Identification of Critical Region Responsible for Split Hand/Foot Malformation Type 3 (SHFM3) Phenotype through Systematic Review of Literature and Mapping of Breakpoints Using Microarray Data
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromosome Karyotyping and SNP Microarray Results for the Proband
2.2. Breakpoint Mapping for SHFM3 Cases
2.2.1. SHFM3 Cases Reported in PubMed
2.2.2. SHFM3 Cases Reported in DECIPHER Database
2.3. Breakpoint Mapping for Cases Without SHFM3 Phenotypes, but Gaining at the SHFM3 Locus
2.3.1. PubMed Case
2.3.2. DECIPHER Cases
2.4. Breakpoint Mapping for Cases Having Loss or Mutation at the SHFM3 Locus
2.4.1. PubMed Cases
2.4.2. DECIPHER Cases
2.5. Discussion
2.5.1. Genotype and Phenotype Correlation
2.5.2. Critical Region Responsible for the SHFM Phenotype
3. Materials and Methods
3.1. Patient’s Phenotypes
3.2. High Resolution Chromosome Analysis
3.3. Single Nucleotide Polymorphism (SNP) Microarray Analysis
3.4. Database Search of Reported Cases
3.5. Mapping of Breakpoints
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Mollerat, X.J.; Gurrieri, F.; Morgan, C.T.; Sangiorgi, E.; Everman, D.B.; Gaspari, P.; Amiel, J.; Bamshad, M.J.; Lyle, R.; Blouin, J.L.; et al. A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24. Hum. Mol. Genet. 2003, 12, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Kano, H.; Kurosawa, K.; Horii, E.; Ikegawa, S.; Yoshikawa, H.; Kurahashi, H.; Toda, T. Genomic rearrangement at 10q24 in non-syndromic split-hand/split-foot malformation. Hum. Genet. 2005, 118, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Lyle, R.; Radhakrishna, U.; Blouin, J.L.; Gagos, S.; Everman, D.B.; Gehrig, C.; Delozier-Blanchet, C.; Solanki, J.V.; Patel, U.C.; Nath, S.K.; et al. Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. Am. J. Med. Genet. A 2006, 140, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Everman, D.B.; Morgan, C.T.; Lyle, R.; Laughridge, M.E.; Bamshad, M.J.; Clarkson, K.B.; Colby, R.; Gurrieri, F.; Innes, A.M.; Roberson, J.; et al. Frequency of genomic rearrangements involving the SHFM3 locus at chromosome 10q24 in syndromic and non-syndromic split-hand/foot malformation. Am. J. Med. Genet. A 2006, 140, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, B.I.; de Ravel, T.; van Driessche, J.; de Die-Smulders, C.; Toutain, A.; Vermeesch, J.R.; Fryns, J.P.; Devriendt, K.; Debeer, P. Distal limb deficiencies, micrognathia syndrome, and syndromic forms of split hand foot malformation (SHFM) are caused by chromosome 10q genomic rearrangements. J. Med. Genet. 2010, 47, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.B.; Souza, J.; Faucz, F.R.; Sotomaior, V.S.; Dupont, B.; Bartel, F.; Rodriguez, R.; Schwartz, C.E.; Skinner, C.; Alliman, S.; et al. Somatic/gonadal mosaicism in a syndromic form of ectrodactyly, including eye abnormalities, documented through array-based comparative genomic hybridization. Am. J. Med. Genet. A 2011, 155A, 1152–1156. [Google Scholar]
- Dai, L.; Deng, Y.; Li, N.; Xie, L.; Mao, M.; Zhu, J. Discontinuous microduplications at chromosome 10q24.31 identified in a Chinese family with split hand and foot malformation. BMC Med. Genet. 2013, 14. [Google Scholar] [CrossRef] [PubMed]
- Ockeloen, C.W.; Cobben, J.M.; Marcelis, C.L.; Koolen, D.A. A rare complex malformation of the hand in split hand foot malformation type 3 (SHFM3). Clin. Dysmorphol. 2013, 22, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Yang, W.; Zhang, X. Identification of a pathogenic microduplication in a Chinese split-hand/split-foot malformation family. Chinese J. Med. Genet. 2014, 31, 276–279. (In Chinese) [Google Scholar]
- Wang, H.; Xie, J.; Chen, W.; Geng, Q.; Xu, X. Genetic analysis and prenatal diagnosis of two Chinese families with split hand foot malformation. Chinese J. Med. Genet. 2014, 31, 280–284. (In Chinese) [Google Scholar]
- Chen, Y.; Li, H.; Tang, S.; Hu, T.; Du, J. Analysis of genomic copy number variation for a Chinese patient with split hand/split foot malformation. Chinese J. Med. Genet. 2014, 31, 774–777. (In Chinese) [Google Scholar]
- Fernández-Jaén, A.; Suela, J.; Fernández-Mayoralas, D.M.; Fernández-Perrone, A.L.; Wotton, K.R.; Dietrich, S.; Castellanos Mdel, C.; Cigudosa, J.C.; Calleja-Pérez, B.; López-Martín, S. Microduplication 10q24.31 in a Spanish girl with scoliosis and myopathy: The critical role of LBX. Am. J. Med. Genet. A 2014, 164A, 2074–2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergult, S.; Hoogeboom, A.J.; Bijlsma, E.K.; Sante, T.; Klopocki, E.; de Wilde, B.; Jongmans, M.; Thiel, C.; Verheij, J.B.; Perez-Aytes, A.; et al. Complex genetics of radial ray deficiencies: Screening of a cohort of 54 patients. Genet. Med. 2013, 15, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Marshall, C.; Feuk, L.; Scherer, S.W. Copy-number variation in control population cohorts. Hum. Mol. Genet. 2007, 16, R168–R173. [Google Scholar] [CrossRef] [PubMed]
- Komisarczuk, A.Z.; Kawakami, K.; Becker, T.S. Cis-regulation and chromosomal rearrangement of the Fgf8 locus after the teleost/tetrapod split. Dev. Biol. 2009, 336, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Marinić, M.; Aktas, T.; Ruf, S.; Spitz, F. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 2013, 24, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Kono, H.; Kurahashi, H.; Toda, T. Genetically regulated epigenetic transcriptional activation of retrotransposon insertion confers mouse dactylaplasia phenotype. Proc. Natl. Acad. Sci. USA 2007, 104, 19034–19039. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.F.; Angione, K.; Milunsky, J.M. Identification of Critical Region Responsible for Split Hand/Foot Malformation Type 3 (SHFM3) Phenotype through Systematic Review of Literature and Mapping of Breakpoints Using Microarray Data. Microarrays 2016, 5, 2. https://doi.org/10.3390/microarrays5010002
Li CF, Angione K, Milunsky JM. Identification of Critical Region Responsible for Split Hand/Foot Malformation Type 3 (SHFM3) Phenotype through Systematic Review of Literature and Mapping of Breakpoints Using Microarray Data. Microarrays. 2016; 5(1):2. https://doi.org/10.3390/microarrays5010002
Chicago/Turabian StyleLi, Catherine F., Katie Angione, and Jeff M. Milunsky. 2016. "Identification of Critical Region Responsible for Split Hand/Foot Malformation Type 3 (SHFM3) Phenotype through Systematic Review of Literature and Mapping of Breakpoints Using Microarray Data" Microarrays 5, no. 1: 2. https://doi.org/10.3390/microarrays5010002
APA StyleLi, C. F., Angione, K., & Milunsky, J. M. (2016). Identification of Critical Region Responsible for Split Hand/Foot Malformation Type 3 (SHFM3) Phenotype through Systematic Review of Literature and Mapping of Breakpoints Using Microarray Data. Microarrays, 5(1), 2. https://doi.org/10.3390/microarrays5010002