In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization
Abstract
:1. Introduction
2. Experimental Section
2.1. Bacillus Anthracis Genomes
2.2. Universal Fingerprinting Chip (UFC-13)
| Organism/Name | Size (Mb) | GC % | Genes | Proteins | RefSeq/Bioproject | Levels |
|---|---|---|---|---|---|---|
| Bacillus anthracis str. Ames Ancestor | 5.5 | 35.26 | 5735 | 5305 | NC_007530.2 | Gapless chromosome |
| Bacillus anthracis str. Ames | 5.23 | 35.4 | 5401 | 5039 | NC_003997.3 | Gapless chromosome |
| Bacillus anthracis str. Sterne | 5.23 | 35.4 | 5265 | 4955 | NC_005945.1 | Gapless chromosome |
| Bacillus anthracis str. Kruger B | 5.47 | 35.1 | 5878 | 5753 | PRJNA54105 * | Scaffolds or contigs |
| Bacillus anthracis str. CNEVA-9066 | 5.49 | 35.2 | 5870 | 5741 | PRJNA54133 * | Scaffolds or contigs |
| Bacillus anthracis str. Western North America | 5.51 | 35.2 | 5973 | 5850 | PRJNA54107 * | Scaffolds or contigs |
| Bacillus anthracis str. Australia 94 | 5.5 | 35.2 | 5987 | 5863 | PRJNA54137 * | Scaffolds or contigs |
| Bacillus anthracis str. Vollum | 5.49 | 35.2 | 5962 | 5851 | PRJNA54135 * | Scaffolds or contigs |
2.3. Virtual Hybridization
2.4. Virtual Hybridization by Direct and Extended Methods

2.5. Genomic Fingerprints

2.6. Bacillus Anthracis Fingerprint Tree
3. Results and Discussion
3.1. Information Obtained for Interpreting Virtual Hybridization Results
| Organism/Name | High Potential Sites (Extended) 1 mismatch * | High Potential Sites (Direct) ** 0 mismatch |
|---|---|---|
| Bacillus anthracis str. Ames Ancestor | 4606 | 1529 |
| Bacillus anthracis str. Ames | 4607 | 1529 |
| Bacillus anthracis str. Sterne | 4606 | 1530 |
| Bacillus anthracis str. Kruger B | 4592 | 1520 |
| Bacillus anthracis str. CNEVA-9066 | 4603 | 1526 |
| Bacillus anthracis str. Western North America | 4608 | 1533 |
| Bacillus anthracis str. Australia 94 | 4605 | 1529 |
| Bacillus anthracis str. Vollum | 4599 | 1529 |
3.2. Bacillus Anthracis Virtual Genomic Fingerprints

3.3. Bacillus Anthracis Analysis
3.4. Distance Table
| Strain | BaVollum | BaA0039 | BaFrance | BaKruger | BaAmes | BaSterne | BaAncestor | BaAmerica |
|---|---|---|---|---|---|---|---|---|
| BaVollum | 0 | |||||||
| BaA0039 | 0.000334 | 0 | ||||||
| BaFrance | 0.000802 | 0.000702 | 0 | |||||
| BaKruger | 0.001088 | 0.000987 | 0.000452 | 0 | ||||
| BaAmes | 0.000301 | 0.000167 | 0.000635 | 0.000920 | 0 | |||
| BaSterne | 0.000284 | 0.000150 | 0.000618 | 0.000903 | 0.000083 | 0 | ||
| BaAncestor | 0.000284 | 0.000150 | 0.000618 | 0.000903 | 0.000017 | 0.000067 | 0 | |
| BaAmerica | 0.000251 | 0.000150 | 0.000618 | 0.000903 | 0.000117 | 0.000100 | 0.000100 | 0 |
| Strain | BaVollum | BaA0039 | BaFrance | BaKrugerB | BaAmes | BaSterne | BaAncestor | BaAmerica |
|---|---|---|---|---|---|---|---|---|
| BaVollum | 0 | |||||||
| BaA0039 | 0.000503 | 0 | ||||||
| BaFrance | 0.001057 | 0.000956 | 0 | |||||
| BaKrugerB | 0.001261 | 0.001261 | 0.000606 | 0 | ||||
| BaAmes | 0.000503 | 0.000201 | 0.000956 | 0.001261 | 0 | |||
| BaSterne | 0.000452 | 0.000151 | 0.000906 | 0.001210 | 0.00005 | 0 | ||
| BaAncestor | 0.000503 | 0.000201 | 0.000956 | 0.001261 | 0 | 0.00005 | 0 | |
| BaAmerica | 0.000402 | 0.000301 | 0.000854 | 0.001158 | 0.000301 | 0.000251 | 0.000301 | 0 |
3.5. Bacillus Anthracis UFC-13 Trees


4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Koehler, T.M. Bacillus anthracis physiology and genetics. Mol. Aspects Med. 2009, 30, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Okinaka, R.; Cloud, K.; Hampton, O.; Hoffmaster, A.; Hill, K.; Keim, P.; Koehler, T.; Lamke, G.; Kumano, S.; Manter, D.; et al. Sequence, assembly and analysis of px01 and px02. J. Appl. Microbiol. 1999, 87, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Dumetz, F.; Jouvion, G.; Khun, H.; Glomski, I.J.; Corre, J.P.; Rougeaux, C.; Tang, W.J.; Mock, M.; Huerre, M.; Goossens, P.L. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. Am. J. Pathol. 2011, 178, 2523–2535. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Misra, M.; Sower, L.; Peterson, J.W.; Kellogg, G.E.; Schein, C.H. Novel inhibitors of anthrax edema factor. Bioorg. Med. Chem. 2008, 16, 7225–7233. [Google Scholar] [CrossRef] [PubMed]
- Leysath, C.E.; Phillips, D.D.; Crown, D.; Fattah, R.J.; Moayeri, M.; Leppla, S.H. Anthrax edema factor toxicity is strongly mediated by the n-end rule. PLoS One 2013, 8, e74474. [Google Scholar] [CrossRef] [PubMed]
- Keim, P.; Gruendike, J.M.; Klevytska, A.M.; Schupp, J.M.; Challacombe, J.; Okinaka, R. The genome and variation of bacillus anthracis. Mol. Aspects Med. 2009, 30, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Bavykin, S.G.; Mikhailovich, V.M.; Zakharyev, V.M.; Lysov, Y.P.; Kelly, J.J.; Alferov, O.S.; Gavin, I.M.; Kukhtin, A.V.; Jackman, J.; Stahl, D.A.; et al. Discrimination of bacillus anthracis and closely related microorganisms by analysis of 16s and 23s rrna with oligonucleotide microarray. Chem. Biol. Interact. 2008, 171, 212–235. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, A.; Kovac, P.; Saksena, R.; Bannert, N.; Klee, S.R.; Ranisch, H.; Grunow, R. Development of antibodies against anthrose tetrasaccharide for specific detection of bacillus anthracis spores. Clin. Vac. Immunol. 2009, 16, 1728–1737. [Google Scholar] [CrossRef]
- Rao, S.S.; Mohan, K.V.; Atreya, C.D. Detection technologies for bacillus anthracis: Prospects and challenges. J. Microbiol. Methods 2010, 82, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bumgarner, R. Overview of DNA microarrays: Types, applications, and their future. Curr. Protoc. Mol. Biol. 2013. [Google Scholar] [CrossRef]
- Universal Fingerprintig Chip (UFC). Available online: http://bioinformatica.homelinux.org/UFCVH (accessed on 16 February 2015).
- SantaLucia, J., Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 1998, 95, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Diaz, H.; Garcia-Chequer, A.J.; Mendez-Tenorio, A.; Santiago-Hernandez, J.C.; Maldonado-Rodriguez, R.; Beattie, K.L. Bacterial classification using genomic fingerprints obtained by virtual hybridization. J. Microbiol. Methods 2011, 87, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Carreno-Duran, L.R.; Larios-Serrato, V.; Jaimes-Diaz, H.; Perez-Cervantes, H.; Zepeda-Lopez, H.; Sanchez-Vallejo, C.J.; Olguin-Ruiz, G.E.; Maldonado-Rodriguez, R.; Mendez-Tenorio, A. Design of a set of probes with high potential for influenza virus epidemiological surveillance. Bioinformation 2013, 9, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Lopez, M.A.; Mendez-Tenorio, A.; Maldonado-Rodriguez, R.; Doktycz, M.J.; Fleming, J.T.; Beattie, K.L. Fingerprinting of prokaryotic 16s rrna genes using oligodeoxyribonucleotide microarrays and virtual hybridization. Nucleic Acids Res. 2003, 31, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Casique-Almazan, J.; Larios-Serrato, V.; Olguin-Ruiz, G.E.; Sanchez-Vallejo, C.J.; Maldonado-Rodriguez, R.; Mendez-Tenorio, A. Universal fingerprinting chip server. Bioinformation 2012, 8, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Jiang, L.; Stanley, S.T.; Wilson, M.R.; Decker, R.S.; Read, T.D.; Worsham, P.; Keim, P.S.; Salzberg, S.L.; Fraser-Liggett, C.M.; et al. The complete genome sequence of bacillus anthracis ames “Ancestor”. J. Bacteriol. 2009, 191, 445–446. [Google Scholar] [CrossRef] [PubMed]
- Read, T.D.; Peterson, S.N.; Tourasse, N.; Baillie, L.W.; Paulsen, I.T.; Nelson, K.E.; Tettelin, H.; Fouts, D.E.; Eisen, J.A.; Gill, S.R.; et al. The genome sequence of bacillus anthracis ames and comparison to closely related bacteria. Nature 2003, 423, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. Genbank. Nucleic Acids Res 2014, 42, D32–D37. [Google Scholar] [CrossRef] [PubMed]
- Avarre, J.C.; de Lajudie, P.; Bena, G. Hybridization of genomic DNA to microarrays: A challenge for the analysis of environmental samples. J. Microbiol. Methods 2007, 69, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bavykin, S.G.; Lysov, Y.P.; Zakhariev, V.; Kelly, J.J.; Jackman, J.; Stahl, D.A.; Cherni, A. Use of 16s rrna, 23s rrna, and gyrb gene sequence analysis to determine phylogenetic relationships of bacillus cereus group microorganisms. J. Clin. Microbiol. 2004, 42, 3711–3730. [Google Scholar] [CrossRef] [PubMed]
- Tottey, W.; Denonfoux, J.; Jaziri, F.; Parisot, N.; Missaoui, M.; Hill, D.; Borrel, G.; Peyretaillade, E.; Alric, M.; Harris, H.M.; et al. The human gut chip “Hugchip”, an explorative phylogenetic microarray for determining gut microbiome diversity at family level. PLoS One 2013, 8, e62544. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Prieto, F.; Garcia-Chequer, A.J.; Jaimes-Diaz, H.; Casique-Almazan, J.; Espinosa-Lara, J.M.; Palma-Orozco, R.; Mendez-Tenorio, A.; Maldonado-Rodriguez, R.; Beattie, K.L. Lifeprint: A novel k-tuple distance method for construction of phylogenetic trees. Adv. Appl. Bioinform. Chem. 2011, 4, 13–27. [Google Scholar] [PubMed]
- Vijaya Satya, R.; Zavaljevski, N.; Kumar, K.; Bode, E.; Padilla, S.; Wasieloski, L.; Geyer, J.; Reifman, J. In silico microarray probe design for diagnosis of multiple pathogens. BMC Genomics 2008, 9, e496. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaimes-Díaz, H.; Larios-Serrato, V.; Lloret-Sánchez, T.; Olguín-Ruiz, G.; Sánchez-Vallejo, C.; Carreño-Durán, L.; Maldonado-Rodríguez, R.; Méndez-Tenorio, A. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. Microarrays 2015, 4, 84-97. https://doi.org/10.3390/microarrays4010084
Jaimes-Díaz H, Larios-Serrato V, Lloret-Sánchez T, Olguín-Ruiz G, Sánchez-Vallejo C, Carreño-Durán L, Maldonado-Rodríguez R, Méndez-Tenorio A. In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. Microarrays. 2015; 4(1):84-97. https://doi.org/10.3390/microarrays4010084
Chicago/Turabian StyleJaimes-Díaz, Hueman, Violeta Larios-Serrato, Teresa Lloret-Sánchez, Gabriela Olguín-Ruiz, Carlos Sánchez-Vallejo, Luis Carreño-Durán, Rogelio Maldonado-Rodríguez, and Alfonso Méndez-Tenorio. 2015. "In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization" Microarrays 4, no. 1: 84-97. https://doi.org/10.3390/microarrays4010084
APA StyleJaimes-Díaz, H., Larios-Serrato, V., Lloret-Sánchez, T., Olguín-Ruiz, G., Sánchez-Vallejo, C., Carreño-Durán, L., Maldonado-Rodríguez, R., & Méndez-Tenorio, A. (2015). In Silico Genomic Fingerprints of the Bacillus anthracis Group Obtained by Virtual Hybridization. Microarrays, 4(1), 84-97. https://doi.org/10.3390/microarrays4010084
