Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Reagents
2.2. Plant Sample Extraction
2.3. Ultrasound-Assisted Extraction (UAE) Optimization
2.4. Experimental Design
2.5. Raman Spectroscopy Spectra
2.6. FTIR Spectroscopy
2.7. Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF-MS) Analysis
Component Identification
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Acacia Seyal Gum Extraction Parameters by RSM
3.2. Statistical Data Analysis
3.3. The Interaction Response Effects
3.4. Validation of the Optimized Parameter
3.5. Raman Spectroscopy
3.6. FTIR Analysis
3.7. Chemical Profile of Ethanol ASG Extract Using GC-TOFMS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adwan, G.; Abu-Shanab, B.; Adwan, K. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug-resistant Pseudomonas aeruginosa strains. Asian Pac. J. Trop. Med. 2010, 3, 266–269. [Google Scholar] [CrossRef] [Green Version]
- Chinembiri, T.N.; Du Plessis, L.H.; Gerber, M.; Hamman, J.H.; Du Plessis, J. Review of Natural Compounds for Potential Skin Cancer Treatment. Molecules 2014, 19, 11679–11721. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Spina, R.; Risler, A.; Philippot, S.; Mérito, A.; Duval, R.E.; Laurain-Mattar, D. Evaluation of antioxidant and antibacterial activities, cytotoxicity of acacia seyal del bark extracts and isolated compounds. Molecules 2020, 25, 2392. [Google Scholar] [CrossRef]
- Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol. 2006, 105, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.B.; Hanpithakpong, W.; Trning, J.; Anal, A.K. Screening of phytochemicals and in vitro evaluation of antibacterial and antioxidant activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. Ind. Crops Prod. 2015, 77, 873–882. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Sarma, B.K.; Singh, H.B. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem. Toxicol. 2009, 47, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Capitata, L. Quantification of flavonoids by UPLC-MS and its antibacterial activity from Brassica. GSC Biol. Pharm. Sci. 2018, 5, 109–114. [Google Scholar]
- Revathi, S.; Govindarajan, R.K.; Rameshkumar, N.; Hakkim, F.L.; Mohammed, A.B.; Krishnan, M.; Kayalvizhi, N. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling. Biocatal. Agric. Biotechnol. 2017, 11, 322–329. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Zahari, N.A.A.R.; Chong, G.H.; Abdullah, L.C.; Chua, B.L. Ultrasonic-assisted extraction (UAE) process on thymol concentration from Plectranthus amboinicus leaves: Kinetic modeling and optimization. Processes 2020, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- Che Sulaiman, I.S.; Basri, M.; Fard Masoumi, H.R.; Chee, W.J.; Ashari, S.E.; Ismail, M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem. Cent. J. 2017, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Yang, G.; Zhang, J.; Li, J.; Bai, B. Optimization of ultrasound-assisted extraction using response surface methodology for simultaneous quantitation of six flavonoids in flos Sophorae immaturus and antioxidant activity. Molecules 2020, 25, 1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulhafiz, F.; Mohammed, A.; Kayat, F.; Zakaria, S.; Hamzah, Z.; Reddy Pamuru, R.; Reduan, M.F.H. Micropropagation of Alocasia longiloba Miq and comparative antioxidant properties of ethanolic extracts of the field-grown plant, in vitro propagated and in vitro-derived callus. Plants 2020, 9, 816. [Google Scholar] [CrossRef]
- Maher, T.; Ahmad Raus, R.; Daddiouaissa, D.; Ahmad, F.; Adzhar, N.S.; Latif, E.S.; Mohammed, A. Medicinal Plants with Anti-Leukemic Effects: A Review. Molecules 2021, 26, 2741. [Google Scholar] [CrossRef]
- Abdulhafiz, F.; Mohammed, A.; Kayat, F.; Bhaskar, M.; Hamzah, Z.; Podapati, S.K.; Reddy, L.V. Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS Analysis of Keladi Candik (Alocasia longiloba Miq). Molecules 2020, 25, 2658. [Google Scholar] [CrossRef]
- Huang, C.C. Applications of Raman spectroscopy in herbal medicine. Appl. Spectrosc. Rev. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Vankeirsbilck, T.; Vercauteren, A.; Baeyens, W.; Van der Weken, G.; Verpoort, F.; Vergote, G.; Remon, J.P. Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal. Chem. 2002, 21, 869–877. [Google Scholar] [CrossRef]
- Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res. 2009, 101, 157–170. [Google Scholar] [CrossRef]
- Farnev, K.F.; Tijjani, M.A.; Shamaki, U.B. Isolation and identification of compounds in the leaf Ficus sycomorus Linn Moraceae by Gas Chromatography-Mass Spectrometry, Infra-red and Ultraviolet Spectroscopy. J. Chem. Lett. 2021, 2, 33–42. [Google Scholar]
- Esmaeili, F.; Hashemiravan, M.; Eshaghi, M.R.; Gandomi, H. Optimization of Aqueous Extraction Conditions of Inulin from the Arctium lappa L. Roots Using Ultrasonic Irradiation Frequency. J. Food Qual. 2021, 2021, 5520996. [Google Scholar] [CrossRef]
- Elnour, A.A.M.; Mirghani, M.E.S.; Kabbashi, N.A.; Alam, M.Z. Musa, K.H. Gum arabic: An optimization of ultrasonic-assisted extraction of antioxidant activity. Stud. Univ. Babes-Bolyai Chem. 2018, 63, 95–116. [Google Scholar]
- Elnour, A.A.; Mirghani, M.E.S.; Kabbashi, N.A.; Alam, M.Z.; Musa, K.H. Active Fractions of Methanol Crude Obtained from Acacia seyal gum: Antioxidant Capacity using FTIR Analysis. Borneo J. Pharm. 2019, 2, 94–107. [Google Scholar] [CrossRef]
- Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Kadkhodaee, R.; Milani, J.M. Optimization of mucilage extraction from Qodume Shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng. 2010, 33, 861–882. [Google Scholar] [CrossRef]
- Daddiouaissa, D.; Amid, A.; Sani, M.S.A.; Elnour, A.A. Evaluation of metabolomics behavior of human colon cancer HT29 cell lines treated with ionic liquid graviola fruit pulp extract. J. Ethnopharmacol. 2021, 270, 113813. [Google Scholar] [CrossRef]
- Ma, C.H.; Liu, T.T.; Yang, L.; Zu, Y.G.; Chen, X.; Zhang, L.; Zhao, C. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits. J. Chromatogr. A 2011, 1218, 8573–8580. [Google Scholar] [CrossRef]
- Chan, C.H.; See, T.Y.; Yusoff, R.; Ngoh, G.C.; Kow, K.W. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up. Food Chem. 2017, 221, 1382–1387. [Google Scholar] [CrossRef]
- Elnour, A.A.M.; Mirghani, M.E.S.; Kabbashi, N.A.; Alam, M.Z. Significant bioactive compounds in crude methanol extracts and their fractions of acacia seyal gum. Int. J. Sudan Res. 2019, 8, 99–112. [Google Scholar] [CrossRef]
- Bi, J.; Yang, Q.; Sun, J.; Chen, J.; Zhang, J. Study on ultrasonic extraction technology and oxidation resistance of total flavonoids from peanut hull. J. Food Sci. Technol. 2011, 17, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.W.; Zeng, X.A.; Ngadi, M. Enhanced extraction of phenolic compounds from onion by pulsed electric field (PEF). J. Food Process. Preserv. 2018, 42, 4–11. [Google Scholar] [CrossRef]
- Freire, P.T.C.; Barboza, F.M.; Lima, J.A.; Melo, F.E.A.; Filho, J.M. Raman Spectroscopy of Amino Acid Crystals. In Raman Spectroscopy and Applications; Intech: Rijeka, Croatia, 2017; Volume 201. [Google Scholar]
- Gosselin, M.È.; Kapustij, C.J.; Venkateswaran, U.D.; Leverenz, V.R.; Giblin, F.J. Raman spectroscopic evidence for nuclear disulfide in isolated lenses of hyperbaric oxygen-treated guinea pigs. Exp. Eye Res. 2007, 84, 493–499. [Google Scholar] [CrossRef] [Green Version]
- De Pinto, G.L.; Martínez, M.; Ortega, S.; Villavicencio, N.; Borjas, L. Comparison of gum specimens from Acacia tortuosa and other Gummiferae species. Biochem. Syst. Ecol. 1993, 21, 795–797. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta—A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Capek, P.; Drábik, M.; Turjan, J. Characterization of starch and its mono and hybrid derivatives by thermal analysis and FT-IR spectroscopy. J. Therm. Anal. Calorim. 2010, 99, 667–673. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Wehling, B.; Moens, L.; Edwards, H.; De Reu, M.; Van Hooydonk, G. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta 2000, 407, 261–274. [Google Scholar] [CrossRef]
- De Veij, M.; Vandenabeele, P.; De Beer, T.; Remon, J.P.; Moens, L. Reference database of Raman spectra of pharmaceutical excipients. J. Raman Spectrosc. 2009, 40, 297–307. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Calheiros, R.; Machado, N.F.L.; Fiuza, S.M.; Gaspar, A.; Garrido, J.; Milhazes, N.; Borges, F.; Marques, M.P.M. Antioxidant phenolic esters with potential anticancer activity: A Raman spectroscopy study. J. Raman Spectrosc. 2008, 39, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Machado, N.F.L.; Calheiros, R.; Gaspar, A.; Garrido, J.; Borges, F.; Marques, M.P.M. Antioxidant phenolic esters with potential anticancer activity: Solution equilibria studied by Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Maia, L.F.; Fernandes, R.F.; Lobo-Hajdu, G.; De Oliveira, L.F.C. Conjugated polyenes as chemical probes of life signature: Use of Raman spectroscopy to differentiate polyenic pigments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20140200. [Google Scholar] [CrossRef] [Green Version]
- Edwards, H.G.M. Spectra-structure correlations in Raman spectroscopy. In Handbook of Vibrational Spectroscopy; John Wiley & Sons: Chichester, UK, 2002; Volume 3, pp. 1838–1871. [Google Scholar]
- Morales-Tovar, M.E.; Ramos-Ramírez, E.G.; Salazar-Montoya, J.A. Modeling and optimization of the parameters affecting extraction of the chan seed mucilage (Hyptis suaveolens (L.) Poit) by mechanical agitation (MA) and ultrasound-assisted extraction (UAE) in a multiple variables system. Food Bioprod. Process. 2020, 120, 166–178. [Google Scholar] [CrossRef]
- Aguilar-Hernández, I.; Afseth, N.K.; López-Luke, T.; Contreras-Torres, F.F.; Wold, J.P.; Ornelas-Soto, N. Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid. Vib. Spectrosc. 2017, 89, 113–122. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, J.M.; Mauŕicio, M.T.; Costa, A.C.; Versiane, O.; Soto, C.A.T. Fourier transform infrared spectrum: Vibrational assignments using density functional theory and natural bond orbital analysis of the bis (guanidoacetate) nickel(II) complex. ScienceAsia 2011, 37, 247–255. [Google Scholar] [CrossRef]
- Barth, A.; Zscherp, C. What vibrations tell about proteins. Q. Rev. Biophys. 2002, 35, 369–430. [Google Scholar] [CrossRef]
- Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym. 2014, 100, 9–16. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Yang, L.; Han, D.H.; Lee, B.M.; Hur, J. Characterizing treated wastewaters of different industries using clustered fluorescence EEM–PARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification. Chemosphere 2015, 127, 222–228. [Google Scholar] [CrossRef]
- Kędzierska-Matysek, M.; Matwijczuk, A.; Florek, M.; Barłowska, J.; Wolanciuk, A.; Matwijczuk, A.; Chruściel, E.; Walkowiak, R.; Karcz, D.; Gładyszewska, B. Application of FTIR spectroscopy for analysis of the quality of honey. In BIO Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 10, p. 02008. [Google Scholar]
- Asemani, M.; Rabbani, A.R. Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. J. Pet. Sci. Eng. 2020, 185, 106618. [Google Scholar] [CrossRef]
- Xu, R.B.; Yang, X.; Wang, J.; Zhao, H.T.; Lu, W.H.; Cui, J.; Hu, X.L. Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int. J. Mol. Sci. 2012, 13, 14262–14277. [Google Scholar] [CrossRef] [PubMed]
- Daoub, R.M.A.; Elmubarak, A.H.; Misran, M.; Hassan, E.A.; Osman, M.E. Characterization and functional properties of some natural Acacia gums. J. Saudi Soc. Agric. Sci. 2018, 17, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Torrez, L.; Nigen, M.; Williams, P.; Doco, T.; Sanchez, C. Acacia senegal vs. Acacia seyal gums—Part 1: Composition andstructure of hyperbranched plant exudates. Food Hydrocoll. 2015, 51, 41–53. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Mazurek, J.; Restivo, A.; Colombini, M.P.; Bonaduce, I. Analysis of plant gums and saccharide materials. Chem. Cent. J. 2012, 6, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermak, P.; Olsovska, J.; Mikyska, A.; Dusek, M.; Kadleckova, Z.; Vanicek, J.; Nyc, O.; Sigler, K.; Bostikova, V.; Bostik, P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. Apmis 2017, 125, 1033–1038. [Google Scholar] [CrossRef]
- Bibi, H. Phytochemical analysis and antimicrobial activities of Kochia indica (Wight), plant growing in District Karak Khyber Puhktunkhuwa, Pakistan. Pure Appl. Biol. 2021, 10, 789–796. [Google Scholar] [CrossRef]
- Hameed, I.H.; Hussein, H.J.; Kareem, M.A.; Hamad, N.S. Identification of five newly described bioactive chemical compounds in Methanolic extract of Mentha viridis by using gas chromatography—Mass spectrometry (GC-MS). J. Pharmacogn. Phytother. 2015, 7, 107–125. [Google Scholar]
- Hatami, S.; Sani, A.M.; Yavarmanesh, M. Chemical composition and antibacterial activity of organic extra virgin olive oil from Iran. Nutr. Food Sci. 2016, 46, 388–395. [Google Scholar] [CrossRef]
- Maitra, S.; De, A.; Das, B.; Roy, S.N.; Chakraborty, R.; Samanta, A.; Bhattacharya, S. Seasonal Variation of Phyto-Constituents of Tea Leaves Affects Antiproliferative Potential. J. Am. Coll. Nutr. 2019, 38, 415–423. [Google Scholar] [CrossRef]
- Black, H.S.; Boehm, F.; Edge, R.; Truscott, T.G. The benefits and risks of certain dietary carotenoids that exhibit both anti-and pro-oxidative mechanisms—A comprehensive review. Antioxidants 2020, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N.; Raghavan, V. Plant carotenoids evolution during cultivation, postharvest storage, and food processing: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1561–1604. [Google Scholar] [CrossRef] [PubMed]
- Hemaiswarya, S.; Doble, M. Combination of phenylpropanoids with 5-fluorouracil as anti-cancer agents against human cervical cancer (HeLa) cell line. Phytomedicine 2013, 20, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Foo, L.W.; Salleh, E.; Hana, S.N. Green Extraction of Antimicrobial Bioactive Compound from Piper Betle Leaves: Probe type Ultrasound-assisted Extraction vs Supercritical Carbon Dioxide Extraction. Chem. Eng. Trans. 2017, 56, 109–114. [Google Scholar]
- Lins, C.L.; Block, J.H.; Doerge, R.F. Nitro-para-and meta-substituted 2-phenylindolizines as potential antimicrobial agents. J. Pharm. Sci. 1982, 71, 556–561. [Google Scholar] [CrossRef]
- Hema, R.; Kumaravel, S.; Alagusundaram, K. GC/MS determination of bioactive components of Murraya koenigii. J. Am. Sci. 2011, 7, 80–83. [Google Scholar]
- Momin, K.; Thomas, S.C. GC-MS analysis of antioxidant compounds present in different extracts of an endemic plant Dillenia scabrella (dilleniaceae) leaves and barks. Int. J. Pharm. Sci. Res. 2020, 11, 2262–2273. [Google Scholar]
- Priyanka, C.; Kumar, P.; Bankar, S.P.; Karthik, L. In vitro antibacterial activity and gas chromatography–mass spectroscopy analysis of Acacia karoo and Ziziphus mauritiana extracts. J. Taibah Univ. Sci. 2015, 9, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Williams, H.E.; Tokach, M.D.; Dritz, S.S.; Woodworth, J.C.; DeRouchey, J.M.; Nagaraja, T.G.; Goodband, R.D.; Pluske, J.R.; Chitakasempornkul, K.; Bello, N.M.; et al. Effects of chlortetracycline alone or in combination with direct fed microbials on nursery pig growth performance and antimicrobial resistance of fecal Escherichia coli. Anim. Sci. J. 2018, 96, 5166–5178. [Google Scholar] [CrossRef] [Green Version]
- Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. [Google Scholar] [CrossRef]
- Do Carmo, G.; Fernandes, T.S.; Pedroso, M.; Ferraz, A.; Neto, A.T.; Silva, U.F.; Mostardeiro, M.A.; Back, D.F.; Dalcol, I.I.; Morel, A.F. Phytochemical and antimicrobial study of Pilocarpus pennatifolius Lemaire. Fitoterapia 2018, 131, 1–8. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, N.X.; Qin, M.; Wang, Y.Y. Betamethasone suppresses the inflammatory response in LPS-stimulated dental pulp cells through inhibition of NF-κB. Arch. Oral Biol. 2019, 98, 156–163. [Google Scholar] [CrossRef]
- Yadav, D.K.; Rai, R.; Kumar, N.; Singh, S.; Misra, S.; Sharma, P.; Shaw, P.; Pérez-Sánchez, H.; Mancera, R.L.; Choi, E.H.; et al. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage. Sci. Rep. 2016, 6, 38128. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.K.; Awasthi, K.; Gautam, S.; Yadav, T.P.; Rai, M.; Srivastava, O.N.; Sundar, S. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J. Antimicrob. Chemother. 2011, 66, 874–879. [Google Scholar] [CrossRef] [Green Version]
- Bellina, F.; Rossi, R. Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 2006, 62, 7213–7256. [Google Scholar] [CrossRef]
- Rao, A.V.; Agarwal, S. Role of antioxidant lycopene in cancer and heart disease. J. Am. Coll. Nutr. 2000, 19, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Kwon, S.J.; Ahn, J.W.; Jo, Y.D.; Kim, S.H.; Jeong, S.W.; Lee, M.K.; Kim, J.B.; Kang, S.Y. Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.). J. Plant Biotechnol. 2017, 44, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Majumder, R.; Dhara, M.; Adhikari, L.; Ghosh, G.; Pattnaik, S. Evaluation of in vitro antibacterial and antioxidant activity of aqueous extracts of Olax psittacorum. Indian J. Pharm. Sci. 2019, 81, 99–109. [Google Scholar] [CrossRef]
- Inoue, H.; Maeno, Y.; Iwasa, M.; Matoba, R.; Nagao, M. Screening and determination of benzodiazepines in whole blood using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci. Int. 2000, 113, 367–373. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Trigui, M.; Mansour, R.B.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef]
- Goel, R.; Luxami, V.; Paul, K. Recent advances in development of imidazo [1, 2-a] pyrazines: Synthesis, reactivity and their biological applications. Org. Biomol. Chem. 2015, 13, 3525–3555. [Google Scholar] [CrossRef]
- Kalantarkousheh, S.M.; Hassan, S.A.; Kadir, R.A.; Talib, M.A. Manifestation of existential issues as a brilliant function for quality of matrimony. J. Am. Sci. 2011, 7, 459–465. [Google Scholar]
- Varchi, G.; Battaglia, A.; Samorì, C.; Baldelli, E.; Danieli, B.; Fontana, G.; Guerrini, A.; Bombardelli, E. Synthesis of deserpidine from reserpine. J. Nat. Prod. 2005, 68, 1629–1631. [Google Scholar] [CrossRef]
- Ubaid, J.M.; Hussein, H.M.; Hameed, I.H. Determination of bioactive chemical composition of Callosobruchus maculutus and investigation of its anti-fungal activity. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 1293–1299. [Google Scholar]
- M’bitsi-Ibouily, G.C.; Marimuthu, T.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pradeep, P.; Modi, G.; Pillay, V. Synthesis, characterisation and in vitro permeation, dissolution and cytotoxic evaluation of ruthenium (ii)-liganded sulpiride and amino alcohol. Sci. Rep. 2019, 9, 4146. [Google Scholar] [CrossRef] [Green Version]
- Senhaji, S.; Lamchouri, F.; Toufik, H. Phytochemical content, antibacterial and antioxidant potential of endemic plant anabasis aretioïdes coss. & moq. (Chenopodiaceae). BioMed Res. Int. 2020, 2020, 6152932. [Google Scholar]
- Azahar, N.I.; Mokhtar, N.M.; Arifin, M.A. Piper betle: A review on its bioactive compounds, pharmacological properties, and extraction process. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 991, p. 012044. [Google Scholar]
- Liu, D.; Meng, X.; Wu, D.; Qiu, Z.; Luo, H. A natural isoquinoline alkaloid with antitumor activity: Studies of the biological activities of berberine. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Kotteswari, M.; Prabhu, K.; Rao, M.R.K.; Mahitha, P.; Balaji, T.K.; Dinakar, S.; Sundaram, R.L. The gas chromatography-mass spectrometry study of one Ayurvedic medicine Ashtachurnam. Drug Invent. Today 2020, 13, 663–667. [Google Scholar]
- El-Garawani, I.; Hassab El-Nabi, S.; El Kattan, A.; Sallam, A.; Elballat, S.; Abou-Ghanima, S.; El-Shamy, S. The ameliorative role of Acacia senegal gum against the oxidative stress and genotoxicity induced by the radiographic contrast medium (ioxitalamate) in albino rats. Antioxidants 2021, 10, 221. [Google Scholar] [CrossRef]
- Warowicka, A.; Nawrot, R.; Goździcka-Józefiak, A. Antiviral activity of berberine. Arch. Virol. 2020, 165, 1935–1945. [Google Scholar] [CrossRef]
- Estolano-Cobián, A.; Noriega-Iribe, E.; Díaz-Rubio, L.; Padrón, J.M.; Brito-Perea, M.; Cornejo-Bravo, J.M.; Córdova-Guerrero, I. Antioxidant, antiproliferative, and acetylcholinesterase inhibition activity of amino alcohol derivatives from 1, 4-naphthoquinone. Med. Chem. Res. 2020, 29, 1986–1999. [Google Scholar] [CrossRef]
- Ghani, N.T.A.; Mansour, A.M. Novel palladium (II) and platinum (II) complexes with 1H-benzimidazol-2-ylmethyl-N-(4-bromo-phenyl)-amine: Structural studies and anticancer activity. Eur. J. Med. Chem. 2012, 47, 399–411. [Google Scholar] [CrossRef]
- Al Bratty, M.; Makeen, H.A.; Alhazmi, H.A.; Alhazmi, H.A.; Syame, S.M.; Syame, S.M.; Abdalla, A.N.; Abdalla, A.N.; Homeida, H.E.; Sultana, S.; et al. Phytochemical, Cytotoxic, and Antimicrobial Evaluation of the Fruits of Miswak Plant, Salvadora persica L. J. Chem. 2020, 2020, 4521951. [Google Scholar] [CrossRef]
- Hashem, M.A.; Abd-Allah, N.A.; Mahmoud, E.A.; Amer, S.A.; Alkafafy, M. A Preliminary Study on the Effect of Psyllium Husk Ethanolic Extract on Hyperlipidemia, Hyperglycemia, and Oxidative Stress Induced by Triton X-100 Injection in Rats. Biology 2021, 10, 335. [Google Scholar] [CrossRef]
- Walter, L.A. Margolis, P. 2-Phenylindolizines. J. Med. Chem. 1967, 10, 498–499. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.B.; Leitão, R.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. 3,4-Dimethoxycinnamic acid levels as a tool for differentiation of Coffea canephora var. robusta and Coffea arabica. Food Chem. 1998, 61, 511–514. [Google Scholar] [CrossRef]
- Brintha, S.; Renuka, R.; Rajesh, S.; Santhanakrishnan, V.P.; Gnanam, R. Phytochemical analysis and bioactivity prediction of compounds in methanolic extracts of Curculigo orchioides Gaertn. J. Pharmacogn. Phytochem. 2017, 6, 192–197. [Google Scholar]
- Hernández-Ortega, M.; Ortiz-Moreno, A.; Hernández-Navarro, M.D.; Chamorro-Cevallos, G.; Dorantes-Alvarez, L.; Necoechea-Mondragón, H. Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J. Biomed. Biotechnol. 2012, 2012, 524019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chew, B.P.; Park, J.S. Carotenoid action on the immune response. J. Nutr. 2004, 134, 257S–261S. [Google Scholar] [CrossRef] [PubMed]
Symbol | Independent Variables | Low Level | High Level |
---|---|---|---|
A | Extraction Time (min) | 30 | 60 |
B | Extraction Temp (°C) | 30 | 50 |
C | Solid–Liquid Ratio (g/mL) | 15 | 25 |
Extraction Condition Yield (%) | |||||
---|---|---|---|---|---|
Run | A: Extraction Time (min) | B: Extraction Temp (°C) | C: Solid–Liquid Ratio (g/mL) | Actual | Predicted |
1 | 30 | 30 | 25 | 65 ± 0.02 | 65.28 |
2 | 30 | 40 | 20 | 70 ± 0.01 | 69.14 |
3 | 45 | 30 | 20 | 70 ± 0.03 | 70.8 |
4 | 30 | 30 | 15 | 65 ± 0.27 | 64.60 |
5 | 60 | 30 | 15 | 64 ± 0.15 | 63.54 |
6 | 60 | 30 | 25 | 65.3 ± 0.1 | 64.89 |
7 | 45 | 40 | 20 | 76 ± 0.08 | 75.39 |
8 | 60 | 50 | 15 | 66 ± 0.06 | 65.66 |
9 | 45 | 40 | 20 | 76 ± 0.41 | 75.39 |
10 | 45 | 40 | 15 | 74 ± 0.09 | 74.60 |
11 | 30 | 50 | 25 | 65 ± 0.09 | 65.39 |
12 | 60 | 50 | 25 | 67 ± 0.54 | 67.34 |
13 | 45 | 40 | 20 | 75 ± 0.08 | 75.40 |
14 | 45 | 40 | 20 | 76.3 ± 0.01 | 75.40 |
15 | 45 | 40 | 25 | 76.6 ± 0.05 | 75.97 |
16 | 45 | 40 | 20 | 74 ± 0.08 | 75.39 |
17 | 45 | 50 | 20 | 73 ± 0.51 | 71.92 |
18 | 45 | 40 | 20 | 75 ± 0.53 | 74.60 |
19 | 30 | 50 | 15 | 64 ± 0.12 | 64.30 |
20 | 60 | 40 | 20 | 69 ± 0.2 | 69.60 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 431.23 | 9 | 47.91 | 53.2 | <0.0001 | significant |
A-Time | 0.54 | 1 | 0.54 | 0.6 | 0.0045 | |
B-Temp | 3.21 | 1 | 3.21 | 3.57 | 0.0088 | |
C-S/L | 3.59 | 1 | 3.59 | 3.98 | 0.07 | |
AB | 2.73 | 1 | 2.73 | 3.03 | 0.11 | |
AC | 0.22 | 1 | 0.22 | 0.25 | 0.63 | |
BC | 0.06 | 1 | 0.06 | 0.06 | 0.81 | |
A2 | 99.96 | 1 | 99.96 | 111 | <0.0001 | |
B2 | 44.64 | 1 | 44.64 | 49.57 | <0.0001 | |
C2 | 0.11 | 1 | 0.11 | 0.12 | 0.74 | |
Residual | 9.01 | 10 | 0.9006 | |||
Lack of Fit | 5.14 | 5 | 1.03 | 1.33 | 0.38 | not significant |
Pure Error | 3.86 | 5 | 0.77 | |||
Cor Total | 440.24 | 19 |
Response | Predicted Mean | Predicted Median | Observed | Std Dev | SE. Mean | 95%CI Low for Mean | 95%CI High for Mean | 95%TI Low for 99% Pop | 95%TI High for 99% Pop |
---|---|---|---|---|---|---|---|---|---|
yield | 75.88 | 75.88 | 74.89 | 0.94 | 0.66 | 74.39 | 77.35 | 70.78 | 80.97 |
Wave Number cm−1 | Approximate Assignment | Functional Group |
---|---|---|
3200 | O-H | phenols |
>2700 | N-H, and C-H stretching modes | Amin, Alkyl |
2577 | S-H, S-S | Sulfhydryl |
1500–1700 | C=O and C=N stretch | Alkyl ketone |
1500–1550 | N-O stretching | Nitro compound |
900–1200 | C-C stretching, CH3, CH2, C=O | Alkane |
1461 | C-H bending | Methylene group |
1340 | C-C-H, C-H2 bending | Alkane. |
1333 | CH2 vibrations | Monosaccharide galactose, glucos |
1326,1261 | C-O stretching | Alkyl Ester |
1301 | CH2 | Carotenoids |
1078 | C-O, C-C, C-OH | Carbohydrate, Monosaccharides |
941, 979 | C-C skeletal stretch, C-O-C | alkane, glycosidic linkage |
600–650 | O-C=O | Acetate Ester |
Possible Band Assignment | Wavenumber (cm−1) | Functional Group |
---|---|---|
O-H···O | 3347 | Alcohol and hydroxy compound [50] |
C-H or/and NH3 | 2888 | amino acids [52] |
OH stretch | 3642 | Primary alcohol |
C-H | 2960 | alkene/alkyl |
CH2=CH2 | 2927 | Alkene |
C-H stretching | 2087 | Aldehyde |
C=O | 1731–1713 | ketones |
1730–1705 | Ketone [54] | |
C=C | 1624 | Alkene [53] |
Phenolic OH | 1229 | |
C-N | 1301 | Secondary amides [53] |
C-O-C | 1140 | Ether [56] |
CN stretch | 1065 | Primary amine |
C-H aromatic | 824 | alkene |
Compound Name | RT (min) | M.F | M.W (g/mol) | Biological Activity | Reference. |
---|---|---|---|---|---|
Lupulon | 14.28 | C26H38O4 | 414 | antimicrobial | [58] |
2-Butynedioic acid Acetylenedicarboxylic acid | 59.719 | C4H2O4 | 114 | antibacterial potency | [59] |
7-Methyl-Z-tetradecen-1-ol acetate | 29.71 | C17H32O2 | 268 | anti-inflammatory | [60] |
9-Octadecenal | 19.52.78 | C18H34 | 266 | antibacterial Membrane stabilizer | [61] |
Benzene, 1,3,5-trimethyl-2-octadecyl | 51 | C27H48 | 372 | not reported | |
Cyclobarbital | 55.4 | C12H16N2O3 | 23 | anti-proliferative | [62] |
Rhodoviolascin | 57 | C42H60O2 | 597 | bacterial metabolite. antioxidant | [63] |
β-Carotene | 56 | C40H56 | 537 | antioxidant | [64] |
2,4-Dimethoxycinnamic acid | 2 | C11H12O4 | 208 | cytotoxic activity | [65] |
Benzoic acid 2-methylpentyl ester | 61 | C13H18O2 | 206 | antimicrobial | [66] |
2-Phenylindolizine | 64 | C14H11N | 193 | antimicrobial activity | [67] |
Cyclotrisiloxane, hexamethyl | 64 | C6H18O3Si3 | 222 | antimicrobial antibacterial and antioxidant activity | [68,69,70] |
Chlortetracycline | 58 | C22H24Cl2N2O8 | 515 | antibacterial agents | [71] |
Astaxanthin | 58 | C40H52O4 | 596 | antioxidant anticancer | [72] |
Acridine, 9-methyl- | 64 | C14H11N | 193 | not reported | |
Isopilocarpine | 63 | C11H16N2O2 | 208 | antimicrobial | [73] |
Betamethasone | 56 | C22H29FO5 | 392 | anti-inflammatory | [74] |
Benzo[h]quinoline,2,4 dimethyl- | 56 | C15H13N | 207 | anticancer | [75] |
Benzamide, N-ethyl-N-(3-methylphenyl)-4-ethyl- | 57 | C17H19NO | 253 | antibacterial | [76] |
Pyrrolidine, 1-(1-oxo-5,8-octadecadienyl) | 59.62 | C18H31NO | 277 | anti-inflammatory and antitumor activity | [77] |
5H-Cyclohepta[b]pyridine-3-carbonitrile,6,7,8,9-tetrahydro-2-amino-4-(2-fluorophenyl)- | 61.85 | C11H12N2 | 172 | not reported | |
Lycopene | 63.84 | C40H56 | 69 | antioxidant | [78] |
Trisiloxane, 1,1,1,5,5,5-hexamethyl-3,3-bis[(trimethylsilyl)oxy]- | 56.47 | C12H36O4Si5 | 384 | antioxidant | [79] |
1,3-Dioxolane,2-(1 phenylethyl) | 62.24 | C11H14O2 | 178 | not reported | |
D-Glucopyranosiduronic acid, 3-(5-ethylhexahydro-1,3-dimethyl-2,4,6-trioxo-5-pyrimidinyl)-1-methylbutyl 2,3,4-tris-O-(trimethylsilyl) | 59.1 | C29H56N2O10Si3 | 677 | antibacterial and antioxidant | [80] |
Oxazolam | 60.85 | C18H17ClN2O2 | 328 | muscle relaxants | [81] |
Cyclohexyldimethylsilyloxy-3-phenylpropane | 50 | C15H22O2 | 330 | anticancer and antitumor activities | [82,83,84] |
Glycine,N-[(3à,5á,7à,12à)-24-oxo-3,7,12 tris[(trimethylsilyl)oxy]cholan-24-yl]-,methyl ester | 10 | C32H38N2O8 | 578 | antihypertensive action | [85] |
1,2-Benzisothiazol-3-amine tbdms | 4 | C13H20N2SSi | 264 | antifungal activity | [86] |
R)-(-)-2-Amino-1-propanol | 12 | C3H9NO | 75 | antioxidant and antiproliferative activity | [87] |
Silicic acid, diethyl bis(trimethylsilyl) ester | 57 | C10H28O4Si | 296 | antibacterial antioxidant activity | [88,89] |
6,9,10-Trimethoxy-12H-benz (6,7) oxepino(2,3,4-i,j)isoquinoline | 23 | C19H17NO4 | 323 | antitumor | [90] |
N, N-dimethyl-4-nitroso-3-(trimethylsilyl) aniline | 30 | C11H18NOSi2 | 222 | antitumor activity | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maher, T.; Kabbashi, N.A.; Mirghani, M.E.S.; Alam, M.Z.; Daddiouaissa, D.; Abdulhafiz, F.; Reduan, M.F.H.; Omran, J.I.; Abdul Razab, M.K.A.; Mohammed, A. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS. Antioxidants 2021, 10, 1612. https://doi.org/10.3390/antiox10101612
Maher T, Kabbashi NA, Mirghani MES, Alam MZ, Daddiouaissa D, Abdulhafiz F, Reduan MFH, Omran JI, Abdul Razab MKA, Mohammed A. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS. Antioxidants. 2021; 10(10):1612. https://doi.org/10.3390/antiox10101612
Chicago/Turabian StyleMaher, Tahani, Nassereldeen A. Kabbashi, Mohamed E. S. Mirghani, Md Z. Alam, Djabir Daddiouaissa, Ferid Abdulhafiz, Mohd Farhan Hanif Reduan, Jihad I. Omran, Mohammad Khairul Azhar Abdul Razab, and Arifullah Mohammed. 2021. "Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS" Antioxidants 10, no. 10: 1612. https://doi.org/10.3390/antiox10101612
APA StyleMaher, T., Kabbashi, N. A., Mirghani, M. E. S., Alam, M. Z., Daddiouaissa, D., Abdulhafiz, F., Reduan, M. F. H., Omran, J. I., Abdul Razab, M. K. A., & Mohammed, A. (2021). Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acacia Seyal Gum Using Response Surface Methodology and Their Chemical Content Identification by Raman, FTIR, and GC-TOFMS. Antioxidants, 10(10), 1612. https://doi.org/10.3390/antiox10101612