The Role of Toxic Metals and Metalloids in Nrf2 Signaling
Abstract
1. Introduction
1.1. Nrf2 Signaling
1.2. Toxic Metals and Metalloids
2. Determining Toxic Elements Role in Nrf2 Signaling
2.1. Cadmium-Associated Changes in Nrf2 Signaling
2.2. Lead-Associated Changes in Nrf2 Signaling
2.3. Arsenic-Associated Changes in Nrf2 Signaling
2.4. Mercury-Associated Changes in Nrf2 Signaling
2.5. Nickel-Associated Changes in Nrf2 Signaling
2.6. Chromium-Associated Changes in Nrf2 Signaling
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef]
- He, X.; Lin, G.X.; Chen, M.G.; Zhang, J.X.; Ma, Q. Protection against Chromium (VI)-Induced Oxidative Stress and Apoptosis by Nrf2. Recruiting Nrf2 into the Nucleus and Disrupting the Nuclear Nrf2/Keap1 Association. Toxicol. Sci. 2007, 98, 298–309. [Google Scholar] [CrossRef]
- Liu, C.-M.; Ma, J.-Q.; Xie, W.-R.; Liu, S.-S.; Feng, Z.-J.; Zheng, G.-H.; Wang, A.-M. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway. Food Chem. Toxicol. 2015, 82, 19–26. [Google Scholar] [CrossRef]
- Vomund, S.; Schäfer, A.; Parnham, M.; Brüne, B.; von Knethen, A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int. J. Mol. Sci. 2017, 18, 2772. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Osburn, W.; Kensler, T. Nrf2 signaling: An adaptive response pathway for protection against environmental toxic insults. Mutat. Res. Mutat. Res. 2008, 659, 31–39. [Google Scholar] [CrossRef]
- Han, B.; Li, S.; Lv, Y.; Yang, D.; Li, J.; Yang, Q.; Wu, P.; Lv, Z.; Zhang, Z. Dietary melatonin attenuates chromium-induced lung injury via activating the Sirt1/Pgc-1α/Nrf2 pathway. Food Funct. 2019, 10, 5555–5565. [Google Scholar] [CrossRef]
- Yang, D.; Han, B.; Baiyun, R.; Lv, Z.; Wang, X.; Li, S.; Lv, Y.; Xue, J.; Liu, Y.; Zhang, Z. Sulforaphane Attenuates Hexavalent Chromium-Induced Cardiotoxicity via Activation of the Sesn2/AMPK/Nrf2 Signaling Pathway. Metallomics 2020. [Google Scholar] [CrossRef] [PubMed]
- Baiyun, R.; Li, S.; Liu, B.; Lu, J.; Lv, Y.; Xu, J.; Wu, J.; Li, J.; Lv, Z.; Zhang, Z. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicol. Environ. Saf. 2018, 161, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Silva-Islas, C.A.; Maldonado, P.D. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 2018, 134, 92–99. [Google Scholar] [CrossRef]
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta-Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Wang, X.-J.; Zhao, F.; Villeneuve, N.F.; Wu, T.; Jiang, T.; Sun, Z.; White, E.; Zhang, D.D. A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62. Mol. Cell. Biol. 2010, 30, 3275–3285. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Zheng, Y.; Tao, S.; Wang, H.; Whitman, S.A.; White, E.; Zhang, D.D. Arsenic Inhibits Autophagic Flux, Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner. Mol. Cell. Biol. 2013, 33, 2436–2446. [Google Scholar] [CrossRef]
- Copple, I.M.; Lister, A.; Obeng, A.D.; Kitteringham, N.R.; Jenkins, R.E.; Layfield, R.; Foster, B.J.; Goldring, C.E.; Park, B.K. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J. Biol. Chem. 2010, 285, 16782–16788. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, F.; Gao, B.; Tan, C.; Yagishita, N.; Nakajima, T.; Wong, P.K.; Chapman, E.; Fang, D.; Zhang, D.D. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 2014, 28, 708–722. [Google Scholar] [CrossRef]
- Hennig, P.; Garstkiewicz, M.; Grossi, S.; Di Filippo, M.; French, L.; Beer, H.-D. The Crosstalk between Nrf2 and Inflammasomes. Int. J. Mol. Sci. 2018, 19, 562. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Biswas, J.; Bishayee, A. Nrf2-mediated redox signaling in arsenic carcinogenesis: A review. Arch. Toxicol. 2013, 87, 383–396. [Google Scholar] [CrossRef]
- Yang, B.; Yin, C.; Zhou, Y.; Wang, Q.; Jiang, Y.; Bai, Y.; Qian, H.; Xing, G.; Wang, S.; Li, F.; et al. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019, 425, 152248. [Google Scholar] [CrossRef]
- Baird, L.; Yamamoto, M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol. Cell. Biol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Buha, A.; Telkoparan-akillilar, P.; Cevik, D.; Kouretas, D.; Veskoukis, A.; Skaperda, Z.; Tsatsakis, A.; Wallace, D.; Suzen, S.; et al. Potential applications of NRF2 modulators in cancer therapy. Antioxidants 2020, 9, 193. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Pauletto, M.; Tolosi, R.; Giantin, M.; Guerra, G.; Barbarossa, A.; Zaghini, A.; Dacasto, M. Insights into Aflatoxin B1 Toxicity in Cattle: An In Vitro Whole-Transcriptomic Approach. Toxins 2020, 12, 429. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhang, J.; Tai, W.; Deng, S.; Li, T.; Wu, W.; Pu, L.; Fan, D.; Lei, W.; Zhang, T.; et al. High-Dose Paraquat Induces Human Bronchial 16HBE Cell Death and Aggravates Acute Lung Intoxication in Mice by Regulating Keap1/p65/Nrf2 Signal Pathway. Inflammation 2019, 42, 471–484. [Google Scholar] [CrossRef]
- Wang, X.; Han, B.; Wu, P.; Li, S.; Lv, Y.; Lu, J.; Yang, Q.; Li, J.; Zhu, Y.; Zhang, Z. Dibutyl phthalate induces allergic airway inflammation in rats via inhibition of the Nrf2/TSLP/JAK1 pathway. Environ. Pollut. 2020, 267, 115564. [Google Scholar] [CrossRef] [PubMed]
- Pi, J.; Diwan, B.A.; Sun, Y.; Liu, J.; Qu, W.; He, Y.; Styblo, M.; Waalkes, M.P. Arsenic-induced malignant transformation of human keratinocytes: Involvement of Nrf2. Free Radic. Biol. Med. 2008, 45, 651–658. [Google Scholar] [CrossRef]
- Albarakati, A.J.A.; Baty, R.S.; Aljoudi, A.M.; Habotta, O.A.; Elmahallawy, E.K.; Kassab, R.B.; Abdel Moneim, A.E. Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol. Biol. Rep. 2020, 47, 2591–2603. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Ma, X.; Xu, X.; Du, Y.; Lv, Q.; Li, X.; Wu, Y.; Sun, H.; Yu, L.; et al. Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J. Inorg. Biochem. 2019, 197, 110698. [Google Scholar] [CrossRef]
- Suzuki, T.; Motohashi, H.; Yamamoto, M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 2013, 34, 340–346. [Google Scholar] [CrossRef]
- Baird, L.; Dinkova-Kostova, A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011, 85, 241–272. [Google Scholar] [CrossRef]
- Yang, S.-H.; Long, M.; Yu, L.-H.; Li, L.; Li, P.; Zhang, Y.; Guo, Y.; Gao, F.; Liu, M.-D.; He, J.-B. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways. Int. J. Mol. Sci. 2016, 17, 1703. [Google Scholar] [CrossRef] [PubMed]
- Thangapandiyan, S.; Ramesh, M.; Miltonprabu, S.; Hema, T.; Jothi, G.B.; Nandhini, V. Sulforaphane potentially attenuates arsenic-induced nephrotoxicity via the PI3K/Akt/Nrf2 pathway in albino Wistar rats. Environ. Sci. Pollut. Res. 2019, 26, 12247–12263. [Google Scholar] [CrossRef]
- Yang, S.-H.; Yu, L.-H.; Li, L.; Guo, Y.; Zhang, Y.; Long, M.; Li, P.; He, J.-B. Protective Mechanism of Sulforaphane on Cadmium-Induced Sertoli Cell Injury in Mice Testis via Nrf2/ARE Signaling Pathway. Molecules 2018, 23, 1774. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Z.; Li, H.; Guo, M.; Yang, T.; Feng, S.; Xu, B.; Deng, Y. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum. Exp. Toxicol. 2017, 36, 949–966. [Google Scholar] [CrossRef]
- Mahalanobish, S.; Saha, S.; Dutta, S.; Sil, P.C. Mangiferin alleviates arsenic induced oxidative lung injury via upregulation of the Nrf2-HO1 axis. Food Chem. Toxicol. 2019, 126, 41–55. [Google Scholar] [CrossRef]
- Kim, J.; Keum, Y.-S. NRF2, a Key Regulator of Antioxidants with Two Faces towards Cancer. Oxid. Med. Cell. Longev. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Niu, Q.; Hu, Y.; Feng, G.; Wang, H.; Li, S. Proanthocyanidins Antagonize Arsenic-Induced Oxidative Damage and Promote Arsenic Methylation through Activation of the Nrf2 Signaling Pathway. Oxid. Med. Cell. Longev. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Wallace, D.R.; Taalab, Y.M.; Heinze, S.; Tariba Lovaković, B.; Pizent, A.; Renieri, E.; Tsatsakis, A.; Farooqi, A.A.; Javorac, D.; Andjelkovic, M.; et al. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020, 9, 901. [Google Scholar] [CrossRef]
- Martí-Cid, R.; Llobet, J.M.; Castell, V.; Domingo, J.L. Dietary Intake of Arsenic, Cadmium, Mercury, and Lead by the Population of Catalonia, Spain. Biol. Trace Elem. Res. 2008, 125, 120–132. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Andjelkovic, M.; Djordjevic, A.B.; Antonijevic, E.; Antonijevic, B.; Stanic, M.; Kotur-Stevuljevic, J.; Spasojevic-Kalimanovska, V.; Jovanovic, M.; Boricic, N.; Wallace, D.; et al. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int. J. Environ. Res. Public Health 2019, 16, 274. [Google Scholar] [CrossRef]
- Djordjevic, V.R.; Wallace, D.R.; Schweitzer, A.; Boricic, N.; Knezevic, D.; Matic, S.; Grubor, N.; Kerkez, M.; Radenkovic, D.; Bulat, Z.; et al. Environmental cadmium exposure and pancreatic cancer: Evidence from case control, animal and in vitro studies. Environ. Int. 2019, 128, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.R.; Buha Djordjevic, A. Heavy metal and pesticide exposure: A mixture of potential toxicity and carcinogenicity. Curr. Opin. Toxicol. 2020, 19, 72–79. [Google Scholar] [CrossRef]
- Buha, A.; Dukić-Ćosić, D.; Ćurčić, M.; Bulat, Z.; Antonijević, B.; Moulis, J.M.; Goumenou, M.; Wallace, D. Emerging links between cadmium exposure and insulin resistance: Human, animal, and cell study data. Toxics 2020, 8, 63. [Google Scholar] [CrossRef]
- Buha, A.; Matovic, V.; Antonijevic, B.; Bulat, Z.; Curcic, M.; Renieri, E.A.; Tsatsakis, A.M.; Schweitzer, A.; Wallace, D. Overview of cadmium thyroid disrupting effects and mechanisms. Int. J. Mol. Sci. 2018, 19, 1501. [Google Scholar] [CrossRef] [PubMed]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity-An overview. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 141–152. [Google Scholar] [CrossRef]
- Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol. 2017, 91, 3787–3797. [Google Scholar] [CrossRef]
- Nurchi, V.M.; Djordjevic, A.B.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic toxicity: Molecular targets and therapeutic agents. Biomolecules 2020, 10, 235. [Google Scholar] [CrossRef]
- Bjørklund, G.; Crisponi, G.; Nurchi, V.M.; Buha Djordjevic, A.; Aaseth, J. A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead. Molecules 2019, 24, 3247. [Google Scholar] [CrossRef]
- Hartwig, A. Carcinogenicity of metal compounds: Possible role of DNA repair inhibition. Toxicol. Lett. 1998, 102–103, 235–239. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-J.; Kim, Y.-S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Sabolić, I. Common Mechanisms in Nephropathy Induced by Toxic Metals. Nephron Physiol. 2006, 104, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Đukić-Ćosić, D.; Baralić, K.; Javorac, D.; Djordjevic, A.B.; Bulat, Z. An overview of molecular mechanisms in cadmium toxicity. Curr. Opin. Toxicol. 2020, 19, 56–62. [Google Scholar] [CrossRef]
- Repić, A.; Bulat, P.; Antonijević, B.; Antunović, M.; Džudović, J.; Buha, A.; Bulat, Z. The influence of smoking habits on cadmium and lead blood levels in the Serbian adult people. Environ. Sci. Pollut. Res. 2020, 27, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef]
- Yang, S.-H.; Li, P.; Yu, L.-H.; Li, L.; Long, M.; Liu, M.-D.; He, J.-B. Sulforaphane Protect Against Cadmium-Induced Oxidative Damage in mouse Leydigs cells by Activating Nrf2/ARE Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 630. [Google Scholar] [CrossRef]
- Buha, A.; Jugdaohsingh, R.; Matovic, V.; Bulat, Z.; Antonijevic, B.; Kerns, J.G.; Goodship, A.; Hart, A.; Powell, J.J. Bone mineral health is sensitively related to environmental cadmium exposure- experimental and human data. Environ. Res. 2019, 176, 108539. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. 2012;100(PT C):11. IARC Monogr. Eval. Carcinog. Risks Humans 2012, 100, 11. [Google Scholar]
- Wallace, D.; Spandidos, D.; Tsatsakis, A.; Schweitzer, A.; Djordjevic, V.; Djordjevic, A. Potential interaction of cadmium chloride with pancreatic mitochondria: Implications for pancreatic cancer. Int. J. Mol. Med. 2019, 44, 145–156. [Google Scholar] [CrossRef]
- Van Maele-Fabry, G.; Lombaert, N.; Lison, D. Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: A systematic review and meta-analysis. Environ. Int. 2016, 86, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bimonte, V.M.; Besharat, Z.M.; Antonioni, A.; Cella, V.; Lenzi, A.; Ferretti, E.; Migliaccio, S. The endocrine disruptor cadmium: A new player in the pathophysiology of metabolic diseases. J. Endocrinol. Investig. 2021. [Google Scholar] [CrossRef] [PubMed]
- de Angelis, C.; Galdiero, M.; Pivonello, C.; Salzano, C.; Gianfrilli, D.; Piscitelli, P.; Lenzi, A.; Colao, A.; Pivonello, R. The environment and male reproduction: The effect of cadmium exposure on reproductive functions and its implication in fertility. Reprod. Toxicol. 2017, 73, 105–127. [Google Scholar] [CrossRef] [PubMed]
- Tariba Lovaković, B. Cadmium, arsenic, and lead: Elements affecting male reproductive health. Curr. Opin. Toxicol. 2020, 19, 7–14. [Google Scholar] [CrossRef]
- Silva, N.; Peiris-John, R.; Wickremasinghe, R.; Senanayake, H.; Sathiakumar, N. Cadmium a metalloestrogen: Are we convinced? J. Appl. Toxicol. 2012, 32, 318–332. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, J.; Ge, J.; Wang, L.-L.; Li, N.; Sun, X.-T.; Cao, H.-B.; Li, J.-L. Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis. Toxicol. Vitr. 2017, 44, 349–356. [Google Scholar] [CrossRef]
- Wang, L.; Gallagher, E.P. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish. Toxicol. Appl. Pharmacol. 2013, 266, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.-G.; Wang, X.-Y.; Wang, J.-H.; Fan, R.-F.; Wang, L. Trehalose prevents cadmium-induced hepatotoxicity by blocking Nrf2 pathway, restoring autophagy and inhibiting apoptosis. J. Inorg. Biochem. 2019, 192, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, Y.; Lu, Z.; Guo, W.; Tumen, B.; He, Y.; Chen, C.; Hu, S.; Xu, K.; Wang, Y.; et al. Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway. Int. J. Environ. Res. Public Health 2019, 17, 138. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.-C.; Wang, Z.-Y.; Tang, K.-K.; Zhu, Y.-S.; Fan, R.-F. Trehalose suppresses cadmium-activated Nrf2 signaling pathway to protect against spleen injury. Ecotoxicol. Environ. Saf. 2019, 181, 224–230. [Google Scholar] [CrossRef]
- Lawal, A.O.; Ellis, E.M. Nrf2-mediated adaptive response to cadmium-induced toxicity involves protein kinase C delta in human 1321N1 astrocytoma cells. Environ. Toxicol. Pharmacol. 2011, 32, 54–62. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chen, M.G.; Ma, Q. Activation of Nrf2 in Defense against Cadmium-Induced Oxidative Stress. Chem. Res. Toxicol. 2008, 21, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, Y.; Kimura, T.; Itagaki, A.; Yamamoto, C.; Taguchi, K.; Yamamoto, M.; Kumagai, Y.; Kaji, T. Partial contribution of the Keap1–Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells. Toxicol. Appl. Pharmacol. 2016, 295, 37–46. [Google Scholar] [CrossRef]
- Wu, K.C.; Liu, J.J.; Klaassen, C.D. Nrf2 activation prevents cadmium-induced acute liver injury. Toxicol. Appl. Pharmacol. 2012, 263, 14–20. [Google Scholar] [CrossRef]
- Wang, Y.; Mandal, A.K.; Son, Y.-O.; Pratheeshkumar, P.; Wise, J.T.F.; Wang, L.; Zhang, Z.; Shi, X.; Chen, Z. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol. 2018, 353, 23–30. [Google Scholar] [CrossRef]
- Xu, J.; Wise, J.T.F.; Wang, L.; Schumann, K.; Zhang, Z.; Shi, X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 2017, 36, 345–376. [Google Scholar] [CrossRef]
- Park, J.Y.; Seo, Y.R. The protective role of Nrf2 in cadmium-induced DNA damage. Mol. Cell. Toxicol. 2011, 7, 61–66. [Google Scholar] [CrossRef]
- Almeer, R.; Soliman, D.; Kassab, R.; AlBasher, G.; Alarifi, S.; Alkahtani, S.; Ali, D.; Metwally, D.; Abdel Moneim, A. Royal Jelly Abrogates Cadmium-Induced Oxidative Challenge in Mouse Testes: Involvement of the Nrf2 Pathway. Int. J. Mol. Sci. 2018, 19, 3979. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, M.F.; Al-Joufi, F.; Abou Seif, H.S.; Alzoghaibi, M.A.; Djouhri, L.; Ahmeda, A.F.; Mahmoud, A.M. Umbelliferone Inhibits Spermatogenic Defects and Testicular Injury in Lead-Intoxicated Rats by Suppressing Oxidative Stress and Inflammation, and Improving Nrf2/HO-1 Signaling. Drug Des. Devel. Ther. 2020, 14, 4003–4019. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Jiang, A.; Li, X.; Chang, W.; Chen, J.; Ye, F. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol. 2020, 36, 101626. [Google Scholar] [CrossRef] [PubMed]
- Javorac, D.; Signević, A.B.; Signelković, M.; Tatović, S.; Baralić, K.; Antonijević, E.; Kotur-Stevuljević, J.; Signukić-Äosić, D.; Antonijević, B.; Bulat, Z. Redox and essential metal status in the brain of Wistar rats acutely exposed to a cadmium and lead mixture. Arh. Hig. Rada Toksikol. 2020, 71, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Aglan, H.S.; Gebremedhn, S.; Salilew-Wondim, D.; Neuhof, C.; Tholen, E.; Holker, M.; Schellander, K.; Tesfaye, D. Regulation of Nrf2 and NF-κB during lead toxicity in bovine granulosa cells. Cell Tissue Res. 2020, 380, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Tian, Z.-K.; Zhang, Y.-J.; Ming, Q.-L.; Ma, J.-Q.; Ji, L.-P. Effects of Gastrodin against Lead-Induced Brain Injury in Mice Associated with the Wnt/Nrf2 Pathway. Nutrients 2020, 12, 1805. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Li, X.; Li, L.; Lyu, L.; Yuan, J.; Chen, J. The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem. Toxicol. 2015, 86, 191–201. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, H.; Liu, B.; Baiyun, R.; Li, S.; Lv, Y.; Li, D.; Qiao, S.; Tan, X.; Zhang, Z. Grape seed procyanidin extract protects against Pb-induced lung toxicity by activating the AMPK/Nrf2/p62 signaling axis. Food Chem. Toxicol. 2018, 116, 59–69. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, J.; Huang, S.; Chen, L.; Fan, G.; Wang, C. The chronic effects of low lead level on the expressions of Nrf2 and Mrp1 of the testes in the rats. Environ. Toxicol. Pharmacol. 2013, 35, 109–116. [Google Scholar] [CrossRef]
- AL-Megrin, W.A.; Alomar, S.; Alkhuriji, A.F.; Metwally, D.M.; Mohamed, S.K.; Kassab, R.B.; Abdel Moneim, A.E.; El-Khadragy, M.F. Luteolin protects against testicular injury induced by lead acetate by activating the Nrf2/ HO -1 pathway. IUBMB Life 2020, 72, 1787–1798. [Google Scholar] [CrossRef]
- Lv, X.; Li, Y.; Xiao, Q.; Li, D. Daphnetin activates the Nrf2-dependent antioxidant response to prevent arsenic-induced oxidative insult in human lung epithelial cells. Chem. Biol. Interact. 2019, 302, 93–100. [Google Scholar] [CrossRef]
- Schmidlin, C.J.; Zeng, T.; Liu, P.; Wei, Y.; Dodson, M.; Chapman, E.; Zhang, D.D. Chronic arsenic exposure enhances metastatic potential via NRF2-mediated upregulation of SOX9. Toxicol. Appl. Pharmacol. 2020, 402, 115138. [Google Scholar] [CrossRef] [PubMed]
- Aono, J.; Yanagawa, T.; Itoh, K.; Li, B.; Yoshida, H.; Kumagai, Y.; Yamamoto, M.; Ishii, T. Activation of Nrf2 and accumulation of ubiquitinated A170 by arsenic in osteoblasts. Biochem. Biophys. Res. Commun. 2003, 305, 271–277. [Google Scholar] [CrossRef]
- Nakaso, K.; Kitayama, M.; Ishii, T.; Bannai, S.; Yanagawa, T.; Kimura, K.; Nakashima, K.; Ohama, E.; Yamada, K. Effects of kainate-mediated excitotoxicity on the expression of rat counterparts of A170 and MSP23 stress proteins in the brain. Mol. Brain Res. 1999, 69, 155–163. [Google Scholar] [CrossRef]
- He, X.; Chen, M.G.; Lin, G.X.; Ma, Q. Arsenic Induces NAD(P)H-quinone Oxidoreductase I by Disrupting the Nrf2·Keap1·Cul3 Complex and Recruiting Nrf2·Maf to the Antioxidant Response Element Enhancer. J. Biol. Chem. 2006, 281, 23620–23631. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hou, Y.; Li, L.; Yang, Y.; Jia, J.; Hong, Z.; Li, T.; Xu, Y.; Fu, J.; Sun, Y.; et al. Nrf2 deficiency aggravates the increase in osteoclastogenesis and bone loss induced by inorganic arsenic. Toxicol. Appl. Pharmacol. 2019, 367, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yu, C.; Yao, M.; Wang, L.; Liang, B.; Zhang, B.; Huang, X.; Zhang, A. The PKCδ-Nrf2-ARE signalling pathway may be involved in oxidative stress in arsenic-induced liver damage in rats. Environ. Toxicol. Pharmacol. 2018, 62, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; Zhang, Q.; Fu, Y.; Wadgaonkar, P.; Zhang, W.; Almutairy, B.; Xu, L.; Rice, M.; Qiu, Y.; Thakur, C.; et al. Nrf2 and HIF1α converge to arsenic-induced metabolic reprogramming and the formation of the cancer stem-like cells. Theranostics 2020, 10, 4134–4149. [Google Scholar] [CrossRef]
- Wu, X.; Sun, R.; Wang, H.; Yang, B.; Wang, F.; Xu, H.; Chen, S.; Zhao, R.; Pi, J.; Xu, Y. Enhanced p62-NRF2 Feedback Loop due to Impaired Autophagic Flux Contributes to Arsenic-Induced Malignant Transformation of Human Keratinocytes. Oxid. Med. Cell. Longev. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Trinh, E.; Qiang, L.; Xie, L.; Hu, W.-Y.; Prins, G.; Pi, J.; He, Y.-Y. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer. Molecules 2017, 22, 194. [Google Scholar] [CrossRef]
- Ahmed, R.G.; El-Gareib, A.W. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose-Response 2019, 17, 1559325819858266. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, J.; Li, L.; Li, Y.; Lv, H.; Xu, Y.; Sun, G.; Pi, J. Effects of Nrf2 deficiency on arsenic metabolism in mice. Toxicol. Appl. Pharmacol. 2017, 337, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Kanda, H.; Shinkai, Y.; Toyama, T. The Role of the Keap1/Nrf2 Pathway in the Cellular Response to Methylmercury. Oxid. Med. Cell. Longev. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tan, X.; Yang, D.; Lu, J.; Liu, B.; Baiyun, R.; Zhang, Z. Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats. Oncotarget 2017, 8, 40982–40993. [Google Scholar] [CrossRef]
- Unoki, T.; Akiyama, M.; Kumagai, Y.; Gonçalves, F.M.; Farina, M.; da Rocha, J.B.T.; Aschner, M. Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation. Front. Genet. 2018, 9, 373. [Google Scholar] [CrossRef]
- Toyama, T.; Shinkai, Y.; Yasutake, A.; Uchida, K.; Yamamoto, M.; Kumagai, Y. Isothiocyanates Reduce Mercury Accumulation via an Nrf2-Dependent Mechanism during Exposure of Mice to Methylmercury. Environ. Health Perspect. 2011, 119, 1117–1122. [Google Scholar] [CrossRef]
- Zeng, L.; Zheng, J.-L.; Wang, Y.-H.; Xu, M.-Y.; Zhu, A.-Y.; Wu, C.-W. The role of Nrf2/Keap1 signaling in inorganic mercury induced oxidative stress in the liver of large yellow croaker Pseudosciaena crocea. Ecotoxicol. Environ. Saf. 2016, 132, 345–352. [Google Scholar] [CrossRef]
- Kim, H.L.; Seo, Y.R. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol. Rep. 2012, 28, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Nickel Nickel Compounds, 100C ed.; IARC: Lyon, France, 2018; Volume 1–42. [Google Scholar]
- Lewis, J.B.; Messer, R.L.; McCloud, V.V.; Lockwood, P.E.; Hsu, S.D.; Wataha, J.C. Ni(II) activates the Nrf2 signaling pathway in human monocytic cells. Biomaterials 2006, 27, 5348–5356. [Google Scholar] [CrossRef]
- Jiménez-Vidal, L.; Espitia-Pérez, P.; Torres-Ávila, J.; Ricardo-Caldera, D.; Salcedo-Arteaga, S.; Galeano-Páez, C.; Pastor-Sierra, K.; Espitia-Pérez, L. Nuclear factor erythroid 2–related factor 2 and its relationship with cellular response in nickel exposure: A systems biology analysis. BMC Pharmacol. Toxicol. 2019, 20, 78. [Google Scholar] [CrossRef]
- Shaw, P.; Sen, A.; Mondal, P.; Dey Bhowmik, A.; Rath, J.; Chattopadhyay, A. Shinorine ameliorates chromium induced toxicity in zebrafish hepatocytes through the facultative activation of Nrf2-Keap1-ARE pathway. Aquat. Toxicol. 2020, 228, 105622. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Chromium (VI) Compounds; World Health Organization: Lyon, France, 2018; Volume 1–42. [Google Scholar]
- Jindal, R.; Handa, K. Hexavalent chromium-induced toxic effects on the antioxidant levels, histopathological alterations and expression of Nrf2 and MT2 genes in the branchial tissue of Ctenopharyngodon idellus. Chemosphere 2019, 230, 144–156. [Google Scholar] [CrossRef]
- Kalayarasan, S.; Sriram, N.; Sureshkumar, A.; Sudhandiran, G. Chromium (VI)-induced oxidative stress and apoptosis is reduced by garlic and its derivative S- allylcysteine through the activation of Nrf2 in the hepatocytes of Wistar rats. J. Appl. Toxicol. 2008, 28, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.; Mondal, P.; Bandyopadhyay, A.; Chattopadhyay, A. Environmentally relevant concentration of chromium activates Nrf2 and alters transcription of related XME genes in liver of zebrafish. Chemosphere 2019, 214, 35–46. [Google Scholar] [CrossRef] [PubMed]
Type | Cell Culture/ Species | Treatment Doses | Duration | Effects on Nrf2 Signaling | Ref. |
---|---|---|---|---|---|
In vitro | Nrf2 knockout (Nrf2-/-) mouse embryonic fibroblasts (MEF) cells | 2, 5, 10, 50, and 100 μM CdCl2 | 5 h | Increase in the ROS production and increased sensitivity to Cd-induced cell death in Nrf2 knockout (Nrf2-/-) MEF cells. | [75] |
rat proximal tubular (rPT) cells | 2.5 µM Cd | 12 h | Oxidative stress via Nrf2 antioxidant pathway. Enhanced Nrf2 nuclear translocation. Downmodulation of Keap1. Activated Nrf2 target genes, including detoxifying enzymes (NQO1 and HO-1). Autophagosome accumulation. | [69] | |
astrocytoma cell line 1321N1 | 5 and 10 µM Cd | 24 h | Increased levels of NQO1 and HO-1 mRNA. Increased nuclear accumulation of Nrf2. Connection between phospholipase C activation and Nrf2 signaling. | [74] | |
RKO human colon carcinoma cell line | 0, 5, 10, 20, 40, 80, 160 and 320 μM CdCl2 | 24 h | DNA damage and increased intracellular ROS generation in Nrf2 lacking RKO cells. Induction of micronuclei (MN)—hallmark of carcinogenicity in Cd-exposed Nrf2 deficient cells. Nrf2—important role in suppression of Cd-induced carcinogenicity. | [80] | |
bovine aortic endothelial cells | 0.5, 1, 2, 5 µM CdCl2 | 24 h | Modification of cysteine residues in Keap1 and Nrf2 activation. Up-regulation of metallothionein. Participation of Keap1–Nrf2 system in the modulation of metallothionein-1/2 expression. | [76] | |
BEAS-2BR lung cells | 5 or 20 µM CdCl2 | 24 h | Autophagy deficiency, accumulation of autophagosomes, and increased p62. Nrf2-p62 positive feedback mechanism. Constitutive Nrf2 activation increases anti-apoptotic proteins, Bcl-2 and Bcl-xl. Apoptosis resistance. | [78] | |
In vivo | zebrafish | 0, 11, and 110 μg·L−1 CdCl2 | 24 h | Dose-dependent induction of Nrf2-regulated antioxidant genes. Increased glutathione S-transferase pi, glutamate–cysteine ligase catalytic subunit, HO-1 and peroxiredoxin 1 mRNA. | [70] |
mice | 4 mg/kg b.w. CdCl2 i.p. | single dose | Activated NF-κB, NLRP3, and MAPKs signaling pathways in liver. Inhibition of Nrf2, HO-1, and activation of NF-κB, NLRP3, and MAPKs contribute to liver injury. | [72] | |
mice | 3.5 mg/kg b.w. CdCl2 i.p. | single dose | Nrf2 activation prevents Cd-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd (metallothioneins). | [77] | |
mice | 6.5 mg/kg b.w. CdCl2 i.p. | 7 days | Impaired expression of Nrf2 gene in testes. | [81] | |
mice | 2.3 mg/kg b.w. CdCl2 i.p. | 10 days | Reduced mRNA and protein expression of mouse testicular Nrf2. Decreased expression of Nrf2 downstream genes, GSH-Px, glutamyl cysteine synthetase (GCS), HO-1, NQO1. | [32] | |
rats | 20 mg/L CdCl2 Drinking water | 8 weeks | Increased Nrf2 nuclear translocation. Elevated expression of Nrf2-downstream targets in rat liver. Cd-elevated protein levels of hepatic antioxidant enzymes. | [71] | |
rats | 20 mg/L CdCl2 Drinking water | 8 weeks | Increased Nuclear translocation of Nrf2 in spleen. Induction of apoptosis and inhibition of autophagy. | [73] |
Type of Study | Cell Culture/ Species | Treatment Concentration/Dose | Duration | Effects on Nrf2 Signaling | Ref. |
---|---|---|---|---|---|
In vitro | bovine granulosa cells | 1, 2, 3, 5, and 10 μg/mL | 2 h | Oxidative stress that attenuates cell proliferation and alters cell cycle progression. Apoptosis through disrupted Nrf2/NF-κB interaction. Decrease in Nrf2. Concomitant downregulation of both SOD and CAT. | [85] |
SH-SY5Y cells | 1, 5, 25 or 125 μM Pb (CH3COO)2 | 24 h | Nrf2/HO-1 signaling pathway as cellular self-defense mechanism protects against Pb-induced oxidative stress. | [83] | |
SH-SY5Y cells | 125 μM Pb (CH3COO)2 | 3, 6, 12 and 24 h | Rapid increase in Nrf2 nuclear accumulation. Nrf2–ARE binding activities in a ROS-dependent manner. Nrf2 regulated induction of mRNA transcription of HO-1, GSTa1, and NQO1, as well as the protein expression of HO-1 and g-GCS. | [87] | |
In vivo | rats | 20 mg/kg b.w., Pb (CH3COO)2 i.p. | 7 days | Downmodulation of antioxidant enzyme activity and expression in renal tissue (SOD, CAT, GSH-Px). High MDA levels. Downregulation of Nfe212 and Homx1 mRNA expression. Increased inflammatory markers (TNF-α, IL-1β and NO). Upregulated synthesis of apoptotic related proteins. Downregulated anti-apoptotic protein expression. | [28] |
rats | 20 mg/kg b.w. Pb (CH3COO)2 i.p. | 7 days | Pb (CH3COO)2 deactivated Nrf2 and HO-1 in the testicular tissue. Overactivation of nuclear factor kappa B (NF-κB) by free radical overproduction, increased the level of Keap1, leading to Nrf2 impairment and decrease in its antioxidant effect. | [90] | |
rats | 50 mg/kg b.w. Pb (CH3COO)2 Oral gavage | 4 weeks | Downregulated gene expression of testicular Nrf2, NQO-1, and HO-1. Oxidative damage, inflammation, and cell death. | [82] | |
mice | 250 mg/L Pb (CH3COO)2 Drinking water | 4 weeks | Apoptosis of neurons in hippocampus tissue. Oxidative stress, inflammation, and apoptosis by inhibiting the activations of Nrf2 HO-1 in rat brain. Decreased nuclear translocation of Nrf2 and the protein expressions of HO-1 and NQO1. | [81] | |
rats | 2500 ppm Pb (CH3COO)2 Drinking water | 5 weeks | AMPK/Nrf2/p62 signaling protects the lung from oxidative stress, inflammation, and apoptosis. | [88] | |
rats | 0, 0.3, and 0.9 g/L Pb (CH3COO)2 Drinking water | 6 months | Significant increases in the expressions of Mrp1 and Nrf2 in rat testes at both administered dose levels. Increased nuclear translocation of Nrf2. Dose-dependent decrease in GST and GSH. Mrp1—important roles in lead detoxification by Nrf2. | [89] |
Type of Study | Cell Culture/ Species | Treatment Doses | Duration | Effects on Nrf2 Signaling | Ref. |
---|---|---|---|---|---|
mouse hepa1c1c7 cells | 2.5 and 10 µM NaAsO2 | 5 h | Nrf2 is required for induction of detoxification gene, NQO1. As extended the t1⁄2 of Nrf2 by inhibiting the Keap1–Cul3-dependent ubiquitination and proteasomal Nrf2 turnover. As did not disrupt the Nrf2–Keap1–Cul3 association in the cytoplasm, but it induced Nrf2 dissociation from Keap1 and Cul3 and dimerization of Nrf2 with a Maf protein (Maf G/Maf K) in nucleus. | [98] | |
In vitro | bronchial epithelial cell line BEAS-2B | 0, 0.25, 0.5, 1, 2, 4 µM As3+(inorganic) | 8 h | Binding of Nrf2 and/or HIF1α on the genome. Amplified Nrf2 enrichment peaks in intergenic region, promoter and gene body. Mutual transcriptional regulation between Nrf2 and HIF1α. Nrf2 activation is an initiating signal for As-induced HIF1α activation. | [98] |
L-02 cells | 25 μM NaAsO2 | 24 h | Decreased Nrf2 and its downstream genes expression. | [38] | |
non-small cell lung cancer (NSCLC) | 0.5 μM NaAsO2 | 3 months | Chronic As exposure enhances the invasive and migratory capacity of immortalized lung epithelial cells via Nrf2-dependent upregulation of SRY-box 9 (SOX9), transcription factor linked with cell proliferation, epithelial-mesenchymal transition, and metastasis. Hyperactivation of Nrf2 gene via knockout of Keap1 contributes to cell proliferation. | [92] | |
human HaCaT keratinocytes | 4 and 8 μM NaAsO2 | 28 weeks | As induces p62 expression to form a positive feedback loop with Nrf2. | [100] | |
human HaCaT keratinocytes | 100 nM NaAsO2 | 28 weeks | Increased intracellular glutathione and elevated expression of Nrf2 and its target genes. Generalized apoptotic resistance. Diminished Nrf2-mediated antioxidant response induced by acute exposure to high doses of arsenite. Biomarkers for malignant transformation, MMP-9, and cytokeratins, are potentially regulated by Nrf2. Constitutive Nrf2 activation may be involved in arsenic skin carcinogenesis. | [27] | |
human keratinocytes (HaCaT) | 100 nM or 200 nM NaAsO2 | 4 h | Silencing NRF2 abrogated the increase in mRNA and protein levels of p62 and malignant phenotypes induced by arsenite | [99] | |
MC3T3-E1 osteoblasts | 800 µM NaAsO2 | 16 h | Nrf2 activation. Transcriptional activation of target genes encoding HO-1, Prx I, and A170. | [93] | |
In vivo | Nrf2-WT and Nrf2-KO mice | 5 mg NaAsO2 Oral gavage/ 20 ppm NaAsO2 Drinking water | single dose/ 6 weeks | Increased basal transcript levels of GSTa1 and significantly lower GST mu 1 (Gstm1) in liver of Nrf2-KO mice compared to Nrf2-WT control. | [102] |
mice | 10 mg/kg b.w. NaAsO2 Drinking water | 3 months | An upregulated expression of Nrf2 protein in mice lungs. Nrf2 has a pivotal role to maintain the endogenous redox balance. Induced synthesis of antioxidants SOD2 and HO-1. | [36] | |
mice (Nrf2+/+ and Nrf2−/−) | 5 ppm NaAsO2 Drinking water | 4 months | Decrease in the bone volume in mice lacking Nrf2. Lack of Nrf2 increases As-induced ROS levels and phosphorylation of p38. | [96] | |
rats | 5 mg/kg b.w. NaAsO2 Oral gavage | 28 days | Increased levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG) and lipid peroxidation in kidney. Decreased levels of enzymatic and non-enzymatic antioxidants. Increase in apoptotic markers, DNA damage, TUNEL-positive cells, and dark staining of ICAM-1 in renal tissue with decreased PI3K/Akt/Nrf2 gene expression. | [33] | |
rats | 100 mg/L Drinking water /25, 50, 100 mg/kg as food | 90 days | Oxidative stress in rat liver related to the PKCδ-Nrf2-ARE signaling pathway. Nrf2 was associated with upregulation of the transcriptional expression of SOD1 and GSH-Px1 in each arsenic poisoning group. | [97] |
Type of Study | Cell Culture/ Species | Treatment Doses | Duration | Effects on Nrf2 Signaling | Ref. |
---|---|---|---|---|---|
In vitro | rat astrocytes | 5 μM MeHg | 6h | Cytotoxicity by promoting the Nrf2/ARE signaling pathway. | [20] |
In vivo | yellow croaker Pseudosciaena crocea | 0,32 and 64 μg/L HgCl2 | 96h | A coordinated transcriptional regulation of antioxidant genes, by Nrf2 in liver. A negative relationship between the mRNA levels of Nrf2 and Keap1 indicated that Keap1 may play an important role in switching off the Nrf2 response. | [107] |
homozygous (–/–) Nrf2-deficient mice (C57BL/6J) and wild-type (+/+) mice | 1 mg/kg MeHg Oral gavage | 22 days | MeHg in Nrf2-deficient mice—induction of hind-limb flaccidity. The body weight decrease of Nrf2-deficient mice. | [106] | |
rats | 80 mg/L HgCl2 Drinking water | 56 days | Decreased Nrf2 accumulation in the nucleus in the cardiac tissue. Decreased GSH level and GSH/GSSG ratio, increased MDA concentration in the heart. | [10] | |
rats | 0.6, 1.2, and 2.4 mg/kg HgCl2 i.p. | 3 days | Nrf 2 activation in liver. Upregulation HO-1, and γ-GCS heavy subunit expression. | [35] | |
rats | 80 mg/L HgCl2 Drinking water | 2 weeks | Increased hepatocyte death attributed to insufficient ROS removal because of a failure in Nrf2 activation. | [104] |
Type of Study | Cell Culture/ Species | Treatment Doses and Duration | Duration | Effects on Nrf2 Signaling | Ref. |
---|---|---|---|---|---|
In vitro | human monocytic cells | 10–30 mM Ni (II) | 6–72 h | Increased whole-cell Nrf2 levels and nuclear translocation of Nrf2. Affected cytokine secretion through Nrf2 pathway modulation. | [110] |
RKO (ATCC CRL-2577), human colon cancer cells | 20 μM Ni(CH3CO2)2·x H2O | 12 or 24 h | Nrf2 gene silencing exacerbated Ni-induced oxidative stress and DNA damage. | [108] | |
In vivo | mice | 20 mg/kg/b.w. NiSO4(H2O)6 i.p. | 20 days | DNA methylation and liver inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathways. | [3] |
Type of Study | Cell Culture/ Species | Treatment Doses | Duration | Effects on Nrf2 Signaling | Ref. |
---|---|---|---|---|---|
in vitro | mouse hepa1c1c7 cells | 2, 5, 10, 50, and 100 M Cr(VI) | 5 h | Elevated ROS production and apoptosis. Protection by Nrf2 correlates with the induction of cytoprotective genes HO-1 and NQO1. Inhibition of ubiquitination of Nrf2 and accumulation of Nrf2 into the nucleus. Nuclear translocation and deubiquitination of Keap1. Transcriptional signaling loop: activation of Nrf2 by Cr, transcription of ARE-driven genes, and reduction of ROS production. | [2] |
in vivo | zebrafish | 38.16 μg/mL K2CrO4 | 1, 7, 15, 30, or 60 days | Increased Nrf2 in liver both at transcriptional and translational level. Nrf2 translocation into the nucleus. Oxidative stress resulting in lipid peroxidation and extensive changes in tissue ultrastructure. | [116] |
grass carp Ctenopharyngodon idellus | 5.3 and 10.63 mg/L | 15, 30 or 45 days | Alteration in the gene expression of Nrf2 and Mt2 in gills. Development of oxidative stress. | [114] | |
rats | 4 mg/kg b.w. K2Cr2O7 i.p. | 35 days | Significantly decrease in Sirt1, Pgc-1α, Nrf2, HO-1, and NQO1 in rat lungs. | [8] | |
rats | 17 mg/kg b.w. K2Cr2O7 i.p. | single dose | Nrf2 signaling—important mechanism in controlling liver cells susceptibility to ROS-induced cytotoxicty. Nrf2 increase activates antioxidant enzymes. | [115] | |
rats | 4 mg/kg K2Cr2O7 i.p. | single dose | Decreased expression of P-AMPK/AMPK and Nrf2. Oxidative stress, apoptosis, and the release of inflammatory mediators in the rat heart. | [29] | |
rats | 4 mg/kg b.w. K2Cr2O7 i.p. | 35 days | Nrf2 pathway—critical protective role against oxidative stress in heart. | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buha, A.; Baralić, K.; Djukic-Cosic, D.; Bulat, Z.; Tinkov, A.; Panieri, E.; Saso, L. The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants 2021, 10, 630. https://doi.org/10.3390/antiox10050630
Buha A, Baralić K, Djukic-Cosic D, Bulat Z, Tinkov A, Panieri E, Saso L. The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants. 2021; 10(5):630. https://doi.org/10.3390/antiox10050630
Chicago/Turabian StyleBuha, Aleksandra, Katarina Baralić, Danijela Djukic-Cosic, Zorica Bulat, Alexey Tinkov, Emiliano Panieri, and Luciano Saso. 2021. "The Role of Toxic Metals and Metalloids in Nrf2 Signaling" Antioxidants 10, no. 5: 630. https://doi.org/10.3390/antiox10050630
APA StyleBuha, A., Baralić, K., Djukic-Cosic, D., Bulat, Z., Tinkov, A., Panieri, E., & Saso, L. (2021). The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants, 10(5), 630. https://doi.org/10.3390/antiox10050630