Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex
Abstract
1. Introduction
2. Methods
2.1. Histology
2.2. Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaas, J.H. The evolution of the complex sensory and motor systems of the human brain. Brain Res Bull. 2008, 75, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Kaas, J.H.; Hackett, T.A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl. Acad. Sci. USA 2000, 97, 11793–11799. [Google Scholar] [CrossRef] [PubMed]
- Felleman, D.J.; Van Essen, D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1991, 1, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Auld, D.S.; Robitaille, R. Glial cells and neurotransmission: An inclusive view of synaptic function. Neuron 2003, 40, 389–400. [Google Scholar] [CrossRef]
- Blosa, M.; Sonntag, M.; Jäger, C.; Weigel, S.; Seeger, J.; Frischknecht, R.; Seidenbecher, C.I.; Matthews, R.T.; Arendt, T.; Rübsamen, R.; et al. The extracellular matrix molecule brevican is an integral component of the machinery mediating fast synaptic transmission at the calyx of held. J. Physiol. 2015, 593, 4341–4360. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fawcett, J. The perineuronal net and the control of cns plasticity. Cell Tissue Res. 2012, 349, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, M.; Blosa, M.; Schmidt, S.; Rübsamen, R.; Morawski, M. Perineuronal nets in the auditory system. Hear. Res. 2015, 329, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Vigetti, D.; Andrini, O.; Clerici, M.; Negrini, D.; Passi, A.; Moriondo, A. Chondroitin sulfates act as extracellular gating modifiers on voltage-dependent ion channels. Cell Physiol. Biochem. 2008, 22, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Happel, M.F.; Niekisch, H.; Castiblanco Rivera, L.L.; Ohl, F.W.; Deliano, M.; Frischknecht, R. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc. Natl. Acad. Sci. USA 2014, 111, 2800–2805. [Google Scholar] [CrossRef] [PubMed]
- Lurie, D.I.; Pasic, T.R.; Hockfield, S.J.; Rubel, E.W. Development of Cat-301 immunoreactivity in auditory brainstem nuclei of the gerbil. J. Comp. Neurol. 1997, 380, 319–334. [Google Scholar] [CrossRef]
- Friauf, E. Development of chondroitin sulfate proteoglycans in the central auditory system of rats correlates with acquisition of mature properties. Audiol. Neurootol. 2000, 5, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.L.; Mellott, J.G.; Schofield, B.R. Perineuronal nets and gabaergic cells in the inferior colliculus of guinea pigs. Front. Neuroanat. 2014, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Cant, N.B.; Benson, C.G. Wisteria floribunda lectin is associated with specific cell types in the ventral cochlear nucleus of the gerbil, meriones unguiculatus. Hear. Res. 2006, 216, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Tortosa, R.; Domenech, A.; Vidal, E.; Pumarola, M.; Bassols, A. Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse. J. Chem. Neuroanat. 2007, 33, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, H.; Nowack, S.; Boeckler, K.; Bidmon, H.-J.; Zilles, K. Characterization of neuronal subsets surrounded by perineuronal nets in the rhesus auditory brainstem. J. Anat. 2007, 210, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Seeger, G.; Brauer, K.; Härtig, W.; Brückner, G. Mapping of perineuronal nets in the rat brain stained by colloidal iron hydroxide histochemistry and lectin cytochemistry. Neuroscience 1994, 58, 371–388. [Google Scholar] [CrossRef]
- Blosa, M.; Sonntag, M.; Brückner, G.; Jäger, C.; Seeger, G.; Matthews, R.T.; Rübsamen, R.; Arendt, T.; Morawski, M. Unique features of extracellular matrix in the mouse medial nucleus of trapezoid body-implications for physiological functions. Neuoscience 2013, 228, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.N.; Kitzes, L.M.; Jones, E.G. Chemoarchitectonic organization of the cat primary auditory cortex. Exp. Brain Res. 1991, 86, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Morino-Wannier, P.; Fujita, S.C.; Jones, E.G. Gabaergic neuronal populations in monkey primary auditory cortex defined by co-localized calcium binding proteins and surface antigens. Exp. Brain Res. 1992, 88, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Brückner, G.; Seeger, G.; Brauer, K.; Härtig, W.; Kacza, J.; Bigl, V. Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the mongolian gerbil and rat. Brain Res. 1994, 658, 67–68. [Google Scholar] [CrossRef]
- Brückner, G.; Grosche, J.; Schmidt, S.; Härtig, W.; Margolis, R.U.; Delpech, B.; Seidenbecher, C.I.; Czaniera, R.; Schachner, M. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J. Comp. Neurol. 2000, 428, 616–629. [Google Scholar] [CrossRef]
- Winer, J.A.; Schreiner, C.E. The Inferior Colliculus; Springer: New York, NY, USA, 2005; p. 705. [Google Scholar]
- Winer, J.A.; Schreiner, C.E. The Auditory Cortex; Springer: New York, NY, USA, 2011; p. 715. [Google Scholar]
- Lee, C.C.; Sherman, S.M. Drivers and modulators in the central auditory pathways. Front. Neurosci. 2010, 4, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Sherman, S.M. On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hear. Res. 2011, 276, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Yanagawa, Y.; Imaizumi, K. Commissural functional topography of the inferior colliculus assessed in vitro. Hear. Res. 2015, 328, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Wenstrup, J.J. The tectothalamic system. In The Inferior Colliculus; Winer, J.A., Schreiner, C.E., Eds.; Springer: New York, NY, USA, 2005; pp. 200–230. [Google Scholar]
- Lee, C.C. Exploring functions for the non-lemniscal auditory thalamus. Front. Neural. Circuits. 2015, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Winer, J.A.; Larue, D.T. Evolution of gabaergic circuitry in the mammalian medial geniculate body. Proc. Natl. Acad. Sci. USA 1996, 93, 3083–3087. [Google Scholar] [CrossRef] [PubMed]
- Hackett, T.A. Information flow in the auditory cortical network. Hear. Res. 2011, 271, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Winer, J.A. Convergence of thalamic and cortical pathways in cat auditory cortex. Hear. Res. 2011, 274, 85–94. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, C.C.; Imaizumi, K. Functional convergence of thalamic and intinsic inputs in cortical layers 4 and 6. Neurophysiol 2013, 45, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C. Thalamic and cortical pathways supporting auditory processing. Brain Lang. 2013, 126, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Giamanco, K.A.; Morawski, M.; Matthews, R.T. Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 2010, 170, 1314–1327. [Google Scholar] [CrossRef] [PubMed]
- Morawski, M.; Dityatev, A.; Hartlage-Rübsamen, M.; Blosa, M.; Holzer, M.; Flach, K.; Pavlica, S.; Dityateva, G.; Grosche, J.; Brückner, G.; et al. Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Phil. Trans. R. Soc. Lond. B 2014, 369, 20140046. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kakizaki, T.; Sakagami, H.; Saito, K.; Ebihara, S.; Kato, M.; Hirabayashi, M.; Saito, Y.; Furuya, N.; Yanagawa, Y. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse. Neuroscience 2009, 164, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Ibata, K.; Park, E.S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002, 20, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Yanagawa, Y.; Imaizumi, K. Nicotinic alteration of functional thalamocortical topography. Neuroreport 2015, 26, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Ison, J.R.; Allen, P.D.; O' Neill, W.E. Age-related hearing loss in C57BL/6J mice has both frequency-specific and non-frequency-specific components that produce a hyperacusis-like exaggeration of the acoustic startle reflex. J. Assoc. Res. Otolaryngol. 2007, 8, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Spongr, V.P.; Flood, D.G.; Frisina, R.D.; Salvi, R.J. Quantitative measures of hair cell loss in CBA and C57BL/6 mice throughout their life spans. J. Acoust. Soc. Am. 1997, 101, 3546–3553. [Google Scholar] [CrossRef] [PubMed]
- Cruikshank, S.J.; Rose, H.J.; Metherate, R. Auditory thalamocortical synaptic transmission in vitro. J. Neurophysiol. 2002, 87, 361–384. [Google Scholar] [PubMed]
- Lee, C.C.; Sherman, S.M. Synaptic properties of thalamic and intracortical intputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. J. Neurophysiol. 2008, 100, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Sherman, S.M. Intrinsic modulators of auditory thalamocortical transmission. Hear. Res. 2012, 287, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Chernock, M.L.; Larue, D.T.; Winer, J.A. A periodic network of neurochemical modules in the inferior colliculus. Hear. Res. 2004, 188, 12–20. [Google Scholar] [CrossRef]
- Stebbings, K.A.; Lesicko, A.M.; Llano, D.A. The auditory corticocollicular system: Molecular and circuit-level considerations. Hear. Res. 2014, 314, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Härtig, W.; Brauer, K.; Bigl, V.; Brückner, G. Chondroitin sulfate proteoglycan-immunoreactivity of lectin-labeled perineuronal nets around parvalbumin-containing neurons. Brain Res. 1994, 635, 307–311. [Google Scholar] [CrossRef]
- Matthews, R.T.; Kelly, G.M.; Zerillo, C.A.; Gray, G.; Tiemeyer, M.; Hockfield, S. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J. Neurosci. 2002, 22, 7536–7547. [Google Scholar] [PubMed]
- Kane, K.L.; Longo-Guess, C.M.; Gagnon, L.H.; Ding, D.; Salvi, R.J.; Johnson, K.R. Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hear. Res. 2012, 283, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Caspary, D.M.; Ling, L.; Turner, J.G.; Hughes, L.F. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J. Exp. Biol. 2008, 211, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Llano, D.A.; Turner, J.; Caspary, D.M. Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J. Neurosci. 2012, 32, 16141–16148. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Härtig, W.; Derouiche, A.; Welt, K.; Brauer, K.; Grosche, J.; Mäder, M.; Reichenbach, A.; Brückner, G. Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res. 1999, 842, 15–29. [Google Scholar] [CrossRef]
- Lam, Y.W.; Sherman, S.M. Functional organization of the thalamic input to the thalamic reticular nucleus. J. Neurosci. 2011, 31, 6791–6799. [Google Scholar] [CrossRef] [PubMed]







© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fader, S.M.; Imaizumi, K.; Yanagawa, Y.; Lee, C.C. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sci. 2016, 6, 13. https://doi.org/10.3390/brainsci6020013
Fader SM, Imaizumi K, Yanagawa Y, Lee CC. Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sciences. 2016; 6(2):13. https://doi.org/10.3390/brainsci6020013
Chicago/Turabian StyleFader, Sarah M., Kazuo Imaizumi, Yuchio Yanagawa, and Charles C. Lee. 2016. "Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex" Brain Sciences 6, no. 2: 13. https://doi.org/10.3390/brainsci6020013
APA StyleFader, S. M., Imaizumi, K., Yanagawa, Y., & Lee, C. C. (2016). Wisteria Floribunda Agglutinin-Labeled Perineuronal Nets in the Mouse Inferior Colliculus, Thalamic Reticular Nucleus and Auditory Cortex. Brain Sciences, 6(2), 13. https://doi.org/10.3390/brainsci6020013
