioxidants 10, no. 5: 631. https://doi.org/10.3390/antiox10050631
APA StyleSotomayor, C. G., Bustos, N. I., Yepes-Calderon, M., Arauna, D., de Borst, M. H., Berger, S. P., Rodrigo, R., Dullaart, R. P. F., Navis, G. J., & Bakker, S. J. L. (2021). Plasma Vitamin C and Risk of Late Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Biobank and Cohort Study. Antioxidants, 10(5), 631. https://doi.org/10.3390/antiox10050631