Next Article in Journal
Dyslexia: Still Not a Neurodevelopmental Disorder
Previous Article in Journal
Acknowledgement to Reviewers of Brain Sciences in 2018
Previous Article in Special Issue
Multi-Study Proteomic and Bioinformatic Identification of Molecular Overlap between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA)
Open AccessArticle

MyomiRNAs Dysregulation in ALS Rehabilitation

Fondazione Ospedale San Camillo IRCCS, via Alberoni 70, 30126 Venezia, Italy
*
Author to whom correspondence should be addressed.
Brain Sci. 2019, 9(1), 8; https://doi.org/10.3390/brainsci9010008
Received: 26 October 2018 / Revised: 21 December 2018 / Accepted: 5 January 2019 / Published: 10 January 2019
Amyotrophic lateral sclerosis (ALS) is a rare, progressive, neurodegenerative disorder caused by degeneration of upper and lower motor neurons. The disease process leads, because of lower motor neuron involvement, to progressive muscle atrophy, weakness, and fasciculations and for the upper motor neuron involvement leads to spasticity. Muscle atrophy in ALS is caused by a neural dysregulation in the molecular network controlling fast and slow muscle fibers. Denervation and reinnervation processes in skeletal muscle occur in the course of ALS and are modulated by rehabilitation. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in different biological functions under various pathophysiological conditions. MiRNAs can be secreted by various cell types and they are markedly stable in body fluids. MiR-1, miR-133 a miR-133b, and miR-206 are called “myomiRs” and are considered markers of myogenesis during muscle regeneration and contribute to neuromuscular junction stabilization or sprouting. We observed a positive effect of a standard aerobic exercise rehabilitative protocol conducted for six weeks in 18 ALS patients during hospitalization in our center. This is a preliminary study, in which we correlated clinical scales with molecular data on myomiRs. After six weeks of moderate aerobic exercise, we found lower levels in serum of myomiRNAs. Our data suggest that circulating miRNAs changed during skeletal muscle recovery in response to physical rehabilitation in ALS. However, no firm conclusions can be made on the ALS-specific effect of exercise on miRNA levels. View Full-Text
Keywords: ALS; ALS rehabilitation; myomiRs; circulating miRNAs; muscle; motor neuron ALS; ALS rehabilitation; myomiRs; circulating miRNAs; muscle; motor neuron
Show Figures

Figure 1

MDPI and ACS Style

Pegoraro, V.; Merico, A.; Angelini, C. MyomiRNAs Dysregulation in ALS Rehabilitation. Brain Sci. 2019, 9, 8.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop