Challenges for MicroRNA Microarray Data Analysis
Abstract
:1. Introduction
2. Measurement Quality and Background Correction
2.1. MiRCURY LNA MicroRNA Array
- Among the 13 LNAv7 arrays, on average, approximately 58% of the probes have reasonably strong signals (not flagged). In the worst case, about 42% of spots are not flagged, and approximately 57% of the spots are low-expressed or missing spots. One slide contains more than 77% of spots with no flags.
- Among the 48 LNAv9 arrays, on average, less than 20% of the probes have reasonably strong signals, while more than 50% of the probes are empty spots. The best slides have approximately 45% of non-flagged spots, while the non-flagged spots have less than 4% in the worst slide.
- For both LNAv7 and LNAv9, the proportions of poor spots (background/signal contaminated, high ignored percentage and others) are relatively low.
Version | Type | Min | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
---|---|---|---|---|---|---|---|
LNAv7 | no flag | 42.17 | 50.46 | 55.68 | 57.71 | 62.66 | 77.42 |
empty spots | 21.61 | 36.88 | 43.99 | 41.70 | 49.15 | 57.51 | |
poor spots | 0.26 | 0.33 | 0.46 | 0.59 | 0.85 | 1.17 | |
LNAv9 | no flag | 3.89 | 11.18 | 16.76 | 18.77 | 26.80 | 45.33 |
empty spots | 52.77 | 72.03 | 82.42 | 80.24 | 87.98 | 95.85 | |
poor spots | 0.00 | 0.61 | 0.80 | 1.00 | 1.38 | 2.77 |
Version | Type | Min. | 1st Quartile | Median | Mean | 3rd Quartile | Max. |
---|---|---|---|---|---|---|---|
LNAv7 | no flag | 71.88 | 96.88 | 100.00 | 95.43 | 100.00 | 100.00 |
empty spots | 0.00 | 0.00 | 0.00 | 4.33 | 3.13 | 28.125 | |
poor spots | 0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 3.13 | |
LNAv9 | no flag | 9.38 | 43.75 | 48.44 | 48.76 | 53.13 | 90.63 |
empty spots | 3.13 | 40.63 | 50.00 | 46.35 | 53.13 | 90.63 | |
poor spots | 0.00 | 0.00 | 3.13 | 4.88 | 6.25 | 34.38 |
2.2. FlexmiR MicroRNA Human Panel
Version | Type | Min. | 1st Quartile | Median | Mean | 3rd Quartile | Max. |
---|---|---|---|---|---|---|---|
FlexmiR | no flag | 59.89 | 73.70 | 77.88 | 77.69 | 83.65 | 89.29 |
3.30 | 5.77 | 6.73 | 7.24 | 8.65 | 13.46 | ||
< s | 6.59 | 10.99 | 14.97 | 15.08 | 18.00 | 28.85 |
2.3. Signal-to-Noise Ratio
2.4. Background Correction
3. Intra- and Inter-Platform Reproducibility
4. Normalization
4.1. Linear Normalization
4.2. Nonlinear Normalization
5. Differentially-Expressed miRNA Detection
6. Materials and Methods
6.1. HCT-116 Cell Lines
6.2. Osterosarcoma Xenograft Specimens
6.3. Generalized Logarithm Transformation
7. Conclusions
Acknowledgments
References
- Baskerville, S.; Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring microRNAs and host genes. RNA 2005, 11, 241–247. [Google Scholar]
- Carmell, M.A.; Xuan, Z.; Zhang, M.Q.; Hannon, G.J. The Argonaute family: Tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev. 2002, 16, 2733–2742. [Google Scholar]
- Karube, Y.; Tanaka, H.; Osada, H.; Tomida, S.; Tatematsu, Y.; Yanagisawa, K.; Yatabe, Y.; Takamizawa, J.; Miyoshi, S.; Mitsudomi, T.; Takahashi, T. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005, 96, 111–115. [Google Scholar] [PubMed]
- Lee, Y.S.; Kim, H.K.; Chung, S.; Kim, K.S.; Dutta, A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J. Biol. Chem. 2005, 280, 16635–16641. [Google Scholar] [CrossRef] [PubMed]
- Sempere, L.F.; Sokol, N.S.; Dubrovsky, E.B.; Berger, E.M.; Ambros, V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity. Dev. Biol. 2003, 259, 9–18. [Google Scholar] [CrossRef]
- Takamizawa, J.; Konishi, H.; Yanagisawa, K.; Tomida, S.; Osada, H.; Endoh, H.; Harano, T.; Yatabe, Y.; Nagino, M.; Nimura, Y.; et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64, 3753–3756. [Google Scholar] [CrossRef] [PubMed]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, G.; Hayashi, K.; Xi, Y.; Kudo, K.; Uchida, K.; Takasaki, K.; Ju, J. Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genom. Proteom. 2006, 3, 317–324. [Google Scholar]
- Xi, Y.; Formentini, A.; Chien, M.; Weir, D.; Russo, J.; Ju, J.; Kornmann, M.; Ju, J. Prognostic values of microRNAs in colorectal cancer. Biomark. Insights 2006, 2, 113–121. [Google Scholar] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Feinbaum, R.; Ambros, V. The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev. Biol. 1999, 210, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Berezikov, E.; Guryev, V.; van de Belt, J.; Wienholds, E.; Plasterk, R.H.; Cuppen, E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005, 120, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Lagos-Quintana, M.; Rauhut, R.; Meyer, J.; Borkhardt, A.; Tuschl, T. New microRNAs from mouse and human. RNA 2003, 9, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Bort, J.A.; Hackl, M.; Hoflmayer, H.; Jadhav, V.; Harreither, E.; Kumar, N.; Ernst, W.; Grillari, J.; Borth, N. Dynamic mRNA and miRNA profiling of CHO-K1 suspension cell cultures. Biotechnol. J. 2012, 7, 500–515. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, S.; Rossi, M.; Malicka, J.; Gryczynski, Z.; Gryczynski, I. DNA arrays for genetic analyses and medical diagnosis. In Topics in Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; pp. 213–237. [Google Scholar]
- Chen, Y.; Dougherty, E.R.; Bittner, M.L. Ratio-based decisions and quantitative analysis of cDNA microarray images. J. Biomed. Opt. 1997, 2, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Rocke, D.; Lorenzato, S. A two-component model for measurement error in analytical chemistry. Technometrics 1995, 37, 176–184. [Google Scholar] [CrossRef]
- Ideker, T.; Thorsson, V.; Siegel, A.F.; Hood, L.E. Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 2000, 7, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Rocke, D.M.; Durbin, B. A model for measurement error for gene expression arrays. J. Comput. Biol. 2001, 8, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Durbin, B.P.; Hardin, J.S.; Hawkins, D.M.; Rocke, D.M. A variance-stabilizing transformation for gene-expression microarray data. Bioinformatics 2002, 18, S105–S110. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.; Jatkoe, T.A.; Stumpf, C.R.; Lu, J.; Thomas, J.D.; Madore, S.J. Assessment of the sensitivity and specificity of oligonucleotide (50-mer) microarrays. Nucl. Acids Res. 2000, 28, 4552–4557. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.; Mao, M.; Jones, A.R.; Burchard, J.; Marton, M.J.; Shannon, K.W.; Lefkowitz, S.M.; Ziman, M.; Schelter, J.M.; Meyer, M.R.; et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 2001, 19, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Yuen, T.; Wurmbach, E.; Pfeffer, R.L.; Ebersole, B.J.; Sealfon, S.C. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucl. Acids Res. 2002, 30, e48. [Google Scholar] [CrossRef] [PubMed]
- Barczak, A.; Rodriguez, M.W.; Hanspers, K.; Koth, L.L.; Tai, Y.C.; Bolstad, B.M.; Speed, T.P.; Erle, D.J. Spotted long oligonucleotide arrays for human gene expression analysis. Genome Res. 2003, 13, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.G.; Hamatani, T.; Sharov, A.A.; Carmack, C.E.; Qian, Y.; Aiba, K.; Ko, N.T.; Dudekula, D.B.; Brzoska, P.M.; Hwang, S.S.; Ko, M.S. In situ-synthesized novel microarray optimized for mouse stem cell and early developmental expression profiling. Genome Res. 2003, 13, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Malek, R.L.; Kwitek, A.E.; Greene, A.S.; Luu, T.V.; Behbahani, B.; Frank, B.; Quackenbush, J.; Lee, N.H. Assessing unmodified 70-mer oligonucleotide performance on glass-slide microarrays. Genome Biol. 2003, 4. [Google Scholar] [CrossRef]
- Kuo, K.P.; Jenssen, T.K.; Butte, A.J.; Ohno-Machado, L.; Kohane, I.S. Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 2002, 18, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kothapalli, R.; Yoder, S.; Mane, S.; Loughran, T.P., Jr. Microarray results: How accurate are they? BMC Bioinforma. 2002, 3. [Google Scholar] [CrossRef]
- Li, J.; Pankratz, M.; Johnson, J. Differential gene expression patterns revealed by oligonucleotide versus long cDNA arrays. Toxicol. Sci. 2003, 69, 383–390. [Google Scholar] [CrossRef]
- Tan, P.; Downey, T.J.; Spitznagel, E.L., Jr.; Xu, P.; Fu, D.; Dimitrov, D.S.; Lempicki, R.A.; Raaka, B.M.; Cam, M.C. Evaluation of gene expression measurements from commercial platforms. Nucl. Acids Res. 2003, 31, 5676–5684. [Google Scholar] [CrossRef] [PubMed]
- Bammler, T.; Beyer, R.P.; Bhattacharya, S.; Boorman, G.A.; Boyles, A.; Bradford, B.U.; Bumgarner, R.E.; Bushel, P.R.; Chaturvedi, K.; Choi, D.; et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat. Methods 2005, 2, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, R.A.; Warren, D.; Spencer, F.; Kim, I.F.; Biswal, S.; Frank, B.C.; Gabrielson, E.; Garcia, J.G.; Geoghegan, J.; Germino, G.; et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2005, 2, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.P.; Liu, F.; Trimarchi, J.; Punzo, C.; Lombardi, M.; Sarang, J.; Whipple, M.E.; Maysuria, M.; Serikawa, K.; Lee, S.Y.; et al. A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat. Biotechnol. 2006, 24, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Larkin, E.; Frank, B.; Gavras, H.; Sultana, R.; Quackenbush, J. Independence and reproducibility across microarray platforms. Nat. Methods 2005, 2, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Sherlock, G. Of fish and chips. Nat. Methods 2005, 2, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.T.; Scherf, U.; Eisen, M.B.; Perou, C.M.; Rees, C.; Spellman, P.; Iyer, V.; Jeffrey, S.S.; Van de Rijn, M.; Waltham, M.; et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 2000, 24, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Howell, P.; Bruheim, S.; Ju, J.; Owen, L.B.; Fodstad, O.; Xi, Y. Systematic evaluation of three microRNA profiling platforms: Microarray, beads array, and quantitative real-time PCR array. PLoS One 2011, 6, e17167. [Google Scholar] [CrossRef] [PubMed]
- Davison, T.S.; Johnson, C.D.; Andruss, B.F. Analyzing micro-RNA expression using microarrays. Meth. Enzymol. 2006, 411, 14–34. [Google Scholar] [PubMed]
- Kiss, T. Small nucleolar RNAs: An abundant group of noncoding RNAs with diverse cellular functions. Cell 2002, 109, 145–148. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, S.-G.; Wang, X-F.; Tan, M.; Xi, Y. Testing for differentially-expressed microRNAs with errors-in-variables nonparametric regression. PLoS One 2012, 7, e37537. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.-F.; Xi, Y. Normalizing bead-based microRNA expression data: A measurement error model-based approach. Bioinformatics 2011, 27, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.J.; Tu, K.; Tang, Z.Y.; Li, Y.X.; Xiao, H.S. Comparison of normalization methods with microRNA microarray. Genomics 2008, 92, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Luo, X.; Chegini, N. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J. Cell Mol. Med. 2008, 12, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Perkins, D.O.; Jeffries, C.D.; Jarskog, L.F.; Thomson, J.M.; Woods, K.; Newman, M.A.; Parker, J.S.; Jin, J.; Hammond, S.M. MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007, 8. [Google Scholar] [CrossRef] [PubMed]
- Pradervand, S.; Weber, J.; Thomas, J.; Bueno, M.; Wirapati, P.; Lefort, K.; Dotto, G.; Harshma, K. Impact of normalization on microRNA microarray expression profiling. RNA 2009, 15, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Lee, Y.; Jarjoura, D.; Ruppert, A.; Liu, C.; Hsu, J. A comparison of normalization techniques for microrna microarray data. Stat. Appl. Genetics Mol. Biol. 2008, 7, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, X.; Howell, P.; Qian, X.; Huang, K.; Riker, A.I.; Ju, J.; Xi, Y. A personalized microRNA microarray normalization method using a logistic regression model. Bioinformatics 2010, 26, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Dudoit, S.; Yang, Y.H.; Callow, M.J.; Speed, T.P. Statistical methods for identifying genes with differential expression in replicated cdna microarray experiments. Stat. Sin. 2002, 12, 111–139. [Google Scholar]
- Yang, Y.H.; Dudoit, S.; Luu, P.; Lin, D.M.; Peng, V.; Ngai, J.; Speed, T.P. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucl. Acids Res. 2002, 30, e15. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.; Massa, M.S.; Chiogna, M.; Romualdi, C. A modified LOESS normalization applied to microRNA arrays: A comparative evaluation. Bioinformatics 2009, 25, 2685–2691. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Garzon, R.; Garofalo, M.; Martelli, M.P.; Briesewitz, R.; Wang, L.; Fernandez-Cymering, C.; Volinia, S.; Liu, C.G.; Schnittger, S.; Haferlach, T.; et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. USA 2008, 105, 3945–3950. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Fernandez-L, A.; Hagan, J.P.; Ellison, D.W.; Grajkowska, W.; Gillespie, Y.; Grundy, R.; van Meter, T.; Rutka, J.T.; Croce, C.M.; et al. The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res. 2009, 69, 3249–3255. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Peng, H.; Huang, T. Semilinear high-dimensional model for normalization of microarray data: A theoretical analysis and partial consistency. J. Am. Stat. Assoc. 2005, 100, 781–813. [Google Scholar] [CrossRef]
- Bunz, F.; Dutriaux, A.; Lengauer, C.; Waldman, T.; Zhou, S.; Brown, J.P.; Sedivy, J.M.; Kinzler, K.W.; Vogelstein, B. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998, 282, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Bunz, F.; Hwang, P.M.; Torrance, C.; Waldman, T.; Zhang, Y.; Dillehay, L.; Williams, J.; Lengauer, C.; Kinzler, K.W.; Vogelstein, B. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Investig. 1999, 104, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Shalgi, R.; Fodstad, O.; Pilpel, Y.; Ju, J. Differentially regulated micro-RNAs and actively translated mRNA transcripts by tumor suppressor p53 in colon cancer. Clin. Cancer Res. 2006, 12, 2014–2024. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Nakajima, G.; Gavin, E.; Morris, C.G.; Kudo, K.; Hayashi, K.; Ju, J. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2006, 13, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Bruheim, S.; Xi, Y.; Ju, J.; Fodstad, O. Gene expression profile classify human osteosarcoma xenografts according to sensitivity to doxorubicin, cisplatin, and ifosfamide. Clin. Cancer Res. 2009, 15, 7161–7169. [Google Scholar] [CrossRef] [PubMed]
- Tukey, J.W. On the comparative anatomy of transformations. Ann. Math. Stat. 1964, 28, 602–632. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Holder, D.; Raubertas, R.F.; Pikounis, V.B.; Svetnik, V.; Soper, K. Statistical Analysis of High Density Oligonucleotide Arrays: A SAFER Approach. In Proceedings of the GeneLogic Workshop on Low Level Analysis of Affymetrix GeneChip Data, West Point, PA, USA, 19 November 2001.
- Munson, P. A ‘Consistency’ Test for Determining the Significance of Gene Expression Changes on Replicate Samples and Two Convenient Variance-Stabilizing Transformations. In Proceedings of the GeneLogic Workshop on Low Level Analysis of Affymetrix GeneChip Data, West Point, PA, USA, 19 November 2001.
- Huber, W.; von Heydebreck, A.; Sultmann, H.; Poustka, A.; Vingron, M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 2002, 18, 96–104. [Google Scholar] [CrossRef]
- Rocke, D.M.; Durbin, B. Approximate variance-stabilizing transformations for gene-expression microarray data. Bioinformatics 2003, 19, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Rocke, D.M.; Ideker, T.; Troyanskaya, O.; Quackenbush, J.; Dopazo, J. Papers on normalization, variable selection, classification or clustering of microarray data. Bioinformatics 2009, 26, 701–702. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Jiang, J.; Liu, Q.; Yang, L. A high-throughput method to monitor the expression of microRNA precursors. Nucl. Acids Res. 2004, 32. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.Q.; Li, W.; Li, Y.; Tan, C.Y.; Li, J.X.; Jin, Y.X.; Ruan, K.C. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucl. Acids Res. 2005, 33. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, B.; Xi, Y. Challenges for MicroRNA Microarray Data Analysis. Microarrays 2013, 2, 34-50. https://doi.org/10.3390/microarrays2020034
Wang B, Xi Y. Challenges for MicroRNA Microarray Data Analysis. Microarrays. 2013; 2(2):34-50. https://doi.org/10.3390/microarrays2020034
Chicago/Turabian StyleWang, Bin, and Yaguang Xi. 2013. "Challenges for MicroRNA Microarray Data Analysis" Microarrays 2, no. 2: 34-50. https://doi.org/10.3390/microarrays2020034
APA StyleWang, B., & Xi, Y. (2013). Challenges for MicroRNA Microarray Data Analysis. Microarrays, 2(2), 34-50. https://doi.org/10.3390/microarrays2020034