Olive-Leaf Extracts Modulate Inflammation and Oxidative Stress Associated with Human H. pylori Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Olive-Leaf Extracts, Reagents, and Pure Reference Substances Used in Their Chemical Characterization
2.2. Chemical Characterization of Olive-Leaf Extracts
2.3. H. pylori Strains, Growth Media, and Culture Conditions
2.4. Human Gastric Epithelial Cell Culture Conditions
2.5. Evaluation of Cytotoxicity of Olive-Leaf Extracts
2.6. Determination of Anti-Inflammatory Activity of Olive-Leaf Extracts on Infected AGS Gastric Cells
2.7. Determination of Antioxidant Activity of Olive-Leaf Extracts against Intracellular Reactive Oxygen Species (ROS) Production on Infected AGS Gastric Cells
2.8. Determination of Antibacterial Activity of Olive-Leaf Extracts against H. pylori Strains
2.9. Verification of Bioactive Properties Using Pure Reference HT and OLE
2.10. Statistical Analysis
3. Results
3.1. Chemical Characterization of Olive-Leaf Extracts
3.2. Anti-Inflammatory Activity of Olive-Leaf Extracts
3.3. Antioxidant Activity of Olive-Leaf Extracts against Intracellular Reactive Oxygen Species (ROS) Production
3.4. Antibacterial Activity of Olive-Leaf Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Kiritsakis, K.; Goula, A.M.; Adamopoulos, K.G.; Gerasopoulos, D. Valorization of olive leaves: Spray drying of olive leaf extract. Waste Biomass Valor. 2018, 9, 619–633. [Google Scholar] [CrossRef]
- Flamminii, F.; Di Mattia, C.D.; Difonzo, G.; Neri, L.; Faieta, M.; Caponio, F.; Pittia, P. From by-product to food ingredient: Evaluation of compositional and technological properties of olive-leaf phenolic extracts. J. Sci. Food Agric. 2019, 99, 6620–6627. [Google Scholar] [CrossRef] [PubMed]
- Romero-García, J.M.; Niño, L.; Martínez-Patiño, C.; Álvarez, C.; Castro, E.; Negro, M.J. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 2014, 159, 421–432. [Google Scholar] [CrossRef]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Espeso, J.; Isaza, A.; Lee, J.Y.; Sörensen, P.M.; Jurado, P.; Avena-Bustillos, R.J.; Olaizola, M.; Arboleya, J.C. Olive leaf waste management. Front. Sustain. Food Syst. 2021, 5, 660582. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortuño, A.; Del Rio, J.A. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Qabaha, K.; Al-Rimawi, F.; Qasem, A.; Naser, S.A. Oleuropein is responsible for the major anti-inflammatory effects of olive leaf extract. J. Med. Food. 2018, 21, 302–305. [Google Scholar] [CrossRef]
- Andrikopoulos, N.K.; Kaliora, A.C.; Assimopoulou, A.N.; Papageorgiou, V.P. Inhibitory activity of minor polyphenolic and non-polyphenolic constituents of olive oil against in-vitro low-density lipoprotein oxidation. J. Med. Food 2002, 5, 1–7. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A.; Gall, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2002, 22, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Geng, C.; Jiang, L.; Gong, D.; Liu, D.; Yoshimura, H.; Zhong, L. The anti-atherosclerotic effect of olive leaf extract is related to suppressed inflammatory response in rabbits with experimental atherosclerosis. Eur. J. Nutr. 2008, 47, 235–243. [Google Scholar] [CrossRef]
- Fakhraei, N.; Abdolghaffari, A.H.; Delfan, B.; Abbasi, A.; Rahimi, N.; Khansari, A.; Rahimian, R.; Dehpour, A.R. Protective effect of hydroalcoholic olive leaf extract on experimental model of colitis in rat: Involvement of nitrergic and opioidergic systems. Phytother. Res. 2014, 28, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Vezza, T.; Algieri, F.; Rodríguez-Nogales, A.; Garrido-Mesa, J.; Utrilla, M.P.; Talhaoui, N.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Rodríguez-Cabezas, M.E.; Monteleone, G.; et al. Immunomodulatory properties of Olea europaea leaf extract in intestinal inflammation. Mol. Nutr. Food Res. 2017, 61, 1601066. [Google Scholar] [CrossRef]
- Fernández-Prior, Á.; Bermúdez-Oria, A.; Millán-Linares, M.D.C.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; Rodríguez-Gutiérrez, G. Anti-inflammatory and antioxidant activity of hydroxytyrosol and 3,4-dihydroxyphenyglycol purified from table olive effluents. Foods 2021, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [Green Version]
- Bedouhene, S.; Moulti-Mati, F.; Dang, P.M.; El-Benna, J. Oleuropein and hydroxytyrosol inhibit the N-formyl-methionyl-leucyl-phenylalanine-induced neutrophil degranulation and chemotaxis via AKT, p38, and ERK1/2 MAP-Kinase inhibition. Inflammopharmacology 2017, 25, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Bulotta, S.; Oliverio, M.; Russo, D.; Procopio, A. Biological activity of oleuropein and its derivatives. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3605–3638. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Eibes, G.; Cara, C.; De Torres, A.; López-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [CrossRef] [PubMed]
- WHO; International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 61: Schistosomes, Liver Flukes and Helicobacter pylori; International Agency for Research on Cancer: Lyon, France, 1994. [Google Scholar]
- Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [Green Version]
- Konturek, P.C.; Konturek, S.J.; Brzozowski, T. Helicobacter pylori infection in gastric cancerogenesis. J. Physiol. Pharmacol. 2009, 60, 3–21. [Google Scholar]
- Denic, M.; Touati, E.; De Reuse, H. Review: Pathogenesis of Helicobacter pylori infection. Helicobacter 2020, 25, e12736. [Google Scholar] [CrossRef]
- White, J.R.; Winter, J.A.; Robinson, K. Differential inflammatory response to Helicobacter pylori infection: Etiology and clinical outcomes. J. Inflamm. Res. 2015, 8, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell. Mol. Gastroenter. Hepatol. 2017, 3, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kountouras, J.; Chatzopoulos, D.; Zavos, C. Reactive oxygen metabolites and upper gastrointestinal diseases. Hepatogastroenterology 2001, 48, 743–751. [Google Scholar] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef] [Green Version]
- Correa, P.; Haenszel, W.; Cuello, C. A model for gastric cancer epidemiology. Lancet 1975, 2, 58–59. [Google Scholar] [CrossRef]
- Alesci, A.; Miller, A.; Tardugno, R.; Pergolizzi, S. Chemical analysis, biological and therapeutic activities of Olea europaea L. extracts. Nat. Prod. Res. 2021, 23, 1–14. [Google Scholar] [CrossRef]
- Romero, C.; Medina, E.; Vargas, J.; Brenes, M.; De Castro, A. In vitro activity of olive oil polyphenols against Helicobacter pylori. J. Agric. Food Chem. 2007, 55, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Romero, C.; de Castro, A.; Vargas, J.; Medina, E.; Millán, R.; Brenes, M. Assessment of Helicobacter pylori eradication by virgin olive oil. Helicobacter 2012, 17, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Silvan, J.M.; Gutiérrez-Docio, A.; Moreno-Fernandez, S.; Alarcón-Cavero, T.; Prodanov, M.; Martinez-Rodriguez, A.J. Procyanidin-rich extract from grape seeds as a putative tool against Helicobacter pylori. Foods 2020, 9, 1370. [Google Scholar] [CrossRef]
- Medina, E.; Brenes, M.; Romero, C.; García, A.; de Castro, A. Main antimicrobial compounds in table olives. J. Agric. Food Chem. 2007, 55, 9817–9823. [Google Scholar] [CrossRef]
- Perestrelo, R.; Lu, Y.; Santos, S.A.O.; Silvestre, A.J.D.; Neto, C.P.; Câmara, J.S.; Rocha, S.M. Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC–DAD–ESI-MSn: Novel phenolic compounds in Vitis vinifera L. grape. Food Chem. 2012, 135, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Michel, T.; Khlif, I.; Kanakis, P.; Termentzi, A.; Allouche, N.; Halabalaki, M.; Skaltsounis, A.L. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Let. 2015, 11, 424–439. [Google Scholar] [CrossRef]
- Silvan, J.M.; Michalska-Ciechanowska, A.; Martinez-Rodriguez, A.J. Modulation of antibacterial, antioxidant, and anti-inflammatory properties by drying of Prunus domestica L. plum juice extracts. Microorganisms 2020, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvan, J.M.; Mingo, E.; Martinez-Rodriguez, A.J. Grape seed extract (GSE) modulates Campylobacter pro-inflammatory response in human intestinal epithelial cell lines. Food Agric. Immunol. 2017, 28, 739–753. [Google Scholar] [CrossRef] [Green Version]
- Silvan, J.M.; Gutierrez-Docio, A.; Guerrero-Hurtado, E.; Domingo-Serrano, L.; Blanco-Suarez, A.; Prodanov, M.; Alarcon-Cavero, T.; Martinez-Rodriguez, A.J. Pre-treatment with grape seed extract reduces inflammatory response and oxidative stress induced by Helicobacter pylori infection in human gastric epithelial cells. Antioxidants 2021, 10, 943. [Google Scholar] [CrossRef]
- Silvan, J.M.; Zorraquin-Peña, I.; Gonzalez de Llano, D.; Moreno-Arribas, M.V.; Martinez-Rodriguez, A.J. Antibacterial activity of glutathione-stabilized silver nanoparticles against Campylobacter multidrug-resistant strains. Front. Microbiol. 2018, 9, 458. [Google Scholar] [CrossRef]
- Guevara, B.; Cogdill, A.G. Helicobacter pylori: A review of current diagnostic and management strategies. Dig. Dis. Sci. 2020, 65, 1917–1931. [Google Scholar] [CrossRef]
- Alba, C.; Blanco, A.; Alarcón, T. Antibiotic resistance in Helicobacter pylori. Curr. Opin. Infect. Dis. 2017, 30, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Liou, J.M.; Lee, Y.C.; Hong, T.C.; El-Omar, E.M.; Wu, M.S. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 2021, 13, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Hu, J.; Wang, X.; Ren, M.; Lu, G.; Lu, X.; Zhang, D.; He, S. The effect of Helicobacter pylori eradication in patients with gastroesophageal reflux disease: A meta-analysis of randomized controlled studies. Dig. Dis. 2020, 38, 261–268. [Google Scholar] [CrossRef]
- Al-Quraishy, S.; Othman, M.S.; Dkhil, M.A.; Abdel Moneim, A.E. Olive (Olea europaea) leaf methanolic extract prevents HCl/ethanol-induced gastritis in rats by attenuating inflammation and augmenting antioxidant enzyme activities. Biomed. Pharmacother. 2017, 91, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, S.; Corona, G.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: A randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr. 2015, 114, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Lockyer, S.; Rowland, I.; Spencer, J.P.E.; Yaqoob, P.; Stonehouse, W. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: A randomised controlled trial. Eur. J. Nutr. 2017, 56, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive polyphenols: Antioxidant and anti-inflammatory properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Vogel, P.; Kasper Machado, I.; Garavaglia, J.; Terezinha Zani, V.; Souza, D.; Bosco, S.M.D. Polyphenols benefits of olive leaf (Olea europaea L.) to human health. Nutr. Hosp. 2015, 31, 1427–1433. [Google Scholar]
- Wei, J.; Wang, S.; Pei, D.; Qu, L.; Li, Y.; Chen, J.; Di, D.; Gao, K. Antibacterial activity of hydroxytyrosol acetate from olive leaves (Olea europaea L.). Nat. Prod. Res. 2018, 32, 1967–1970. [Google Scholar] [CrossRef]
- Medina-Martínez, M.S.; Truchado, P.; Castro-Ibáñez, I.; Allende, A. Antimicrobial activity of hydroxytyrosol: A current controversy. Biosci. Biotechnol. Biochem. 2016, 80, 801–810. [Google Scholar] [CrossRef] [Green Version]
Compounds | Absmax (nm) | [M + H]+ (m/z) | [M − H]− (m/z) | Product Ions (-) (m/z) | Extract E1 (mg/100 g) | Extract E2 (mg/100 g) |
---|---|---|---|---|---|---|
Hydroxybenzoic acids and glycosides | ||||||
3,4-DHBA (Protocatechuic acid) | 260/294 | 153.0 | 123.1, 109.0 | 7.9 ± 0.2 | ND | |
3,4-DHBA glucoside | 253/293 | 314.9 | 153.0, 136.9 | 6.4 ± 0.7 | ND | |
Σ Hydroxybenzoic acids and glycosides | 14.3 | ND | ||||
Hydroxycinnamic acids and derivatives | ||||||
trans-3,4-DHCA (trans-caffeic acid) | 234/296sh/322 | 181.0 | 179.0 | 135.1 | 140.0 ± 4.0 * | 4.5 ± 0.1 * |
trans-4-HCA (trans-4-coumaric acid) | 233/296sh/308 | 163.0 | 145.0, 123.1, 119.1 | 209.0 ± 45.0 * | 1.2 ± 0.1 * | |
trans-3-M,4-HCA (trans-ferulic acid) | 236/295sh/322 | 193.1 | 178.1, 149.0 | 116.0 ± 4.0 * | 5.0 ± 0.5 * | |
trans-4,5-DCQA (trans-4,5-dicaffeoylquinic acid) | 235/300sh/326 | 517.1 | ND | 16.5 ± 0.2 | ||
Σ Hydroxycinnamic acids and derivatives | 465.0 | 27.2 | ||||
Phenylethanols and glycosides | ||||||
3,4-DHPG | 232/278 | 169.0 | 20.1 ± 0.4 * | 9.4 ± 0.5 * | ||
3,4-DHPE (Hydroxytyrosol) + 3,4-DHPE glucoside 1 | 234/278 | 153.1 315.1 | 305.2 †, 123.2 153.1, 123.2 | 13,743 ± 1659 * | 182.0 ± 4.0 * | |
3,4-DHPE glucoside 2 + 3 | 230/278 | 315.0 | 153.1 | 965.0 ± 13.0 * | 123.0 ± 1.0 * | |
4-HPE (Tyrosol) | 232/275 | 161.2 [M+Na]+, 139.0 | 250.0 ± 6.0 * | 9.1 ± 0.1 * | ||
Σ Phenylethanols and glycosides | 14,978 | 323.5 | ||||
Secoiridoids | ||||||
EA (Elenolic acid) | 239 | 241.1 | 165.1, 139.1, 127.1, 121.1, 111.2, 101.0 | 155.0 ± 14.0 | ND | |
EA 2-glucoside (Oleoside 11-methyl ester) | 238 | 403.1 | 807.2 †, 223.1, 179.0, 119.1, 112.9 | 1352 ± 49.0 * | 84.4 ± 4.6 * | |
EMA 2-glucoside (Secoxyloganin) | 237 | 403.0 | 807.2 †, 223.1, 179.1, 121.1, 119.2, 113.1 | 657.0 ± 158.0 | ND | |
Σ Secoiridoids | 2164 | 84.4 | ||||
Secoiridoid phenylethanols | ||||||
3,4-DHPE-EA glucoside (Oleuropein) | 234/280 | 563.2 [M+Na]+ | 539.2 | 355.0 ± 57.0 * | 20,471 ± 1061* | |
4-HPE-EA-glucoside (Ligustroside) | 234/280 | 523.0 | 99.3 ± 9.3 * | 360 ± 16 * | ||
Σ Secoiridoid phenylethanols | 454.3 | 20,831 | ||||
Cynnamoyl phenylethanol glycosides | ||||||
3,4-DHPE caffeoyl glucoside (Verbascoside) | 234/285sh/330 | 647.2 [M+Na]+ | 623.2 | 161.0 ± 11.0 * | 6872 ± 230 * | |
Σ Cynnamoyl phenylethanol glycosides | 161.0 | 6872 | ||||
Flavones | ||||||
Apigenin 6,8-di-C-glucoside | 254/265sh/348 | 595.2 | 39.3 ± 1.4 * | 24.2 ± 0.2 * | ||
Apigenin 7-O-rutinoside (Isorhoifolin) | 266/341 | 579.1 | 576.8 | 109 ± 1 * | 122 ± 5 * | |
Apigenin 7-O-glucuronide | 266/338 | 445.1 | 76.4 ± 7.1 | 64 ± 6.0 | ||
Luteolin | 253/265/348 | 287.0 | 285.1 | 284.1 | ND | 17.1 ± 1.2 |
Luteolin 3′,7-di-O-glucoside | 267/342 | 609.1 | 39.9 ± 1.4 * | 69.6 ± 2.3 * | ||
Luteolin 7-O-glucoside | 254/268sh/348 | 449.1 | 447.1 | 895.0 † | 655.0 ± 22.0 * | 513.0 ± 46.0 * |
Luteolin 4′-methyl ether 7-O-glucoside (Diosmin) | 252/266/347 | 609.2 | 606.9 | 461.0, 299.1 | 123.0 ± 11.0 | 111.0 ± 12.0 |
Σ Flavones | 1042.6 | 920.9 | ||||
Flavonols | ||||||
Quercetin 3-O-glucoside (Isoquercitrin) | 233/281/322 | 465.1 | 463.1 | ND | 9.1 ± 0.6 | |
Quercetin 3-rhamnoside (Quercitrin) | 253/295sh/342 | 449.1 | 447.1 | ND | 10.8 ± 0.2 | |
Quercetin | 254/300sh/370 | 303.0 | ND | 31.4 ± 0.5 | ||
Σ Flavonols | ND | 51.3 | ||||
Flavanones | ||||||
Eriodictyol 7-O-rutinoside | 233/283/328 | 594.6 | 449.1, 286.9, 151.3 | ND | 22.3 ± 3.1 | |
Eriodictyol 7-O-glucoside | 232/277/340 | 451.1 | 449.1 | ND | 22.8 ± 1.0 | |
Σ Flavanones | ND | 45.1 | ||||
Total phenolic and secoiridoid compounds | 19,051 | 28,630 |
Strains | Control (Cells without Extracts) | Extract E1 | Extract E2 |
---|---|---|---|
Uninfected AGS cells | 225.0 ± 21.2 A-a | 215.0 ± 10.2 a | 205.0 ± 16.2 a |
Hp44 | 1119.4 ± 112.3 C-b | 318.8 ± 23.0 a (71.5%) * | 212.5 ± 5.3 a (81.0%) * |
Hp48 | 3116.3 ± 49.5 F-c | 2163.0 ± 139.7 b (30.6%) * | 158.1 ± 6.2 a (94.9%) * |
Hp53 | 2413.8 ± 30.1 D-c | 618.1 ± 69.8 b (74.4%) * | 225.0 ± 76.0 a (90.7%) * |
Hp58 | 733.1 ± 6.2 B-c | 421.9 ± 39.8 b (42.5%) * | 166.3 ± 5.3 a (77.3%) * |
Hp59 | 2825.6 ± 94.6 E-c | 1911.9 ± 9.7 b (32.3%) * | 187.5 ± 24.7 a (93.4%) * |
Hp61 | 955.0 ± 24.7 B,C-b | 374.4 ± 110.5 a (60.8%) * | 271.9 ± 8.0 a (71.5%) * |
Strain | Extract E1 | Extract E2 |
---|---|---|
Hp44 | 18.11 ± 3.31a | 22.41 ± 5.54 a |
Hp48 | 16.79 ± 1.71 a,* | 29.87 ± 3.93 a,* |
Hp53 | 25.93 ± 4.81 a | 33.88 ± 2.37 a |
Hp58 | 23.05 ± 2.10 a | 29.99 ± 2.07 a |
Hp59 | 22.17 ± 3.98 a | 25.73 ± 1.86 a |
Hp61 | 25.92 ± 2.25 a | 30.59 ± 5.06 a |
Strains | Control Growth | Extract E1 | Extract E2 | ||
---|---|---|---|---|---|
log CFU/mL | log Reduction | log CFU/mL | log Reduction | ||
Hp44 | 7.82 ± 0.03 b | <1.5 *,a | 7.82 | <1.5 *,a | 7.82 |
Hp48 | 7.69 ± 0.02 c | <1.5 *,a | 7.69 | 5.55 ± 0.13 b | 2.14 |
Hp53 | 7.48 ± 0.02 c | <1.5 *,a | 7.48 | 6.83 ± 0.01 b | 0.65 |
Hp58 | 6.69 ± 0.33 b | <1.5 *,a | 6.69 | <1.5 *,a | 6.69 |
Hp59 | 7.74 ± 0.01 c | <1.5 *,a | 7.74 | 5.95 ± 0.03 b | 1.79 |
Hp61 | 7.56 ± 0.03 b | <1.5 *,a | 7.56 | 7.51 ± 0.03 b | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvan, J.M.; Guerrero-Hurtado, E.; Gutiérrez-Docio, A.; Alarcón-Cavero, T.; Prodanov, M.; Martinez-Rodriguez, A.J. Olive-Leaf Extracts Modulate Inflammation and Oxidative Stress Associated with Human H. pylori Infection. Antioxidants 2021, 10, 2030. https://doi.org/10.3390/antiox10122030
Silvan JM, Guerrero-Hurtado E, Gutiérrez-Docio A, Alarcón-Cavero T, Prodanov M, Martinez-Rodriguez AJ. Olive-Leaf Extracts Modulate Inflammation and Oxidative Stress Associated with Human H. pylori Infection. Antioxidants. 2021; 10(12):2030. https://doi.org/10.3390/antiox10122030
Chicago/Turabian StyleSilvan, Jose Manuel, Esperanza Guerrero-Hurtado, Alba Gutiérrez-Docio, Teresa Alarcón-Cavero, Marin Prodanov, and Adolfo J. Martinez-Rodriguez. 2021. "Olive-Leaf Extracts Modulate Inflammation and Oxidative Stress Associated with Human H. pylori Infection" Antioxidants 10, no. 12: 2030. https://doi.org/10.3390/antiox10122030
APA StyleSilvan, J. M., Guerrero-Hurtado, E., Gutiérrez-Docio, A., Alarcón-Cavero, T., Prodanov, M., & Martinez-Rodriguez, A. J. (2021). Olive-Leaf Extracts Modulate Inflammation and Oxidative Stress Associated with Human H. pylori Infection. Antioxidants, 10(12), 2030. https://doi.org/10.3390/antiox10122030