Plasma Glutathione Levels Decreased with Cognitive Decline among People with Mild Cognitive Impairment (MCI): A Two-Year Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Function Assessments
2.3. GSH Measurement
2.4. Statistical Analysis
3. Results
3.1. GSH Levels and Cognitive Function Differed Significantly between Baseline and Endpoint among MCI Patients but Not among Healthy Controls
3.2. Both GSH Level at Baseline and GSH Level Changed from Baseline to Endpoint Significantly Influenced Cognitive Decline over 2 Years among the MCI Patients
4. Discussion
4.1. Strength and Limitation
4.2. Clinical Implication and Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hinton, L.; Nguyen, H.; Nguyen, H.T.; Harvey, D.J.; Nichols, L.; Martindale-Adams, J.; Nguyen, B.T.; Nguyen, A.N.; Nguyen, C.H.; Nguyen, T.T.H.; et al. Advancing family dementia caregiver interventions in low- and middle-income countries: A pilot cluster randomized controlled trial of Resources for Advancing Alzheimer’s Caregiver Health in Vietnam (REACH VN). Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12063. [Google Scholar] [CrossRef] [PubMed]
- Schrag, M.; Mueller, C.; Zabel, M.; Crofton, A.; Kirsch, W.; Ghribi, O.; Squitti, R.; Perry, G. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Neurobiol. Dis. 2013, 59, 100–110. [Google Scholar] [CrossRef]
- Zarrouk, A.; Hammouda, S.; Ghzaiel, I.; Hammami, S.; Khamlaoui, W.; Ahmed, S.H.; Lizard, G.; Hammami, M. Association Between Oxidative Stress and Altered Cholesterol Metabolism in Alzheimer’s Disease Patients. Curr. Alzheimer Res. 2021, 17, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-J.; Lin, C.-H.; Lane, H.-Y. Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 2283. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer’s Disease: Understanding the Therapeutics Strategies. Mol. Neurobiol. 2014, 53, 648–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Bowen, J.; Teri, L.; Kukull, W.; McCormick, W.; McCurry, S.M.; Larson, E.B. Progression to dementia in patients with isolated memory loss. Lancet 1997, 349, 763–765. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild Cognitive Impairment. N. Engl. J. Med. 2011, 364, 2227–2234. [Google Scholar] [CrossRef] [Green Version]
- Boeve, B.F. Mild cognitive impairment associated with underlying Alzheimer’s disease versus Lewy body disease. Park. Relat. Disord. 2012, 18 (Suppl. 1), S41–S44. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, P.-K.; Chang, Y.-C.; Chuo, L.-J.; Chen, Y.-S.; Tsai, G.E.; Lane, H.-Y. Benzoate, a D-Amino Acid Oxidase Inhibitor, for the Treatment of Early-Phase Alzheimer Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Psychiatry 2014, 75, 678–685. [Google Scholar] [CrossRef]
- Chiang, T.-I.; Yu, Y.-H.; Lin, C.-H.; Lane, H.-Y. Novel Biomarkers of Alzheimer’s Disease: Based Upon N-methyl-D-aspartate Receptor Hypoactivation and Oxidative Stress. Clin. Psychopharmacol. Neurosci. 2021, 19, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Martinez, L.; Calfío, C.; Farias, G.A.; Vilches, C.; Prieto, R.; Maccioni, R.B. New Frontiers in the Prevention, Diagnosis, and Treatment of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 82, S51–S63. [Google Scholar] [CrossRef]
- Liss, J.L.; Assunção, S.S.M.; Cummings, J.; Atri, A.; Geldmacher, D.S.; Candela, S.F.; Devanand, D.P.; Fillit, H.M.; Susman, J.; Mintzer, J.; et al. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer’s disease (MCI and dementia) in primary care: A review and synthesis. J. Intern. Med. 2021, 290, 310–334. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.K.; Tripathi, M.; Sugunan, S. Brain oxidative stress: Detection and mapping of anti-oxidant marker ‘Glutathione’ in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012, 417, 43–48. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.; DiNicolantonio, J.; Lerner, A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer’s Pathogenesis—And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int. J. Mol. Sci. 2021, 22, 2140. [Google Scholar] [CrossRef]
- Dringen, R.; Hirrlinger, J. Glutathione Pathways in the Brain. Biol. Chem. 2003, 384, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Lasierra-Cirujeda, J.; Coronel, P.; Gimeno, M.; Aza, M. Beta-amyloidolysis and glutathione in Alzheimer’s disease. J. Blood Med. 2013, 4, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Saharan, S.; Mandal, P.K. The Emerging Role of Glutathione in Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 40, 519–529. [Google Scholar] [CrossRef]
- Gu, F.; Chauhan, V.; Chauhan, A. Glutathione redox imbalance in brain disorders. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 89–95. [Google Scholar] [CrossRef]
- McCaddon, A.; Hudson, P.; Hill, D.; Barber, J.; Lloyd, A.; Davies, G.; Regland, B. Alzheimer’s disease and total plasma aminothiols. Biol. Psychiatry 2003, 53, 254–260. [Google Scholar] [CrossRef]
- Liu, H.; Harrell, L.E.; Shenvi, S.; Hagen, T.; Liu, R.-M. Gender differences in glutathione metabolism in Alzheimer’s disease. J. Neurosci. Res. 2005, 79, 861–867. [Google Scholar] [CrossRef]
- Charisis, S.; Ntanasi, E.; Yannakoulia, M.; Anastasiou, C.; Kosmidis, M.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Veskoukis, A.; Kouretas, D.; et al. Plasma GSH levels and Alzheimer’s disease. A prospective approach.: Results from the HELIAD study. Free Radic. Biol. Med. 2020, 162, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.H.; Edland, S.D.; Teng, E.; Tingus, K.; Petersen, R.C.; Cummings, J.L.; On behalf of The Alzheimer’s Disease Cooperative Study Group. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology 2009, 72, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.C. The clinical dementia rating (cdr): Current version and. Young 1991, 41, 1588–1592. [Google Scholar] [CrossRef]
- Rosen, W.G.; Mohs, R.C.; Davis, K.L. A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 1984, 141, 1356–1364. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Creavin, S.T.; Wisniewski, S.; Noel-Storr, A.H.; Trevelyan, C.M.; Hampton, T.; Rayment, D.; Thom, V.M.; E Nash, K.J.; Elhamoui, H.; Milligan, R.; et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst. Rev. 2016, 1, CD011145. [Google Scholar] [CrossRef] [Green Version]
- Lewerenz, J.; Hewett, S.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.; Methner, A.; Pergande, M.; et al. The Cystine/Glutamate Antiporter System xc− in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants Redox Signal. 2013, 18, 522–555. [Google Scholar] [CrossRef] [Green Version]
- Bannai, S. Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J. Biol. Chem. 1986, 261, 2256–2263. [Google Scholar] [CrossRef]
- Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med. 2016, 21, 648–657. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lin, P.-P.; Lin, C.-Y.; Lin, C.-H.; Huang, C.-H.; Huang, Y.-J.; Lane, H.-Y. Decreased mRNA expression for the two subunits of system xc−, SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: Evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J. Psychiatr. Res. 2015, 72, 58–63. [Google Scholar] [CrossRef]
- Hung, C.-C.; Lin, C.-H.; Lane, H.-Y. Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment. Int. J. Mol. Sci. 2021, 22, 9718. [Google Scholar] [CrossRef]
- Lee, W.-J.; Liang, C.-K.; Peng, L.-N.; Chiou, S.-T.; Chen, L.-K. Protective factors against cognitive decline among community-dwelling middle-aged and older people in Taiwan: A 6-year national population-based study. Geriatr. Gerontol. Int. 2017, 17, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Bråthen, A.C.S.; de Lange, A.-M.; Fjell, A.M.; Walhovd, K.B. Risk- and protective factors for memory plasticity in aging. Aging, Neuropsychol. Cogn. 2020, 28, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Sohn, D.; Shpanskaya, K.; Lucas, J.E.; Petrella, J.R.; Saykin, A.J.; Tanzi, R.E.; Samatova, N.F.; Doraiswamy, P.M. Sex Differences in Cognitive Decline in Subjects with High Likelihood of Mild Cognitive Impairment due to Alzheimer’s disease. Sci. Rep. 2018, 8, 7490. [Google Scholar] [CrossRef] [Green Version]
- Oliver, D.M.; Reddy, P.H. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol. Cell. Neurosci. 2019, 96, 47–62. [Google Scholar] [CrossRef]
- Minich, D.M.; Brown, B.I. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019, 11, 2073. [Google Scholar] [CrossRef] [Green Version]
Healthy Elderly (n = 16) | MCI Patients (n = 49) | p | |
---|---|---|---|
Demographics | |||
CDR, mean (SD) | 0 | 0.5 | |
Gender, female, n (%) | 13 (81.3) | 33 (67.3) | 0.357 a |
Age, year, mean (SD) | 68.9 (5.9) | 69.9 (8.4) | 0.314 b |
Education, year, mean (SD) | 9.6 (2.7) | 6.7 (4.4) | 0.003 b |
MMSE, mean (SD) | 28.7 (1.1) | 25.3 (3.8) | <0.001 b |
ADAS-cog, mean (SD) | 3.5 (1.7) | 9.4 (7.1) | 0.001 b |
GSH level, ng/mL, mean (SD) | 4.1 (2.7) | 4.1 (2.5) | 0.726 b |
Healthy Elderly (n = 16) | |||
---|---|---|---|
Variable | GSH Level, ng/mL | ADAS-Cog | MMSE |
Baseline | 4.1 (2.7) | 3.5 (1.7) | 28.7 (1.1) |
6 months | 4.1 (3.3) | 3.2 (1.2) | 28.6 (1.5) |
12 months | 2.9 (2.9) | 3.4 (2.1) | 28.1 (1.0) |
18 months | 1.5 (1.3) | 3.1 (1.4) | 28.3 (1.1) |
24 months | 3.0 (3.1) | 3.1 (1.6) | 28.3 (1.2) |
p-Value of paired t-test (Baseline vs. 24 months) | 0.053 | 0.302 | 0.234 |
MCI patients (n = 49) | |||
Variable | GSH level (ng/mL) | ADAS-cog | MMSE |
Baseline | 4.1 (2.5) | 9.4 (7.1) | 25.3 (3.8) |
6 months | 3.5 (3.8) | 8.7 (6.0) | 25.6 (3.2) |
12 months | 2.8 (2.8) | 9.3 (6.4) | 25.0 (3.9) |
18 months | 2.7 (2.3) | 10.5 (8.3) | 24.3 (4.3) |
24 months | 2.2 (2.7) | 11.1 (9.1) | 24.0 (4.1) |
p-Value of paired t-test (Baseline vs. 24 months) | <0.001 | 0.035 | 0.006 |
MCI Patients (n = 49) | |||
---|---|---|---|
Variable | B (SE) | t | p |
Gender, female vs. male | −2.683 (1.556) | −1.724 | 0.091 |
Education, year | −0.309 (0.166) | −1.867 | 0.068 |
Baseline GSH level, ng/mL | 0.882 (0.280) | 3.149 | 0.003 |
Adjusted R square = 0.227 |
MCI (n = 49) | |||
---|---|---|---|
Variable | B (SE) | t | p |
Gender, female vs. male | −3.306 (1.566) | −2.110 | 0.040 |
Education, year | −0.316 (0.169) | −1.875 | 0.067 |
GSH level change, ng/mL | −0.621 (0.222) | −2.796 | 0.008 |
Adjusted R square = 0.196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-H.; Lane, H.-Y. Plasma Glutathione Levels Decreased with Cognitive Decline among People with Mild Cognitive Impairment (MCI): A Two-Year Prospective Study. Antioxidants 2021, 10, 1839. https://doi.org/10.3390/antiox10111839
Lin C-H, Lane H-Y. Plasma Glutathione Levels Decreased with Cognitive Decline among People with Mild Cognitive Impairment (MCI): A Two-Year Prospective Study. Antioxidants. 2021; 10(11):1839. https://doi.org/10.3390/antiox10111839
Chicago/Turabian StyleLin, Chieh-Hsin, and Hsien-Yuan Lane. 2021. "Plasma Glutathione Levels Decreased with Cognitive Decline among People with Mild Cognitive Impairment (MCI): A Two-Year Prospective Study" Antioxidants 10, no. 11: 1839. https://doi.org/10.3390/antiox10111839
APA StyleLin, C.-H., & Lane, H.-Y. (2021). Plasma Glutathione Levels Decreased with Cognitive Decline among People with Mild Cognitive Impairment (MCI): A Two-Year Prospective Study. Antioxidants, 10(11), 1839. https://doi.org/10.3390/antiox10111839