A Systematic Review and Meta-Analysis of the Effect of Statins on Glutathione Peroxidase, Superoxide Dismutase, and Catalase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Glutathione Peroxidase
3.2.1. Study Characteristics
3.2.2. Risk of Bias
3.2.3. Results of Individual Studies and Syntheses
3.2.4. Publication Bias
3.2.5. Sub-Group Analysis
3.2.6. Certainty of Evidence
3.3. Superoxide Dismutase
3.3.1. Study Characteristics
3.3.2. Risk of Bias
3.3.3. Results of Individual Studies and Syntheses
3.3.4. Publication Bias
3.3.5. Sub-Group Analysis
3.3.6. Certainty of Evidence
3.4. Catalase
3.4.1. Study Characteristics
3.4.2. Risk of Bias
3.4.3. Results of Individual Studies and Syntheses
3.4.4. Publication Bias
3.4.5. Sub-Group Analysis
3.4.6. Certainty of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lu, H.; Daugherty, A. Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michos, E.D.; McEvoy, J.W.; Blumenthal, R.S. Lipid Management for the Prevention of Atherosclerotic Cardiovascular Disease. N. Engl. J. Med. 2019, 381, 1557–1567. [Google Scholar] [CrossRef]
- Cai, T.; Abel, L.; Langford, O.; Monaghan, G.; Aronson, J.K.; Stevens, R.J.; Lay-Flurrie, S.; Koshiaris, C.; McManus, R.J.; Hobbs, F.R.; et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. BMJ 2021, 374, n1537. [Google Scholar] [CrossRef] [PubMed]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Kouhpeikar, H.; Delbari, Z.; Sathyapalan, T.; Simental-Mendia, L.E.; Jamialahmadi, T.; Sahebkar, A. The Effect of Statins through Mast Cells in the Pathophysiology of Atherosclerosis: A Review. Curr. Atheroscler. Rep. 2020, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, A.; Parsamanesh, N.; Atkin, S.L.; Banach, M.; Sahebkar, A. Effect of statins on toll-like receptors: A new insight to pleiotropic effects. Pharmacol. Res. 2018, 135, 230–238. [Google Scholar] [CrossRef]
- John, S.; Schneider, M.P.; Delles, C.; Jacobi, J.; Schmieder, R.E. Lipid-independent effects of statins on endothelial function and bioavailability of nitric oxide in hypercholesterolemic patients. Am. Heart J. 2005, 149, 473. [Google Scholar] [CrossRef]
- Tsiara, S.; Elisaf, M.; Mikhailidis, D.P. Early vascular benefits of statin therapy. Curr. Med. Res. Opin. 2003, 19, 540–556. [Google Scholar] [CrossRef]
- Ray, K.K.; Cannon, C.P. Early time to benefit with intensive statin treatment: Could it be the pleiotropic effects? Am. J. Cardiol. 2005, 96, 54F–60F. [Google Scholar] [CrossRef]
- Walter, D.H. Insights into early and rapid effects of statin therapy after coronary interventions. Curr. Pharm. Des. 2004, 10, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef] [PubMed]
- Ahotupa, M. Oxidized lipoprotein lipids and atherosclerosis. Free Radic. Res. 2017, 51, 439–447. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef] [PubMed]
- Forstermann, U.; Xia, N.; Li, H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017, 120, 713–735. [Google Scholar] [CrossRef]
- Khosravi, M.; Poursaleh, A.; Ghasempour, G.; Farhad, S.; Najafi, M. The effects of oxidative stress on the development of atherosclerosis. Biol. Chem. 2019, 400, 711–732. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front. Physiol. 2017, 8, 600. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Lerman, L.O. Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin. Proc. 2001, 76, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S. Statins in atherosclerosis: Lipid-lowering agents with antioxidant capabilities. Atherosclerosis 2004, 173, 1–12. [Google Scholar] [CrossRef]
- Hermida, N.; Balligand, J.L. Low-density lipoprotein-cholesterol-induced endothelial dysfunction and oxidative stress: The role of statins. Antioxid. Redox Signal. 2014, 20, 1216–1237. [Google Scholar] [CrossRef]
- Margaritis, M.; Channon, K.M.; Antoniades, C. Statins as regulators of redox state in the vascular endothelium: Beyond lipid lowering. Antioxid. Redox Signal. 2014, 20, 1198–1215. [Google Scholar] [CrossRef] [Green Version]
- Colucci, R.; Fornai, M.; Duranti, E.; Antonioli, L.; Rugani, I.; Aydinoglu, F.; Ippolito, C.; Segnani, C.; Bernardini, N.; Taddei, S.; et al. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1. Br. J. Pharmacol. 2013, 169, 554–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rueckschloss, U.; Galle, J.; Holtz, J.; Zerkowski, H.R.; Morawietz, H. Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: Antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation 2001, 104, 1767–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinellu, A.; Paliogiannis, P.; Usai, M.F.; Carru, C.; Mangoni, A.A. Effect of statin treatment on circulating malondialdehyde concentrations: A systematic review and meta-analysis. Ther. Adv. Chronic. Dis. 2019, 10, 2040622319862714. [Google Scholar] [CrossRef]
- Margaritis, M.; Sanna, F.; Antoniades, C. Statins and oxidative stress in the cardiovascular system. Curr. Pharm. Des. 2017, 23, 7040–7047. [Google Scholar] [CrossRef] [PubMed]
- Ota, H.; Eto, M.; Kano, M.R.; Kahyo, T.; Setou, M.; Ogawa, S.; Iijima, K.; Akishita, M.; Ouchi, Y. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2205–2211. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.I.; Baykal, Y.; Kilic, M.; Sonmez, A.; Bulucu, F.; Aydin, A.; Sayal, A.; Kocar, I.H. Effects of statins on oxidative stress. Biol. Trace Elem. Res. 2004, 98, 119–127. [Google Scholar] [CrossRef]
- Landmesser, U.; Bahlmann, F.; Mueller, M.; Spiekermann, S.; Kirchhoff, N.; Schulz, S.; Manes, C.; Fischer, D.; de Groot, K.; Fliser, D.; et al. Simvastatin versus ezetimibe: Pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation 2005, 111, 2356–2363. [Google Scholar] [CrossRef] [Green Version]
- Carrepeiro, M.M.; Rogero, M.M.; Bertolami, M.C.; Botelho, P.B.; Castro, N.; Castro, I.A. Effect of n-3 fatty acids and statins on oxidative stress in statin-treated hypercholestorelemic and normocholesterolemic women. Atherosclerosis 2011, 217, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Horke, S.; Forstermann, U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol. Sci. 2013, 34, 313–319. [Google Scholar] [CrossRef]
- Flores-Mateo, G.; Carrillo-Santisteve, P.; Elosua, R.; Guallar, E.; Marrugat, J.; Bleys, J.; Covas, M.I. Antioxidant enzyme activity and coronary heart disease: Meta-analyses of observational studies. Am. J. Epidemiol. 2009, 170, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Lisy, K.; Qureshi, R.; Mattis, P.; et al. Systematic reviews of etiology and risk. In Joanna Briggs Institute Reviewer’s Manual; Aromataris, E., Munn, Z., Eds.; Johanna Briggs Institute: Adelaide, Australia, 2017. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Hultcrantz, M.; Rind, D.; Akl, E.A.; Treweek, S.; Mustafa, R.A.; Iorio, A.; Alper, B.S.; Meerpohl, J.J.; Murad, M.H.; Ansari, M.T.; et al. The GRADE Working Group clarifies the construct of certainty of evidence. J. Clin. Epidemiol. 2017, 87, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Coello, P.A.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences-inconsistency, imprecision, and other domains. J. Clin. Epidemiol. 2019, 111, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Tierney, J.F.; Copas, A.J.; Burdett, S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med. Res. Methodol. 2011, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Tobias, A. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech. Bull. 1999, 47, 15–17. [Google Scholar]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef]
- Chen, M.F.; Hsu, H.C.; Lee, Y.T. Short-term treatment with low-dose pravastatin attenuates oxidative susceptibility of low-density lipoprotein in hypercholesterolemic patients. Cardiovasc. Drugs Ther. 1997, 11, 787–793. [Google Scholar] [CrossRef]
- Ghayour-Mobarhan, M.; Lamb, D.J.; Taylor, A.; Vaidya, N.; Livingstone, C.; Wang, T.; Ferns, G.A. Effect of statin therapy on serum trace element status in dyslipidaemic subjects. J. Trace Elem. Med. Biol. 2005, 19, 61–67. [Google Scholar] [CrossRef]
- Molcanyiova, A.; Stancakova, A.; Javorsky, M.; Tkac, I. Beneficial effect of simvastatin treatment on LDL oxidation and antioxidant protection is more pronounced in combined hyperlipidemia than in hypercholesterolemia. Pharmacol. Res. 2006, 54, 203–207. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Moreno, J.M.; Ruiz, N.; Vargas, F.; Asensio, C.; Osuna, A. Effect of statin treatment on oxidative stress and renal function in renal transplantation. Transplant. Proc. 2006, 38, 2431–2433. [Google Scholar] [CrossRef] [PubMed]
- Save, V.; Patil, N.; Moulik, N.; Rajadhyaksha, G. Effect of atorvastatin on type 2 diabetic dyslipidemia. J. Cardiovasc. Pharmacol. Ther. 2006, 11, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Xu, Y.; Sun, Y.M.; Li, J.; Liu, X.M.; Li, Y.B.; Liu, G.D.; Bi, S. Comparison of the effects of simvastatin versus atorvastatin on oxidative stress in patients with type 2 diabetes mellitus. J. Cardiovasc. Pharmacol. 2010, 55, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Janic, M.; Lunder, M.; Prezelj, M.; Sabovic, M. A combination of low-dose fluvastatin and valsartan decreases inflammation and oxidative stress in apparently healthy middle-aged males. J. Cardiopulm. Rehabil. Prev. 2014, 34, 208–212. [Google Scholar] [CrossRef]
- Sena-Evangelista, K.C.M.; Pedrosa, L.F.C.; Paiva, M.S.M.O.; Dias, P.C.S.; Ferreira, D.Q.C.; Cozzolino, S.M.F.; Faulin, T.E.S.; Abdalla, D.S.P. The hypolipidemic and pleiotropic effects of rosuvastatin are not enhanced by its association with zinc and selenium supplementation in coronary artery disease patients: A double blind randomized controlled study. PLoS ONE 2015, 10, e0119830. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, A.; Gul, C.B.; Ocak, N.; Ersoy, A.L.P.A.R.S.L.A.N.; Sag, S.; Oruc, A.; Ayar, Y.; Dagel, T.; Dirican, M.; Gullulu, M. Fluvastatin Decreases Oxidative Stress in Kidney Transplant Patients. Transplant. Proc. 2015, 47, 2870–2874. [Google Scholar] [CrossRef] [PubMed]
- Fassett, R.G.; Robertson, I.K.; Ball, M.J.; Geraghty, D.P.; Coombes, J.S. Effects of atorvastatin on oxidative stress in chronic kidney disease. Nephrology 2015, 20, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Mijares, A.; Bañuls, C.; Rovira-Llopis, S.; Diaz-Morales, N.; Escribano-Lopez, I.; de Pablo, C.; Alvarez, A.; Veses, S.; Rocha, M.; Victor, V.M. Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia. Atherosclerosis 2016, 247, 40–47. [Google Scholar] [CrossRef]
- Abdel Magid, A.M.; Abbassi, M.M.; Iskander, E.E.M.; Mohamady, O.; Farid, S.F. Randomized comparative efficacy and safety study of intermittent simvastatin versus fenofibrate in hemodialysis. J. Comp. Eff. Res. 2017, 6, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Hadzi-Petrushev, N.; Dimovska, K.; Jankulovski, N.; Mitrov, D.; Mladenov, M. Supplementation with Alpha-Tocopherol and Ascorbic Acid to Nonalcoholic Fatty Liver Disease’s Statin Therapy in Men. Adv. Pharmacol. Sci. 2018, 2018, 4673061. [Google Scholar] [CrossRef]
- Mayyas, F.; Baydoun, D.; Ibdah, R.; Ibrahim, K. Atorvastatin Reduces Plasma Inflammatory and Oxidant Biomarkers in Patients With Risk of Atherosclerotic Cardiovascular Disease. J. Cardiovasc. Pharmacol. Ther. 2018, 23, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.C.F.; Vercesi, A.E. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol. Asp. Med. 2020, 71, 100840. [Google Scholar] [CrossRef] [PubMed]
- Sozen, E.; Ozer, N.K. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review. Redox Biol. 2017, 12, 456–461. [Google Scholar] [CrossRef]
- Thomas, S.R.; Witting, P.K.; Drummond, G.R. Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2008, 10, 1713–1765. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, Y.; Abreu, I.A.; Cabelli, D.E.; Maroney, M.J.; Miller, A.F.; Teixeira, M.; Valentine, J.S. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014, 114, 3854–3918. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Author, Year, Country [Ref] | Matrix | n | Age (yrs) | M/F | GPx Bas Mean ± SD | GPx Post Mean ± SD | SOD Bas Mean ± SD | SOD Post Mean ± SD | Cat Bas Mean ± SD | Cat Post Mean ± SD | Condition | Statin and Daily Dose | Treatment (weeks) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chen MF, 1997, Taiwan [46] | P | 20 | 47 | 11/9 | 0.98 ± 0.32 U/mL | 1.08 ± 0.29 U/mL | NR | NR | NR | NR | HCL | Pravastatin 5 mg | 12 |
Yilmaz MI, 2004, Turkey [27] | E | 35 | 48 | 18/17 | 20.93 ± 10.46 U/mL | 39.13 ± 6.76 U/mL | 510 ± 190 U/mL | 589 ± 182 U/mL | NR | NR | HCL | Fluvastatin 40 mg | 12 |
Ghayour-Mobarhan M, 1997, UK [47] | S | 11 | 52 | 7/4 | 0.36 ± 0.13 U/mL | 0.32 ± 0.13 U/mL | NR | NR | NR | NR | HCL | Simvastatin 10 mg | 16 |
Molčányiová A, 2006, Slovakia [48] | E | 42 | 60 | 12/30 | 6.03 ± 2.97 U/mL | 9.67 ± 4.27 U/mL | NR | NR | NR | NR | HCL | Simvastatin 20 mg | 8 |
Ruiz MC, 2006, Spain [49] | S | 21 | NR | NR | 74 ± 22 nmol/mg | 106 ± 22 nmol/mg | 170 ± 49 U/mg | 181 ± 31 U/mg | 7.48 ± 0.84 KU × 10−5/mg | 7.59 ± 1.38 KU × 10−5/mg | Kidney Tx | Atorvastatin 10–40 mg | 24 |
Save V, 2006, India [50] | E | 100 | 51 | 29/71 | 1.2 ± 0.2 U/mL | 1.1 ± 0.2 U/mL | 3673 ± 369 U/gHb | 6260 ± 375 U/gHb | NR | NR | T2D | Atorvastatin 10 mg | 24 |
Su Y, 2010 (a), China [51] | E | 75 | 55 | 39/36 | 18.96 ± 1.45 µmol/L | 21.57 ± 1.63 µmol/L | 65.73 ± 17.02 mmol/L | 96.54 ± 17.34 mmol/L | NR | NR | T2D | Simvastatin 40 mg | 12 |
Su Y, 2010 (b), China [51] | E | 76 | 56 | 43/33 | 17.31 ± 1.11 µmol/L | 21.28 ± 0.57 µmol/L | 75.15 ± 13.31 mmol/L | 100.23 ± 15.67 mmol/L | NR | NR | T2D | Atorvastatin 10 mg | 12 |
Janic M, 2014, Slovenia [52] | WB | 25 | 44 | 25/0 | 1.10 ± 0.25 U/gHb | 1.14 ± 0.20 U/gHb | NR | NR | NR | NR | Healthy | Fluvastatin 10 mg | 4.5 |
Sena-Evangelista KCM, 2015, Brazil [53] | WB | 38 | 63 | 23/15 | 41.33 ± 9.62 U/gHb | 44.67 ± 13.33 U/gHb | 1415 ± 340 U/gHg | 1468 ± 265 U/gHg | NR | NR | CAD | Rosuvastatin 10 mg | 16 |
Yildiz A, 2015, Turkey [54] | E | 18 | 38 | 9/9 | 22.37 ± 7.99 U/gHb | 30.7 ± 13.4 U/gHb | 19.09 ± 4.61 U/gHg | 24.34 ± 7.99 U/gHg | NR | NR | Kidney Tx | Fluvastatin 80 mg | 4 |
Fassett RG, 2015, Australia [55] | P | 47 | 65 | 28/19 | 32.8 ± 10.1 U/L | 31.4 ± 11.1 U/L | NR | NR | NR | NR | CKD | Atorvastatin 10 mg | 3 years |
Hernandez-Mijares A, 2016, Spain [56] | S | 20 | 58 | 5/15 | NR | NR | 0.81 ± 0.14 U/mL | 0.92 ± 0.18 U/mL | 29.4 ± 17.9 U/mL | 28.1 ± 13.0 U/mL | HCL | Simvastatin 40 mg | 4 |
Abdel Magid AM, 2017, Egypt [57] | S | 30 | 51 | 15/15 | 98 ± 78 U/L | 142 ± 133 U/L | NR | NR | NR | NR | HD | Simvastatin 60 mg * | 16 |
Hadzi-Petrushev N, 2018, Macedonia [58] | S | 20 | 43 | 20/0 | 277 ± 85 U/mL | 223 ± 95 U/mL | NR | NR | 85 ± 36 U/mL | 64 ± 47 U/mL | NAFLD | Atorvastatin 20 mg | 12 |
Mayyas F, 2018 (a), Jordan [59] | P | 122 | 51 | 81/41 | NR | NR | 28 ± 6 U/mL | 69 ± 44 U/mL | NR | NR | ASCVD | Atorvastatin 20 mg | 12 |
Mayyas F, 2018 (b), Jordan [59] | P | 37 | 51 | 24/13 | NR | NR | 30 ± 18 U/mL | 75 ± 43 U/mL | NR | NR | ASCVD | Atorvastatin 40 mg | 12 |
Study | Were the Criteria for Inclusion in the Sample Clearly Defined? | Were the Study Subjects and the Setting Described in Detail? | Was the Exposure Measured in a Valid and Reliable Way? | Were Objective, Standard Criteria Used for Measurement of the Condition? | Were Confounding Factors Identified? | Were Strategies to Deal with Confounding Factors Stated? | Were the Outcomes Measured in a Valid and Reliable Way? | Was Appropriate Statistical Analysis Used? | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
Chen MF [46] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Yilmaz MI [27] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Ghayour-Mobarhan M [47] | No | No | Yes | Yes | No | No | Yes | No | High |
Molčányiová A [48] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Low |
Ruiz MC [49] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Save V [50] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Su Y [51] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Janic M [52] | No | No | Yes | Yes | No | No | Yes | No | High |
Sena-Evangelista KCM [53] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Yildiz A [54] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Fassett RG [55] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Hernandez-Mijares A [56] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Abdel Magid AM [57] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Hadzi-Petrushev N [58] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Mayyas F [59] | Yes | Yes | Yes | Yes | No | No | Yes | No | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinellu, A.; Mangoni, A.A. A Systematic Review and Meta-Analysis of the Effect of Statins on Glutathione Peroxidase, Superoxide Dismutase, and Catalase. Antioxidants 2021, 10, 1841. https://doi.org/10.3390/antiox10111841
Zinellu A, Mangoni AA. A Systematic Review and Meta-Analysis of the Effect of Statins on Glutathione Peroxidase, Superoxide Dismutase, and Catalase. Antioxidants. 2021; 10(11):1841. https://doi.org/10.3390/antiox10111841
Chicago/Turabian StyleZinellu, Angelo, and Arduino A. Mangoni. 2021. "A Systematic Review and Meta-Analysis of the Effect of Statins on Glutathione Peroxidase, Superoxide Dismutase, and Catalase" Antioxidants 10, no. 11: 1841. https://doi.org/10.3390/antiox10111841
APA StyleZinellu, A., & Mangoni, A. A. (2021). A Systematic Review and Meta-Analysis of the Effect of Statins on Glutathione Peroxidase, Superoxide Dismutase, and Catalase. Antioxidants, 10(11), 1841. https://doi.org/10.3390/antiox10111841