Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature
Abstract
:1. Introduction
1.1. The Expanded Polyglutamine Tract Ataxias
1.2. The Potential Pathological Bases for Cognitive Impairment in the Polyglutamine Ataxias
1.2.1. The Cerebellar Cognitive Affective Syndrome
1.2.2. Prefrontal Cortico-Striato-Thalamo-Cortical Loops
1.2.3. Cholinergic Projections from the Basal Forebrain Nuclei
1.2.4. Direct Cortical Involvement
1.3. Testing Executive Function in the Degenerative Ataxias—Pitfalls and Suggestions
1.3.1. Potential Confounding Factors in Cognitive Studies of the Degenerative Ataxias
1.3.2. Tests of Executive Function Suitable for Studies of Subjects with Degenerative Ataxias
1.3.3. Are There Ideal Subjects for Cognitive Studies in Patients with Cerebellar Disorders?
1.4. Scope of This Literature Survey
2. Spinocerebellar Ataxias
2.1. SCA 1
2.2. SCA 2
2.3. SCA 3
2.4. SCA 6
2.5. SCA 7
2.6. SCA 8
2.7. SCA 17
2.8. Dentatorubral Pallidoluysian Atrophy (DRPLA)
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Storey, E. Genetic cerebellar ataxias. Semin. Neurol. 2014, 34, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Daughters, R.S.; Ranum, L.P. Bidirectional expression of the SCA 8 expansion mutation: One mutation, two genes. Cerebellum 2008, 7, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Pandya, D.N. The cerebrocerebellar system. Int. Rev. Neurobiol. 1997, 41, 31–38, 38a, 39–60. [Google Scholar] [CrossRef] [PubMed]
- Middleton, F.A.; Strick, P.L. Cerebellar output channels. Int. Rev. Neurobiol. 1997, 41, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.M.; Strick, P.L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 2003, 23, 8432–8444. [Google Scholar]
- Middleton, F.A.; Strick, P.L. Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Res. Rev. 2000, 31, 236–250. [Google Scholar] [CrossRef]
- Middleton, F.A.; Strick, P.L. Cerebellar projections to the prefrontal cortex of the primate. J. Neurosci. 2001, 21, 700–712. [Google Scholar] [PubMed]
- Ramnani, N.; Behrens, T.E.J.; Johansen-Berg, H.; Richter, M.C.; Pinsk, M.A.; Andersson, J.L.R.; Rudebeck, P.; Ciccarelli, O.; Richter, W.; Thompson, A.J.; et al. The evolution of prefrontal inputs to the cortico-pontine system: Diffusion imaging evidence from Macaque monkeys and humans. Cereb. Cortex 2006, 16, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. The role of the cerebellum in affect and psychosis. J. Neurolinguist. 2000, 13, 189–214. [Google Scholar] [CrossRef]
- Buckner, R.L. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013, 80, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 1986, 9, 357–381. [Google Scholar] [CrossRef] [PubMed]
- Maruff, P.; Tyler, P.; Burt, T.; Currie, B.; Burns, C.; Currie, J. Cognitive deficits in Machado-Josephs disease. Ann. Neurol. 1996, 40, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; James, M.; Owen, A.M.; Lange, K.W.; Lees, A.J.; Leigh, P.N.; Marsden, C.D.; Quinn, N.P.; Summers, B.A. Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. J. Neurol. Neurosurg. Psychiatry 1994, 57, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Kish, S.J.; Schut, L.; Simmons, J.; Gilbert, J.; Chang, L.J.; Rebbetoy, M. Brain acetylcholinesterase activity is markedly reduced in dominantly-inherited olivopontocerebellar atrophy. J. Neurol. Neurosurg. Psychiatry 1988, 51, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Rub, U.; Burk, K.; Timmann, D.; den Dunnen, W.; Seidel, K.; Farrag, K.; Brunt, E.; Heinsen, H.; Egensperger, R.; Bornemann, A.; et al. Spinocerebellar ataxia type 1 (SCA1): New pathoanatomical and clinico-pathological insights. Neuropathol. Appl. Neurobiol. 2012, 38, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Seidel, K.; Siswanto, S.; Brunt, E.R.P.; den Dunnen, W.; Korf, H.-W.; Rub, U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012, 124, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Timmann, D.; Drepper, J.; Maschke, M.; Kolb, F.P.; Boring, D.; Thilmann, A.F.; Diener, H.C. Motor deficits cannot explain impaired cognitive associative learning in cerebellar patients. Neuropsychologia 2002, 40, 788–800. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Storey, E.; Forrest, S.M.; Shaw, J.H.; Mitchell, P.; Gardner, R.J. McKinlay. Spinocerebellar ataxia type 2: Clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch. Neurol. 1999, 56, 43–50. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, C.J.; Kinsella, G.J.; Storey, E. The cerebellum and neuropsychological functioning: A critical review. J. Clin. Exp. Neuropsychol. 2012, 34, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Storey, E.; Lindsay, E. The cerebellum and cognitive impairment. In Dementia, 5th ed.; Ames, D., O’Brien, J., Burns, A., Eds.; CRC Press: London, UK, 2017. [Google Scholar]
- Orr, H.T.; Chung, M.Y.; Banfi, S.; Kwiatkowski, T.J., Jr.; Servadio, A.; Beaudet, A.L.; McCall, A.E.; Duvick, L.A.; Ranum, L.P.; Zoghbi, H.Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 1993, 4, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, S.; Mariotti, C.; Taroni, F. Spinocerebellar ataxia type 1. Handb. Clin. Neurol. 2012, 103, 399–421. [Google Scholar] [CrossRef]
- Rub, U.; Schols, L.; Paulson, H.; Auburger, G.; Kermer, P.; Jen, J.C.; Seidel, K.; Korf, H.-W.; Deller, T. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog. Neurobiol. 2013, 104, 38–66. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.; Hadjivassiliou, M.; Craven, I.J.; Wilkinson, I.D.; Griffiths, P.D.; Hoggard, N. Magnetic resonance imaging biomarkers in patients with progressive ataxia: Current status and future direction. Cerebellum 2013, 12, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Manto, M.; Habas, C. Cerebellar disorders: clinical/radiologic findings and modern imaging tools. Handb. Clin. Neurol. 2016, 135, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Burk, K. Cognition in hereditary ataxia. Cerebellum 2007, 6, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Kish, S.J.; El-Awar, M.; Schut, L.; Leach, L.; Oscar-Berman, M.; Freedman, M. Cognitive deficits in olivopontocerebellar atrophy: Implications for the cholinergic hypothesis of Alzheimer’s dementia. Ann. Neurol. 1988, 24, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Burk, K.; Bosch, S.; Globas, C.; Zuhlke, C.; Daum, I.; Klockgether, T.; Dichgans, J. Executive dysfunction in spinocerebellar ataxia type 1. Eur. Neurol. 2001, 46, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Burk, K.; Globas, C.; Bosch, S.; Klockgether, T.; Zuhlke, C.; Daum, I.; Dichgans, J. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J. Neurol. 2003, 250, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Schols, L.; Bauer, P.; Schmidt, T.; Schulte, T. Autosomal dominant cerebellar ataxias: Clinical features, genetics, and pathogenesis. Lancet Neurol. 2004, 3, 291–304. [Google Scholar] [CrossRef]
- Kawai, Y.; Suenaga, M.; Watanabe, H.; Sobue, G. Cognitive impairment in spinocerebellar degeneration. Eur. Neurol. 2009, 61, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Klinke, I.; Minnerop, M.; Schmitz-Hubsch, T.; Hendriks, M.; Klockgether, T.; Wullner, U.; Helmstaedter, C. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 2010, 9, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Fancellu, R.; Paridi, D.; Tomasello, C.; Panzeri, M.; Castaldo, A.; Genitrini, S.; Soliveri, P.; Girotti, F. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J. Neurol. 2013, 260, 3134–3143. [Google Scholar] [CrossRef] [PubMed]
- Sokolovsky, N.; Cook, A.; Hunt, H.; Giunti, P.; Cipolotti, L. A preliminary characterisation of cognition and social cognition in spinocerebellar ataxia types 2, 1, and 7. Behav. Neurol. 2010, 23, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Orsi, L.; D’Agata, F.; Caroppo, P.; Franco, A.; Caglio, M.M.; Avidano, F.; Manzone, C.; Mortara, P. Neuropsychological picture of 33 spinocerebellar ataxia cases. J. Clin. Exp. Neuropsychol. 2011, 33, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Lo, R.Y.; Figueroa, K.P.; Pulst, S.M.; Perlman, S.; Wilmot, G.; Gomez, C.; Schmahmann, J.; Paulson, H.; Shakkottai, V.G.; Ying, S.; et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat. Disord. 2016, 22, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Auburger, G.W.J. Spinocerebellar ataxia type 2. Handb. Clin. Neurol. 2012, 103, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Imbert, G.; Saudou, F.; Yvert, G.; Devys, D.; Trottier, Y.; Garnier, J.M.; Weber, C.; Mandel, J.L.; Cancel, G.; Abbas, N.; et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 1996, 14, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Sanpei, K.; Takano, H.; Igarashi, S.; Sato, T.; Oyake, M.; Sasaki, H.; Wakisaka, A.; Tashiro, K.; Ishida, Y.; Ikeuchi, T.; et al. Identification of the spinocerebellar ataxia type 3 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat. Genet. 1996, 14, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Pulst, S.-M.; Nechiporuk, A.; Nechiporuk, T.; Gispert, S.; Chen, X.-N.; Lopes-Cendes, I.; Pearlman, S.; Starkman, S.; Orozco-Diaz, G.; Lunkes, A.; et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat. Genet. 1996, 14, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Mascalchi, M.; Vella, A. Magnetic resonance and nuclear medicine imaging in ataxias. Handb. Clin. Neurol. 2012, 103, 85–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Liu, C.-S.; Wu, H.-M.; Wang, P.-S.; Chang, M.-H.; Soong, B.-W. The ‘hot cross bun’ sign in the patients with spinocerebellar ataxia. Eur. J. Neurol. 2009, 16, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, S.; Saponara, R.; Restivo, D.A.; Trovato Salinaro, A.; Tomarchio, L.; Pugliares, P.; Fabbri, G.; Maccagnano, C. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J. Neurol. 1999, 246, 363–368. [Google Scholar] [CrossRef]
- Brenneis, C.; Bosch, S.M.; Schocke, M.; Wenning, G.K.; Poewe, W. Atrophy pattern in SCA2 determined by voxel-based morphometry. NeuroReport 2003, 14, 1799–1802. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Perez-Lloret, S.; Doldan, L.; Cerquetti, D.; Balej, J.; Millar, V.P.; Hawkes, H.; Cammarota, A.; Merello, M. Autosomal dominant cerebellar ataxias: A systematic review of clinical features. Eur. J. Neurol. 2014, 21, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Burk, K.; Globas, C.; Bosch, S.; Graber, S.; Abele, M.; Brice, A.; Dichgans, J.; Daum, I.; Klockgether, T. Cognitive deficits in spinocerebellar ataxia 2. Brain 1999, 122, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, A.; Annesi, G.; Bono, F.; Spadafora, P.; Valentino, P.; Pasqua, A.A.; Mazzei, R.; Montesanti, R.; Conforti, F.L.; Oliveri, R.L.; et al. CAG repeat length and clinical features in three Italian families with spinocerebellar ataxia type 2 (SCA2): Early impairment of Wisconsin Card Sorting Test and saccade velocity. J. Neurol. 1998, 245, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, D.H.; Perlman, S.; Figueroa, C.P.; Treiman, L.J.; Pulst, S.M. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am. J. Hum. Genet. 1997, 60, 842–850. [Google Scholar] [PubMed]
- Le Pira, F.; Zappala, G.; Saponara, R.; Domina, E.; Restivo, D.A.; Reggio, E.; Nicoletti, A.; Giuffrida, S. Cognitive findings in spinocerebellar ataxia type 2: Relationship to genetic and clinical variables. J. Neurol. Sci. 2002, 201, 53–57. [Google Scholar] [CrossRef]
- Moriarty, A.; Cook, A.; Hunt, H.; Adams, M.E.; Cipolotti, L.; Giunti, P. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1, 2, 3, 6, and 7. Orphanet. J. Rare Dis. 2016, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Paulson, H. Machado-Joseph disease/spinocerebellar ataxia type 3. Handb. Clin. Neurol. 2012, 103, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Okamoto, T.; Taniwaki, M.; Aizawa, M.; Inoue, M.; Katayama, S.; Kawakami, H.; Nakamura, S.; Nishimura, M.; Akiguchi, I.; et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat. Genet. 1994, 8, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Sudarsky, L.; Coutinho, P. Machado-Joseph disease. Clin. Neurosci. 1995, 3, 17–22. [Google Scholar] [PubMed]
- Sequeiros, J.; Coutinho, P. Epidemiology and clinical aspects of Machado-Joseph disease. Adv. Neurol. 1993, 61, 139–153. [Google Scholar] [PubMed]
- Goldberg-Stern, H.; D’jaldetti, R.; Melamed, E.; Gadoth, N. Machado-Joseph (Azorean) disease in a Yemenite Jewish family in Israel. Neurology 1994, 44, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Radvany, J.; Camargo, C.H.; Costa, Z.M.; Fonseca, N.C.; Nascimento, E.D. Machado-Joseph disease of Azorean ancestry in Brazil: The Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the “Catarina” kindred. Arq Neuropsiquiatr 1993, 51, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Zawacki, T.M.; Grace, J.; Friedman, J.H.; Sudarsky, L. Executive and emotional dysfunction in Machado-Joseph disease. Mov. Disord. 2002, 17, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Kawai, Y.; Takeda, A.; Abe, Y.; Washimi, Y.; Tanaka, F.; Sobue, G. Cognitive impairments in Machado-Joseph disease. Arch. Neurol. 2004, 61, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Braga-Neto, P.; Pedroso, J.L.; Alessi, H.; Dutra, L.A.; Felicio, A.C.; Minett, T.; Weisman, P.; Santos-Galduroz, R.F.; Bertolucci, P.H.F.; Gabbai, A.A.; et al. Cerebellar cognitive affective syndrome in Machado Joseph disease: Core clinical features. Cerebellum 2012, 11, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Roeske, S.; Filla, I.; Heim, S.; Amunts, K.; Helmstaedter, C.; Wullner, U.; Wagner, M.; Klockgether, T.; Minnerop, M. Progressive cognitive dysfunction in spinocerebellar ataxia type 3. Mov. Disord. 2013, 28, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.M.; D’Abreu, A.; Junior, M.C.F.; Yasuda, C.L.; Betting, L.E.; Samara, A.B.; Castellano, G.; Somazz, J.C.; Balthazar, M.L.F.; Lopes-Cendes, I.; et al. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J. Neurol. 2013, 260, 2370–2379. [Google Scholar] [CrossRef] [PubMed]
- Garrard, P.; Martin, N.H.; Giunti, P.; Cipolotti, L. Cognitive and social cognitive functioning in spinocerebellar ataxia: A preliminary characterization. J. Neurol. 2008, 255, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Zhuchenko, O.; Bailey, J.; Bonnen, P.; Ashizawa, T.; Stockton, D.W.; Amos, C.; Dobyns, W.B.; Subramony, S.H.; Zoghbi, H.Y.; Lee, C.C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 1997, 15, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Solodkin, A.; Gomez, C.M. Spinocerebellar ataxia type 6. Handb. Clin. Neurol. 2012, 103, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Mantuano, E.; Veneziano, L.; Jodice, C.; Frontali, M. Spinocerebellar ataxia type 6 and episodic ataxia type 2: Differences and similarities between two allelic disorders. Cytogenet. Genome Res. 2003, 100, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.M.; Thompson, R.M.; Gammack, J.T.; Perlman, S.L.; Dobyns, W.B.; Truwit, C.L.; Zee, D.S.; Clark, H.B.; Anderson, J.H. Spinocerebellar ataxia type 6: Gaze-evoked and vertical nystagmus, Purkinje cell degeneration, and variable age of onset. Ann. Neurol. 1997, 42, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Stevanin, G.; Durr, A.; David, G.; Didierjean, O.; Cancel, G.; Rivaud, S.; Tourbah, A.; Warter, J.-M.; Agid, Y.; Brice, A. Clinical and molecular features of spinocerebellar ataxia type 6. Neurology 1997, 49, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Schols, L.; Kruger, R.; Amoiridis, G.; Przuntek, H.; Epplen, J.T.; Riess, O. Spinocerebellar ataxia type 6: Genotype and phenotype in German kindreds. J. Neurol. Neurosurg. Psychiatry 1998, 64, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, D.H.; Perlman, S.; Figueroa, K.P.; Karrim, J.; Baloh, R.W.; Pulst, S.M. Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 1997, 49, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Globas, C.; Bosch, S.; Zuhlke, C.; Daum, I.; Dichgans, J.; Burk, K. The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J. Neurol. 2003, 250, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Suenaga, M.; Kawai, Y.; Watanabe, H.; Atsuta, N.; Ito, M.; Tanaka, F.; Katsuno, M.; Fukatsu, H.; Naganawa, S.; Sobue, G. Cognitive impairment in spinocerebellar ataxia type 6. J. Neurol. Neurosurg. Psychiatry 2008, 79, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Cooper, F.E.; Grube, M.; Elsegood, K.J.; Welch, J.L.; Kelly, T.P.; Chinnery, P.F.; Griffiths, T.D. The contribution of the cerebellum to cognition in spinocerebellar ataxia type 6. Behav. Neurol. 2010, 23, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Hubsch, T.; Coudert, M.; Bauer, P.; Giunti, P.; Globas, C.; Baliko, L.; Filla, A.; Mariotti, C.; Rakowicz, M.; Charles, P.; et al. Spinocerebellar ataxia types 1, 2, 3, and 6: Disease severity and nonataxia symptoms. Neurology 2008, 71, 982–989. [Google Scholar] [CrossRef] [PubMed]
- David, G.; Abbas, N.; Stevanin, G.; Durr, A.; Yvert, G.; Cancel, G.; Weber, C.; Imbert, G.; Saudou, F.; Antoniou, E.; et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat. Genet. 1997, 17, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.-J. Spinocerebellar ataxia type 7. Handb. Clin. Neurol. 2012, 103, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Lee, P.H.; Kim, S.Y.; Kim, H.J.; Huh, K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Alcauter, S.; Barrios, F.A.; Diaz, R.; Fernandez-Ruiz, J. Gray and white matter alterations in spinocerebellar ataxia type 7: An in vivo DTI and VBM study. Neuroimage 2011, 55, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Benton, C.S.; de Silva, R.; Rutledge, S.L.; Bohlega, S.; Ashizawa, T.; Zoghbi, H.Y. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 1998, 51, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Horton, L.C.; Frosch, M.P.; Vangel, M.G.; Weigel-DiFranco, C.; Berson, E.L.; Schmahmann, J.D. Spinocerebellar ataxia type 7: Clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum 2013, 12, 176–193. [Google Scholar] [CrossRef] [PubMed]
- Koob, M.D.; Moseley, M.L.; Schut, L.J.; Benzow, K.A.; Bird, T.D.; Day, J.W.; Ranum, L.P.W. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 1999, 21, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Moseley, M.L.; Zu, T.; Ikeda, Y.; Gao, W.; Mosemiller, A.K.; Daughters, R.S.; Chen, G.; Weatherspoon, M.R.; Clark, H.B.; Ebner, T.J.; et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 2006, 38, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Ranum, L.P.W.; Day, J.W. Clinical and genetic features of spinocerebellar ataxia type 8. Handb. Clin. Neurol. 2012, 103, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Sequeiros, J.; Martins, S.; Silveira, I. Epidemiology and population genetics of degenerative ataxias. Handb. Clin. Neurol. 2012, 103, 227–251. [Google Scholar] [CrossRef] [PubMed]
- Silveira, I.; Alonso, I.; Guimaraes, L.; Mendonca, P.; Santos, C.; Maciel, P.; de Matos, J.M.F.; Costa, M.; Barbot, C.; Tuna, A.; et al. High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am. J. Hum. Genet. 2000, 66, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Juvonen, V.; Hietala, M.; Paivarinta, M.; Rantamaki, M.; Hakamies, L.; Kaakkola, S.; Vierimaa, O.; Penttinen, M.; Savontaus, M.-L. Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann. Neurol. 2000, 48, 354–361. [Google Scholar] [CrossRef]
- Stone, J.; Smith, L.; Watt, K.; Barron, L.; Zeman, A. Incoordinated thought and emotion in spinocerebellar ataxia type 8. J. Neurol. 2001, 248, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Zeman, A.; Stone, J.; Porteous, M.; Burns, E.; Barron, L.; Warner, J. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J. Neurol. Neurosurg. Psychiatry 2004, 75, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Lilja, A.; Hamalainen, P.; Kaitaranta, E.; Rinne, R. Cognitive impairment in spinocerebellar ataxia type 8. J. Neurol. Sci. 2005, 237, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Koide, R.; Kobayashi, S.; Shimohata, T.; Ikeuchi, T.; Maruyama, M.; Saito, M.; Yamada, M.; Takahashi, H.; Tsuji, S. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: A new polyglutamine disease? Hum. Mol. Genet. 1999, 8, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Matsuura, T.; Coolbaugh, M.; Zuhlke, C.; Nakamura, K.; Rasmussen, A.; Siciliano, M.J.; Ashizawa, T.; Lin, X. Instability of expanded CAG/CAS repeats in spinocerebellar ataxia type 17. Eur. J. Hum. Genet. 2008, 16, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Cloud, L.J.; Wilmot, G. Other spinocerebellar ataxias. Handb. Clin. Neurol. 2012, 103, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Bruni, A.C.; Takahashi-Fujigasaki, J.; Maltecca, F.; Foncin, J.F.; Servadio, A.; Casari, G.; D’Adamo, P.; Maletta, R.; Curcio, S.A.M.; De Michele, G.; et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch. Neurol. 2004, 61, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- De Michele, G.; Maltecca, F.; Carella, M.; Volpe, G.; Orio, M.; De Falco, A.; Gombia, S.; Servadio, A.; Casari, G.; Filla, A.; et al. Dementia, ataxia, extrapyramidal features, and epilepsy: Phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol. Sci. 2003, 24, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.-S.; Wu, R.-M.; Lee-Chen, G.-J.; Shan, D.-E.; Gwinn-Hardy, K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat. Disord. 2007, 13, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Lasek, K.; Lencer, R.; Gaser, C.; Hagenah, J.; Walter, U.; Wolters, A.; Kock, N.; Steinlechner, S.; Nagel, M.; Zuhlke, C.; et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 2006, 129, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.T.; Mardosiene, S.; Lokkegaard, A.; Stokholm, J.; Ehrenfels, S.; Bech, S.; Friberg, L.; Nielsen, J.K.; Nielsen, J.E. Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: A case report. BMC Neurol. 2012, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, C.; Alpini, D.; Fancellu, R.; Soliveri, P.; Grisoli, M.; Ravaglia, S.; Lovati, C.; Fetoni, V.; Giaccone, G.; Castucci, A.; et al. Spinocerebellar ataxia type 17 (SCA17): Oculomotor phenotype and clinical characterization of 15 Italian patients. J. Neurol. 2007, 254, 1538–1546. [Google Scholar] [CrossRef] [PubMed]
- Leroi, I.; O’Hearn, E.; Marsh, L.; Lykeetsos, C.G.; Rosenblatt, A.; Ross, C.A.; Brandt, J.; Margolis, R.L. Psychopathology in patients with degenerative diseases: A comparison to Huntington’s disease. Am. J. Psychiatry 2002, 159, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Koide, R.; Ikeuchi, T.; Onodera, O.; Tanaka, H.; Igarashi, S.; Endo, K.; Takahashi, H.; Kondo, R.; Ishikawa, A.; Hayashi, T.; et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat. Genet. 1994, 6, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Nagafuchi, S.; Yanagisawa, H.; Sato, K.; Shirayama, T.; Ohsaki, E.; Bundo, M.; Takeda, T.; Tadokoro, K.; Kondo, I.; Murayama, N.; et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat. Genet. 1994, 6, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M. Dentatorubral-pallidoluysian atrophy (DRPLA). Neuropathology 2010, 30, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Subramony, S.H. Overview of autosomal dominant ataxias. Handb. Clin. Neurol. 2012, 103, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S. Dentatorubral-pallidoluysian atrophy. Handb. Clin. Neurol. 2012, 103, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Licht, D.J.; Lynch, D.R. Juvenile dentatorubral-pallidoluysian atrophy: New clinical features. Pediatr. Neurol. 2002, 26, 51–54. [Google Scholar] [CrossRef]
- Sunami, Y.; Koide, R.; Arai, N.; Yamada, M.; Mizutani, T.; Oyanagi, K. Radiologic and neuropathologic findings in patients in a family with dentatorubral-pallidoluysian atrophy. AJNR Am. J. Neuroradiol. 2011, 32, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Vinton, A.; Fahey, M.C.; O’Brien, T.J.; Shaw, J.; Storey, E.; Gardner, R.J.; Mitchell, P.J.; Du Sart, D.; King, J.O. Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am. J. Med. Genet. A 2005, 136, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Munoz, E.; Campdelacreu, J.; Ferrer, I.; Rey, M.J.; Cardozo, A.; Gomez, B.; Tolosa, E. Severe cerebral white matter involvement in a case of dentatorubropallidoluysian atrophy studied at autopsy. Arch. Neurol. 2004, 61, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Adachi, N.; Arima, K.; Asada, T.; Kato, M.; Minami, N.; Goto, Y.-I.; Onuma, T.; Ikeuchi, T.; Tsuji, S.; Hayashi, M.; et al. Dentatorubral-pallidoluysian atrophy (DRPLA) presenting with psychosis. J. Neuropsychiatry Clin. Neurosci. 2001, 13, 258–260. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsay, E.; Storey, E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci. 2017, 7, 83. https://doi.org/10.3390/brainsci7070083
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sciences. 2017; 7(7):83. https://doi.org/10.3390/brainsci7070083
Chicago/Turabian StyleLindsay, Evelyn, and Elsdon Storey. 2017. "Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature" Brain Sciences 7, no. 7: 83. https://doi.org/10.3390/brainsci7070083
APA StyleLindsay, E., & Storey, E. (2017). Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sciences, 7(7), 83. https://doi.org/10.3390/brainsci7070083