Next Article in Journal
Language Experience Shapes Neural Grouping of Speech by Accent: EEG Evidence from Native, Second-Language, and Heritage Listeners
Previous Article in Journal
The Association of Anxiety and Depression with Sleep Disturbances in Parkinson’s Disease
Previous Article in Special Issue
P300 Spatiotemporal Prior-Based Transformer-CNN for Auxiliary Diagnosis of PTSD
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Current State of the Clinical Applications of Artificial Intelligence in Stroke: A Literature Review

Division of Neurological Surgery, WellSpan Health, York, PA 17402, USA
*
Author to whom correspondence should be addressed.
Brain Sci. 2026, 16(2), 173; https://doi.org/10.3390/brainsci16020173 (registering DOI)
Submission received: 10 December 2025 / Revised: 26 January 2026 / Accepted: 27 January 2026 / Published: 31 January 2026
(This article belongs to the Special Issue Artificial Intelligence in Neurological Disorders)

Abstract

Background: Artificial intelligence (AI) has emerged as a transformative tool in medicine, leveraging rapid analysis of large datasets to accelerate diagnosis, enhance clinical decision-making, and improve clinical workflows. This is highly relevant in stroke care given the time-sensitive nature of the disease process. This review evaluates the current landscape of evidence-based medicine utilizing AI in stroke, with emphasis on its use in phases of clinical care across the stroke continuum, including pre-hospital, acute, and recovery phases. This offers a comprehensive understanding of the current state of AI in both practice and literature. Methods: A review of major databases was conducted, identifying peer-reviewed literature evaluating the use of AI and its level of evidence across the stroke continuum. Given the heterogeneity of study designs, interventions, and outcome metrics spanning multiple disciplines, findings were synthesized narratively. Results: Across all phases of care, there remain no randomized controlled trials (RCTs) evaluating patient-level outcome data using AI (Level A). In the pre-hospital phase of care, AI has been used to identify stroke symptoms and assist EMS routing/training but presently remains limited to research. AI is most studied in the acute phase of care, representing the only phase to achieve commercial application in imaging detection and telestroke assistance, supported by non-randomized evidence (Level B-NR). In the recovery phase, AI may enhance wearable technologies, tele-rehabilitation, and robotics/brain–computer interfaces, with early RCTs (Level B-R) supporting the latter two, representing the strongest evidence for AI in stroke care to date. Conclusions: Despite the potential for AI to transform all phases of care across the stroke continuum, major challenges remain, including transparency, generalizability, equity, and the need for externally validated clinical studies.

1. Introduction

Stroke is a leading cause of morbidity and mortality, with improved outcomes associated with expedited diagnosis and treatment [1]. It affects more than 12 million people annually, represents one of the most time-sensitive emergencies in modern healthcare, and starts with primary prevention through risk factor modification and public education [2]. Current strategies for management include time-sensitive identification of large vessel occlusions (LVOs) using advanced imaging techniques, followed by vessel recanalization using systemic thrombolytics and intra-arterial thrombectomy therapies [3,4,5,6,7,8]. The delivery of these time-sensitive treatments becomes more difficult across geographically and socioeconomically diverse healthcare systems spanning urban, suburban, and rural regions, with uneven access to medical resources and advanced therapies [9,10].
Artificial intelligence has become increasingly integrated in healthcare, with strong appeal to stroke applications given the need for rapid diagnosis and treatment [11,12,13,14]. Artificial intelligence, an umbrella term incorporating machine learning, neural networks, and deep learning, may accelerate the diagnosis and treatment through interpreting and standardizing imaging, optimizing triage and transfer workflows, and risk stratification with predictive analytics, thereby narrowing geographic and socioeconomic inequalities [15,16,17,18,19]. Conceptually, machine learning is a broad field where computers use data models to learn patterns from human-constructed datasets. When connected, they create neural networks that consist of layers of data with increasing volume and complexity [20]. Deep learning models further connect neural networks into multiple layers, creating datasets so large and complex, with exponentially increasing computational power, that computers recognize patterns independent of human input or identification [20]. The choice of computational models becomes contingent on the complexity of the study question [20]. The presence of intracranial hemorrhage on non-contrast computer tomography might be identified with machine learning models while predictive analytics for stroke outcome and recurrence might require more complex deep learning models [21,22,23,24,25,26].
The existing literature evaluates AI used for stroke, categorized by specific applications including diagnostic imaging/interpretation, predictive analytics, workflow optimizations, and rehabilitation domains. This covers a broad array of topics whose audience spans multiple disciplines that participate directly or indirectly in the care of stroke patients, ranging from clinicians, to researchers, to engineers, to government-sponsored and private industry. This creates a piecemeal understanding of AI in stroke, weighted heavily to technical data and computational application, rather than a more general perspective of its clinical application and body of evidence. This review evaluates the current landscape of evidence-based medicine by organizing AI used in stroke care into clinical phases across the stroke continuum, including pre-hospital, acute, and recovery phases. By evaluating the literature according to clinical phase rather than application function, we hope to achieve a more global understanding of AI’s current implementation and remaining gaps in evidence.

2. Methodology

We conducted a narrative literature review of peer-reviewed published research from 2015 to 2025. Search terms included “artificial intelligence,” “machine learning,” “deep learning,” “neural network,” “stroke,” “community health systems,” “rural,” “telemedicine,” “telestroke,” “pre-hospital,” “stroke recovery,” and “stroke rehabilitation.” Databases including PubMed, Ovid Medline, Embase, and Scopus were searched using “or” as a Boolean operator restricted to title field and abstract, while using medical subject headings and synonym expansion. Inclusion criteria were peer-reviewed articles identified through the search strategy, including systematic, scoping, and narrative reviews; meta-analyses; validation and device trials; expert opinion articles; and original research with small sample sizes. Exclusion criteria included non-peer-reviewed papers, preprints, bench science without clinical relevance, and conference abstracts without full papers. Study selection was determined by agreement of the senior authors (GCS, MHN). Because the studies included were heterogeneous in designs, interventions, and outcomes, spanning multiple disciplines in a rapidly evolving, industry-dependent field, we used a narrative synthesis to provide a global view of the literature, organizing evidence into phases of clinical care across the stroke continuum with level of evidence according to the American College of Cardiology/American Heart Association classification system [27]. Given this review is secondary research of publicly available literature without patient identifiers, it is exempt from local institutional review board approval.

3. Results

3.1. Summary of Types of Existing Literature on AI Used for Stroke Care Across All Phases

The present body of literature evaluating AI for stroke is largely composed of retrospective studies evaluating proof-of-concept algorithms for imaging detecting, patient-level triage, and predictive analytics [13,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75]. This is followed by systematic, scoping, and narrative literature reviews of AI’s specific application in stroke care [11,14,15,16,17,18,76,77,78]. There remains a paucity of prospective studies with no randomized control trials evaluating patient-level outcomes [13,79]. Applying the American College of Cardiology/American Heart Association level of evidence classification system, the body of existing literature is largely composed of Level B-NR, and Level C studies with no Level A and few Level B-R randomized controlled trails [27]. Please refer to Level of Evidence Table 1, Table 2 and Table 3, which are categorized into phases of clinical care.

3.2. Summary of AI Use in Pre-Hospital Phase of Care

AI is increasingly applied to pre-hospital workflows to minimize delays in the recognition and treatment of acute ischemic stroke [76,77,78]. It has the potential to enhance the recognition of symptomatology by the patient as well as enhancing paramedic evaluation and triage in facilitating transfer to thrombectomy centers [82,126]. AI tools currently being evaluated in this phase of care can be broadly categorized into stroke recognition tools, Emergency Medical Services (EMS) tools, and novel strategies, all of which are in early stages of evaluation rather than commercially available [12]. Stroke recognition tools include wearable devices like watches, fitness bands, and rings to assess motor and gait characteristics, as well as smart tablets/devices and televisions that incorporate AI recognition of facial and speech patterns to identify stroke symptomatology [83,90,91,92,127]. EMS tools currently being evaluated use AI for (1) speech pattern recognition to assist EMS dispatchers, (2) optimizing ground and air ambulance routing for more efficient activation, and (3) enhancement of personnel training and competency [80,81,84,86,87,88,89,128]. Novel strategies of noninvasive and portable versions of EEGs, TCDs, or headsets that study electrical impedance of brain tissue remain at early stages of study, while telemedicine-enabled ambulances using AI-assisted recognition software demonstrate potential to overcome the limitations of scalability of mobile stroke units [85,129,130,131]. While such tools demonstrate feasibility and promise in their application, more research is required to achieve commercial availability.

3.3. Summary of AI Use in the Acute Phase of Care

The acute phase of care, defined as the index hospitalization for a stroke event encompassing emergency, perioperative, and postoperative care through discharge, is the most extensively represented phase in the current AI stroke literature [11,14,15,16,17,18,77,78]. The progress made in this domain has resulted in several commercial platforms currently available on national and global scales, having achieved 510 (k) or full Food and Drug Administration clearance, as of this paper [132,133,134,135,136,137,138]. These AI applications largely apply to advanced stroke imaging acquisition, automation, and interpretation, which can be customized to healthcare systems depending on stroke program infrastructure. These include LVO detection on computer tomography angiography, computer tomography perfusion mapping, magnetic resonance imaging diffuse weight imaging analysis, automated intracranial hemorrhage detection and classification, and Alberta Stroke Program Early CT Score automation [14,15,16,17,77,78,79,98,99,100,101,102,103,104,105,106,107,108]. Because these tools promote faster diagnosis by AI interpretation and imaging cue prioritization, they have the potential to streamline workflows and reduce both medical and surgical treatment delays [93,94,95,109]. They also have potential to improve emergency department stroke workflows and help bridge gaps in specialty coverage in systems lacking neurology or neuroradiology [14,15,16,17,18,77,78,95]. This phase of care derives the most benefit from AI-supported telemedicine platforms that allow remote neurologists to triage patients by immediate imaging interpretation, independent of radiology workflows, thereby reducing time to medical and revascularization treatment [94,95,96,97,110,111]. These platforms now incorporate physician communication capabilities which show promise in improving stroke alert activation time, tele-neurology activation time, and neurointerventional consultation times [96]. Lastly, this phase of care has the highest concentration of AI use for predictive analytics in stroke care [18]. These analytic tools have been used to assess functional outcomes after stroke [28,29,30,31,32], reperfusion therapy outcomes [33,34,35], stroke etiology and risk recurrence [36,37,38,39,40,41,42,43,62,63,64,65,66], extracranial carotid artery risk factors [21,44,45,46], and comorbidity complication outcomes including pneumonia and acute kidney injury [67,68,69,70].

3.4. Summary of AI Use in the Recovery Phase of Care

There has been rapid increase in the body of literature describing the use of AI for stroke rehabilitation over the last 10 years, with most studies being small, single-center and pilot feasibility studies using robotic integrated AI [117,119]. Motor applications include wearable sensors, AI-integrated robotics and exoskeletons that provide adaptive services, and AI virtual reality environments that can be customized to offer patient specific recovery experiences [112,117,119,121,124,125]. Neurocognitive applications include AI-driven apps with personalized adaptive algorithms and natural language processing-based analyses for speech, cognitive, and executive function training [120,122,123]. These tools, in combination with AI-enabled wearable technology that provides real-time feedback and predictive analytics, can help facilitate remote tele-rehabilitation services [112,117,119,121,124,125,139,140,141]. Brain–computer interfaces represent a growing area of investigation in stroke care, translating electrical, magnetic, or metabolic brain activity into control signals for external devices capable of replacing, restoring, or supplementing neurological function. Their use may serve as an adjunct to both motor rehabilitation and assistance in stroke patients for acute and chronic neurological deficits [113,114,115,116,118]. In the current literature, AI use in tele-rehabilitation and brain–computer interfaces represent the strongest evidence for AI in stroke care across clinical phases, with multiple small randomized controlled trials achieving Level B-R evidence [114,122,123]. While such tools demonstrate feasibility and early benefit in their application, more research is required to demonstrate benefit and achieve commercial availability.

4. Discussion

In the paradigm of therapy for LVOs, healthcare delivery required realignment to rapidly identify stroke, followed by vessel recanalization using systemic and intra-arterial therapies [3,4,5,6,7,8]. AI represents another realignment in healthcare delivery, offering accelerated diagnosis, predictive analytics, and treatment. These are synergistic with goals of time-dependent stroke workflows. By structuring the literature according to phases of stroke care, our review provides a more holistic understanding of AI’s application in clinical practice.
Existing reviews of AI in stroke care are narrowly focused, most often addressing AI-assisted LVO detection or workflow augmentation to expedite revascularization, with limited attention beyond the acute phase of stroke management [11,14,15,16,17,18,142]. This is demonstrated by the larger body of evidence in the acute phase (Table 2), compared to the pre-hospital (Table 1) or recovery phases (Table 3). Stroke care is a spectrum that encompasses a continuous, coordinated process beginning with primary prevention through risk factor modification and public education, extending through long-term recovery and, when appropriate, palliative care. Once stroke occurs, rapid pre-hospital recognition and triage are critical to ensure timely transport to stroke centers capable of providing diagnostic and revascularization therapies. The remaining acute care then becomes dedicated to etiologic evaluation, prevention of early complications, and initiation of secondary prevention strategies using antithrombic therapy for cardiovascular risk factor optimization. Rehabilitation then becomes an integral component of care, transitioning from the acute to recovery phase, emphasizing functional recovery through multidisciplinary therapy in addressing intermediate and long-term needs. Organizing the literature by these phases, as illustrated in Figure 1, offers a clearer, more clinically relevant view of current AI applications in stroke care.
The acute phase of care is the most represented in the current body of literature, with a concentration in imaging detection and interpretation, telemedicine and workflow augmentation, and predictive analytics. Despite consisting of non-randomized, Level B evidence (Level B-NR), to our knowledge, this is the only phase of care that has reached commercial application and scalability. However, the pre-hospital and recovery phases of care remain as important as the acute phase at the patient-level and should offer similar potential for research, innovation, and industry-sponsored collaboration. This is supported by several prospective RCTs that provide the strongest evidence to date for AI in the recovery phase of care, specifically evaluating its use in tele-rehabilitation [122,123] and brain–computer interfaces (Level B-R) [114].
Despite its immense potential, substantial challenges with AI integration in stroke care remain. Commercial availability of AI-enabled stroke tools in the acute phase of care and widespread clinical adoption should not be interpreted as evidence of proven patient-level benefit. Several platforms have achieved regulatory approval and become integrated into clinical workflows; however, randomized controlled trials and Level A evidence demonstrating improvement in functional outcomes or mortality remain lacking and no governing society has incorporated AI into stroke guideline statements to date [143]. Accordingly, the current evidence primarily supports operational and workflow efficiencies rather than definitive clinical efficacy. These are dependent on phase of care, local infrastructure, and institutional resources, thereby limiting broad standardization. Variability in data quality, imaging protocols, and industry vendors can affect algorithm performance and generalizability, particularly when tools are deployed outside of the environment in which they were developed. This compounds concern regarding algorithm bias and transparency [11,15,17,19]. There also remain ethical and regulatory questions about data equity, ownership, and protection, which, in summation, hinders trust among end users and results in hesitancy of clinician adoption [11,15,17,19]. Lastly, while AI’s use can narrow a geographic divide, care must be taken to prevent the widening of socioeconomic disparities in infrastructure involving availability of broadband or cloud computing resources, availability of neurology, neuroradiology or neurointerventional specialties, availability of telemedicine resources, availably of on-site information technology resources, and availability of electronic health record resources [10,144]. These components require significant capital expenditure without dedicated reimbursement, thereby contributing to delay in adoption by smaller or rural healthcare systems [10,144].

5. Limitations of This Review

This is a narrative synthesis rather than a full systematic review with defined search strings and independent double screening. While this was chosen to accommodate a broad scope of literature that spanned disciplines, topics, and outcomes, it can increase susceptibility to selection bias and incomplete coverage of relevant studies. The absence of formal risk-of-bias assessments, and reproducible methodology for the literature search, study selection, and data extraction limits the ability to critically appraise the quality of included studies, which is particularly important in AI research where heterogeneity in datasets, algorithms, and validation methods can be common. These limitations reduce transparency and make it difficult to draw robust conclusions about clinical effectiveness or generalizability. While narrative reviews are valuable for providing conceptual overviews and identifying emerging themes in a rapidly evolving field such as AI in stroke, they offer weaker evidentiary support than systematic reviews when informing clinical practice or policy decisions. Lastly, given the field’s rapidly evolving nature, driven in part by industry-sponsored collaboration, new high-quality trials, registries, and proprietary data continue to emerge, thereby creating an expiration date on a review discussing current state.

6. Conclusions

Spanning early symptom recognition by patients and EMS, rapid identification and treatment of large vessel occlusions, and AI-supported tele-rehabilitation and robotics, AI is positioned to impact all phases of stroke care. While key challenges remain regarding transparency, generalizability, and external validation, AI will continue to play an important role in healthcare realignment.

Author Contributions

Conceptualization: G.C.S. Methodology: G.C.S. Formal Analysis: G.C.S., N.M.C. and M.H.N. Data Curation: G.C.S., J.P.S., J.L.H., J.C.K. and D.E.K. Figures: G.C.S. and J.L.H. Writing—First/Final Draft: G.C.S. Writing—Review/Editing: G.C.S., N.M.C., J.P.S., J.L.H., D.E.K., J.C.K. and M.H.N. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

As described in the Methodology Section, ethical review and approval were waived for this study due to the secondary nature of literature reviews evaluating publicly accessed articles without patient identifiers.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

AIArtificial Intelligence
RCTsRandomized Controlled Trials
LVOLarge Vessel Occlusion
EMSEmergency Medical Services
EEGElectroencephalogram
TCDTranscranial Doppler

References

  1. Saver, J.L. Time is Brain-quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef]
  2. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart disease and stroke statistics—2023 update: A report from the American Heart Association. Circulation 2023, 147, E93–E621. [Google Scholar] [CrossRef]
  3. Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef]
  4. Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
  5. Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef] [PubMed]
  6. Campbell, B.C.V.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
  7. Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef]
  8. Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
  9. Ikeme, S.; Kottenmeier, E.; Uzochukwu, G.; Albright, K.C.; Brinjiki, W. Evidence-Based Disparities in Stroke Care Metrics and Outcomes in the United States: A Systematic Review. Stroke 2022, 53, 670–679. [Google Scholar] [CrossRef]
  10. Pantoja-Ruiz, C.; Akinyemi, R.; Lucumi-Cuesta, D.I.; Owolabi, M.O.; Pandian, J.D.; Strong, K.; Feigin, V.L.; Bennett, D.A.; O’Donnell, M.J.; Mensah, G.A.; et al. Socioeconomic status and stroke: A review of the latest evidence on inequalities and their drivers. Stroke 2025, 56, 794–805. [Google Scholar] [CrossRef]
  11. Koska, I.O.; Selver, A. Artificial intelligence in stroke imaging: A comprehensive review. Eurasian J. Med. 2023, 55, S91–S97. [Google Scholar] [CrossRef]
  12. Wolcott, Z.C.; English, S.W. Artificial intelligence to enhance prehospital stroke diagnosis and triage: A perspective. Front. Neurol. 2024, 15, 1389056. [Google Scholar] [CrossRef]
  13. Karamian, A.; Seifi, A. Diagnostic accuracy of deep learning for intracranial hemorrhage detection in noncontrast brain CT scans: A systematic review and meta-analysis. J. Clin. Med. 2025, 12, 2377. [Google Scholar] [CrossRef] [PubMed]
  14. Chandrabhatla, A.S.; Kuo, E.A.; Sokolowski, J.D.; Kellogg, R.T.; Park, M.; Mastorakos, P. Artificial intelligence and machine learning in the diagnosis and management of stroke: A narrative review of United States Food and Drug Administration-approved technologies. J. Clin. Med. 2023, 12, 3755. [Google Scholar] [CrossRef]
  15. Wang, Z.; Yang, W.; Li, Z.; Rong, Z.; Wang, X.; Han, J.; Ma, L. A 25-year retrospective of artificial intelligence for diagnosing acute stroke. J. Med. Internet Res. 2024, 26, e59711. [Google Scholar] [CrossRef]
  16. Melo Sierra, N.; Hernández Rincón, E.H.; Osorio Betancourt, G.A.; Ramos Chaparro, P.A.; Diaz Quijano, D.M.; Barbosa, S.D.; Hernandez Restrepo, M.; Uriza Sinisterra, G. Use of artificial intelligence in the management of stroke: Scoping review. Front. Radiol. 2025, 5, 1593397. [Google Scholar] [CrossRef]
  17. Heeralal, V.T.; Chadee, S.E.; Ilyaev, B.; Ilyaev, R.; Ilyayeva, S. Artificial intelligence in stroke care: A narrative review of diagnostic, predictive, and workflow applications. Cureus 2025, 17, e93430. [Google Scholar] [CrossRef]
  18. Heo, J. Application of artificial intelligence in acute ischemic stroke: A scoping review. Neurointervention 2025, 20, 4–14. [Google Scholar] [CrossRef] [PubMed]
  19. Feng, S.; Song, S.; He, T. Application and challenges of artificial intelligence in the care of stroke patients. J. Clin. Nurs. Res. 2025, 9, 319–324. [Google Scholar] [CrossRef]
  20. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
  21. Chen, Y.F.; Chen, Z.J.; Lin, Y.Y.; Lin, Z.Q.; Chen, C.N.; Yang, M.L.; Zhang, J.Y.; Li, Y.Z.; Wang, Y.; Huang, Y.H.; et al. Stroke risk study based on deep learning-based magnetic resonance imaging carotid plaque automatic segmentation algorithm. Front. Cardiovasc. Med. 2023, 10, 1101765. [Google Scholar] [CrossRef]
  22. Li, H.; Gao, M.; Song, H.; Wu, X.; Li, G.; Cui, Y.; Zhang, Z.; Liu, D.; Zhao, S.; Chen, J.; et al. Predicting ischemic stroke risk from atrial fibrillation based on multi-spectral fundus images using deep learning. Front. Cardiovasc. Med. 2023, 10, 1185890. [Google Scholar] [CrossRef]
  23. Messica, S.; Presil, D.; Hoch, Y.; Lev, T.; Hadad, A.; Katz, O.; Cohen, O.; Lunt, S.; Gilead, I.; Tsfadia, Y.; et al. Enhancing stroke risk and prognostic timeframe assessment with deep learning and a broad range of retinal biomarkers. Artif. Intell. Med. 2024, 154, 102927. [Google Scholar] [CrossRef]
  24. Wei, J.; Shang, K.; Wei, X.; Zhu, Y.; Yuan, Y.; Wang, M.; Li, S.; Zhang, L.; Chen, Y.; Liu, Q.; et al. Deep learning-based automatic ASPECTS calculation can improve diagnosis efficiency in patients with acute ischemic stroke: A multicenter study. Eur. Radiol. 2025, 35, 627–639. [Google Scholar] [CrossRef]
  25. Ostmeier, S.; Axelrod, B.; Liu, Y.; Yu, Y.; Jiang, B.; Yuen, N.; Rao, V.M.; Mittal, S.; Shuaib, A.; Figueiredo, G.; et al. Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT. J. NeuroInterventional Surg. 2025, 17, 53–60. [Google Scholar] [CrossRef] [PubMed]
  26. Mohapatra, S.; Lee, T.H.; Sahoo, P.K.; Wu, C.Y. Localization of early infarction on non-contrast CT images in acute ischemic stroke with deep learning approach. Sci. Rep. 2023, 13, 19442. [Google Scholar] [CrossRef]
  27. Otto, C.M.; Abdullah, A.R.; Smith, S.C.; Jones, D.S.; Patel, M.R.; Benjamin, E.J.; Bhatt, D.L.; Giri, J.; Heidenreich, P.A.; Lloyd-Jones, D.M.; et al. 2025 ACC/AHA guideline core principles and development process: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
  28. van Os, H.J.A.; Ramos, L.A.; Hilbert, A.; van Leeuwen, M.; van Walderveen, M.A.A.; Kruyt, N.D.; Dippel, D.W.J.; Steyerberg, E.W.; van der Schaaf, I.C.; Lingsma, H.F.; et al. Predicting outcome of endovascular treatment for acute ischemic stroke: Potential value of machine learning algorithms. Front. Neurol. 2018, 9, 784. [Google Scholar] [CrossRef] [PubMed]
  29. Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine learning-based model for prediction of outcomes in acute stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef]
  30. Jung, H.-S.; Lee, E.-J.; Chang, D.-I.; Cho, H.J.; Lee, J.; Cha, J.-K.; Park, M.-S.; Yu, K.H.; Jung, J.-M.; Ahn, S.H.; et al. A multimodal ensemble deep learning model for functional outcome prognosis of stroke patients. J. Stroke 2024, 26, 312–320. [Google Scholar] [CrossRef]
  31. Herzog, L.; Kook, L.; Hamann, J.; Globas, C.; Heldner, M.R.; Seiffge, D.; Antonenko, K.; Dobrocky, T.; Panos, L.; Kaesmacher, J.; et al. Deep learning versus neurologists: Functional outcome prediction in LVO stroke patients undergoing mechanical thrombectomy. Stroke 2023, 54, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
  32. Liu, Y.; Shah, P.; Yu, Y.; Horsey, J.; Ouyang, J.; Jiang, B.; Yang, G.; Heit, J.J.; McCullough-Hicks, M.E.; Hugdal, S.M.; et al. A clinical and imaging fused deep learning model matches expert clinician prediction of 90-day stroke outcomes. Am. J. Neuroradiol. 2024, 45, 406–411. [Google Scholar] [CrossRef] [PubMed]
  33. Zhang, H.; Polson, J.S.; Wang, Z.; Nael, K.; Rao, N.M.; Speier, W.F.; Yeung, V.; Kazim, S.F.; Liu, X.; Ali, A.; et al. A deep learning approach to predict recanalization first-pass effect following mechanical thrombectomy in patients with acute ischemic stroke. Am. J. Neuroradiol. 2024, 45, 1044–1052. [Google Scholar] [CrossRef]
  34. Velagapudi, L.; Mouchtouris, N.; Schmidt, R.F.; Vuong, D.; Khanna, O.; Sweid, A.; Hasan, T.F.; Ospel, J.M.; Mehta, B.P.; Tjoumakaris, S.I.; et al. A machine learning approach to first pass reperfusion in mechanical thrombectomy: Prediction and feature analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105796. [Google Scholar] [CrossRef]
  35. Wang, X.; Luo, S.; Cui, X.; Qu, H.; Zhao, Y.; Liao, Q. Machine learning-based predictive model for the development of thrombolysis resistance in patients with acute ischemic stroke. BMC Neurol. 2024, 24, 296. [Google Scholar] [CrossRef]
  36. Colangelo, G.; Ribó, M.; Montiel, E.; Dominguez, D.; Olivé-Gadea, M.; Muchada, M.; Quintana, M.; Poca, M.A.; Dávalos, A.; Boada, I.; et al. PRERISK: A personalized, artificial intelligence-based and statistically-based stroke recurrence predictor for recurrent stroke. Stroke 2024, 55, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
  37. Gao, Y.; Li, Z.A.; Zhai, X.Y.; Han, L.; Zhang, P.; Cheng, S.J.; Wang, Y.; Xu, Y.; Song, J.; Li, H.; et al. An interpretable machine learning model for stroke recurrence in patients with symptomatic intracranial atherosclerotic arterial stenosis. Front. Neurosci. 2024, 17, 1323270. [Google Scholar] [CrossRef]
  38. Lip, G.Y.H.; Genaidy, A.; Tran, G.; Marroquin, P.; Estes, C.; Sloop, S. Improving stroke risk prediction in the general population: A comparative assessment of common clinical rules, a new multimorbid index, and machine-learning-based algorithms. Thromb. Haemost. 2022, 122, 142–150. [Google Scholar] [CrossRef]
  39. Vodencarevic, A.; Weingärtner, M.; Caro, J.J.; Ukalovic, D.; Zimmermann-Rittereiser, M.; Schwab, S.; Paul, F.; Heller, E.; Koch, P.; Heuschmann, P.U.; et al. Prediction of recurrent ischemic stroke using registry data and machine learning methods: The Erlangen Stroke Registry. Stroke 2022, 53, 2299–2306. [Google Scholar] [CrossRef]
  40. Han, L.; Askari, M.; Altman, R.B.; Schmitt, S.K.; Fan, J.; Bentley, J.P.; Zhang, S.; Neubeck, L.; Wang, X.; Zou, J.; et al. Atrial fibrillation burden signature and near-term prediction of stroke: A machine learning analysis. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005595. [Google Scholar] [CrossRef]
  41. Chen, B.; Ruan, L.; Yang, L.; Zhang, Y.; Lu, Y.; Sang, Y.; Guo, J.; Huang, Z.; Liu, X.; Wang, K.; et al. Machine learning improves risk stratification of coronary heart disease and stroke. Ann. Transl. Med. 2022, 10, 1156. [Google Scholar] [CrossRef]
  42. Chao, C.J.; Agasthi, P.; Barry, T.; Chiang, C.C.; Wang, P.; Ashraf, H.; Siddiqui, T.; Mamas, M.A.; McCrae, K.; Vemulapalli, S.; et al. Using artificial intelligence in predicting ischemic stroke events after percutaneous coronary intervention. J. Invasive Cardiol. 2023, 35, e297–e311. [Google Scholar] [CrossRef]
  43. Lin, L.; Ding, L.; Fu, Z.; Zhang, L. Machine learning-based models for prediction of the risk of stroke in coronary artery disease patients receiving coronary revascularization. PLoS ONE 2024, 19, e0296402. [Google Scholar] [CrossRef]
  44. Araki, T.; Jain, P.K.; Suri, H.S.; Londhe, N.D.; Ikeda, N.; El-Baz, A.; Shrivastava, V.K.; Saba, L.; Nicolaides, A.; Shafique, S.; et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: A machine learning paradigm. Comput. Biol. Med. 2017, 80, 77–96. [Google Scholar] [CrossRef] [PubMed]
  45. Bai, P.; Zhou, Y.; Liu, Y.; Li, G.; Li, Z.; Wang, T.; Wei, X.; Zhang, L.; Qiu, X.; Feng, W.; et al. Risk factors of cerebral infarction and myocardial infarction after carotid endarterectomy analyzed by machine learning. Comput. Math. Methods Med. 2020, 2020, 6217392. [Google Scholar] [CrossRef] [PubMed]
  46. Su, S.S.; Li, L.Y.; Wang, Y.; Li, Y.Z. Stroke risk prediction by color Doppler ultrasound of carotid artery-based deep learning using Inception V3 and VGG-16. Front. Neurol. 2023, 14, 1111906. [Google Scholar] [CrossRef]
  47. Rudnicka, A.R.; Welikala, R.; Barman, S.; Foster, P.J.; Luben, R.; Hayat, S.; Khaw, K.T.; Whincup, P.; Strachan, D.; Owen, C.G.; et al. Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke. Br. J. Ophthalmol. 2022, 106, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
  48. Guberina, N.; Dietrich, U.; Radbruch, A.; Goebel, J.; Deuschl, C.; Ringelstein, A.; Kornhuber, M.; Buerger, K.; Heiland, S.; Sure, U.; et al. Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology 2018, 60, 889–901. [Google Scholar] [CrossRef]
  49. Hoelter, P.; Muehlen, I.; Goelitz, P.; Beuscher, V.; Schwab, S.; Doerfler, A. Automated ASPECT scoring in acute ischemic stroke: Comparison of three software tools. Neuroradiology 2020, 62, 1231–1238. [Google Scholar] [CrossRef]
  50. Delio, P.R.; Wong, M.L.; Tsai, J.P.; Hinson, H.E.; McMenamy, J.; Le, T.Q.; Ospel, J.M.; Mehta, B.P.; Lindsay, P.; Hill, M.D.; et al. Assistance from automated ASPECTS software improves reader performance. J. Stroke Cerebrovasc. Dis. 2021, 30, 105829. [Google Scholar] [CrossRef]
  51. Matsoukas, S.; Morey, J.; Lock, G.; Chada, D.; Shigematsu, T.; Marayati, N.F.; Munoz, C.; Hess, C.; Bonafé, A.; Jovin, T.G.; et al. AI software detection of large vessel occlusion stroke on CT angiography: A real-world prospective diagnostic test accuracy study. J. NeuroInterventional Surg. 2023, 15, 52–56. [Google Scholar] [CrossRef]
  52. Dehkharghani, S.; Lansberg, M.G.; Venkatsubramanian, C.; Cereda, C.; Lima, F.O.; Coelho, H.; Mlynash, M.; Kim, A.S.; Olivot, J.M.; Bammer, R.; et al. High-performance automated anterior circulation CT angiographic clot detection in acute stroke: A multireader comparison. Radiology 2021, 298, 665–670. [Google Scholar] [CrossRef] [PubMed]
  53. Grunwald, I.Q.; Kulikovski, J.; Reith, W.; Gerry, S.; Namias, R.; Politi, M.; Lynch, J.R.; Sommer, W.H.; Meyer, L.; Stolz, E.; et al. Collateral automation for triage in stroke: Evaluating automated scoring of collaterals in acute stroke on computed tomography scans. Cerebrovasc. Dis. 2019, 47, 217–222. [Google Scholar] [CrossRef] [PubMed]
  54. Czap, A.L.; Bahr-Hosseini, M.; Singh, N.; Yamal, J.M.; Nour, M.; Parker, S.; Gupta, R.; Nesbit, G.M.; Peterson, E.C.; Fruth, O.; et al. Machine learning automated detection of large vessel occlusion from mobile stroke unit computed tomography angiography. Stroke 2022, 53, 1651–1656. [Google Scholar] [CrossRef]
  55. Qiu, W.; Kuang, H.; Teleg, E.; Ospel, J.M.; Sohn, S.I.; Almekhlafi, M.A.; Coutts, S.B.; Hill, M.D.; Demchuk, A.M.; Goyal, M.; et al. Machine learning for detecting early infarction in acute stroke with non-contrast-enhanced CT. Radiology 2020, 294, 638–644. [Google Scholar] [CrossRef]
  56. Nishi, H.; Ishii, A.; Tsuji, H.; Fuchigami, T.; Sasaki, N.; Tachibana, A.; Yokote, K.; Ohara, S.; Sakai, K.; Uemura, J.; et al. Automatic ischemic core estimation based on noncontrast-enhanced computed tomography. Stroke 2023, 54, 1815–1822. [Google Scholar] [CrossRef]
  57. Altmann, S.; Grauhan, N.F.; Brockstedt, L.; Kondova, M.; Schmidtmann, I.; Paul, R.; Dinkel, J.; Fritz, J.; Lobsien, D.; Shah, J.; et al. Ultrafast brain MRI with deep learning reconstruction for suspected acute ischemic stroke. Radiology 2024, 310, e231938. [Google Scholar] [CrossRef] [PubMed]
  58. You, S.H.; Cho, Y.; Kim, B.; Yang, K.S.; Kim, I.; Kim, B.K.; Im, S.H.; Park, H.M.; Lee, S.J.; Seo, D.W.; et al. Deep learning-based synthetic TOF-MRA generation using time-resolved MRA in fast stroke imaging. Am. J. Neuroradiol. 2023, 44, 1391–1398. [Google Scholar] [CrossRef]
  59. Wenstrup, J.; Havtorn, J.D.; Borgholt, L.; Blomberg, S.N.; Maaloe, L.; Sayre, M.R.; Deal, M.; Lee, H.K.; Persson, O.; Lauritsen, S.M.; et al. A retrospective study on machine learning-assisted stroke recognition for medical helpline calls. npj Digit. Med. 2023, 6, 235. [Google Scholar] [CrossRef]
  60. Park, E.; Chang, H.J.; Nam, H.S. Use of machine learning classifiers and sensor data to detect neurological deficit in stroke patients. J. Med. Internet Res. 2017, 19, e120. [Google Scholar] [CrossRef]
  61. Ou, Z.; Wang, H.; Zhang, B.; Liang, H.; Hu, B.; Ren, L.; Li, X.; Chen, Y.; Zhou, T.; Yang, L.; et al. Early identification of stroke through deep learning with multi-modal human speech and movement data. Neural Regen. Res. 2025, 20, 234–241. [Google Scholar] [CrossRef] [PubMed]
  62. Kamel, H.; Navi, B.B.; Parikh, N.S.; Merkler, A.E.; Okin, P.M.; Devereux, R.B.; Elkind, M.S.V.; Iadecola, C.; Healey, J.S.; Wintermark, M.; et al. Machine learning prediction of stroke mechanism in embolic strokes of undetermined source. Stroke 2020, 51, e203–e210. [Google Scholar] [CrossRef] [PubMed]
  63. Rabinstein, A.A.; Yost, M.D.; Faust, L.; Kashou, A.H.; Latif, O.S.; Graff-Radford, J.; Siegler, J.E.; Weingart, J.D.; Lopes, D.K.; Mesfin, F.B.; et al. Artificial intelligence-enabled ECG to identify silent atrial fibrillation in embolic stroke of unknown source. J. Stroke Cerebrovasc. Dis. 2021, 30, 105998. [Google Scholar] [CrossRef] [PubMed]
  64. Ryu, W.S.; Schellingerhout, D.; Lee, H.; Lee, K.J.; Kim, C.K.; Kim, B.J.; Kwon, S.U.; Hong, K.S.; Heo, T.W.; Kim, H.C.; et al. Deep learning-based automatic classification of ischemic stroke subtype using diffusion-weighted images. J. Stroke 2024, 26, 300–311. [Google Scholar] [CrossRef]
  65. Heo, J.; Lee, H.; Seog, Y.; Kim, S.; Baek, J.H.; Park, H.; Lee, D.H.; Yoon, B.H.; Sohn, S.I.; Nam, H.S.; et al. Cancer prediction with machine learning of thrombi from thrombectomy in stroke: Multicenter development and validation. Stroke 2023, 54, 2105–2113. [Google Scholar] [CrossRef]
  66. Christiansen, S.D.; Liu, J.; Bullrich, M.B.; Sharma, M.; Boulton, M.; Pandey, S.K.; Cheloth, N.D.; Saini, V.; Khatri, P.; Demchuk, A.M.; et al. Deep learning prediction of stroke thrombus red blood cell content from multiparametric MRI. Interv. Neuroradiol. 2024, 30, 541–549. [Google Scholar] [CrossRef]
  67. Li, X.; Wu, M.; Sun, C.; Zhao, Z.; Wang, F.; Zheng, X.; Chen, Y.; Liu, J.; Zhang, H.; Wang, L.; et al. Using machine learning to predict stroke-associated pneumonia in Chinese acute ischemic stroke patients. Eur. J. Neurol. 2020, 27, 1656–1663. [Google Scholar] [CrossRef]
  68. Lee, C.C.; Su, S.Y.; Sung, S.F. Machine learning-based survival analysis approaches for predicting the risk of pneumonia post-stroke discharge. Int. J. Med. Inf. 2024, 186, 105422. [Google Scholar] [CrossRef]
  69. Lu, X.; Chen, Y.; Zhang, G.; Zeng, X.; Lai, L.; Qu, C. Application of interpretable machine learning algorithms to predict acute kidney injury in patients with cerebral infarction in ICU. J. Stroke Cerebrovasc. Dis. 2024, 33, 107729. [Google Scholar] [CrossRef]
  70. Heo, J.; Yoo, J.; Lee, H.; Lee, I.H.; Kim, J.S.; Park, E.; Nam, H.S.; Kim, Y.D.; Hong, K.S.; Sohn, S.I.; et al. Prediction of hidden coronary artery disease using machine learning in patients with acute ischemic stroke. Neurology 2022, 99, e55–e65. [Google Scholar] [CrossRef]
  71. Hassan, A.; Benlamri, R.; Diner, T.; Cristofaro, K.; Dillistone, L.; Khallouki, H.; Gauthier, S.; Dubeau, C.; Singh, B.; Hachinski, V.; et al. An app for navigating patient transportation and acute stroke care in Northwestern Ontario using machine learning: Retrospective study. JMIR Form. Res. 2024, 8, e54009. [Google Scholar] [CrossRef]
  72. Lim, D.Z.; Yeo, M.; Dahan, A.; Tahayori, B.; Kok, H.K.; Abbasi-Rad, M.; Ng, J.; Lim, Z.Y.; Wong, Z.R.; Tan, J.Y.; et al. Development of a machine learning-based real-time location system to streamline acute endovascular intervention in acute stroke: A proof-of-concept study. J. NeuroInterventional Surg. 2022, 14, 799–803. [Google Scholar] [CrossRef]
  73. Chiramal, J.A.; Johnson, J.; Webster, J.; Nag, D.R.; Robert, D.; Ghosh, T.; Golla, S.; Pawar, S.; Krishnan, P.; Drain, P.K.; et al. Artificial intelligence-based automated CT brain interpretation can improve uptake of lifesaving interventions in resource-limited settings. PLoS Glob. Public Health 2024, 4, e0003351. [Google Scholar] [CrossRef]
  74. Agripnidis, T.; Ayobi, A.; Quenet, S.; Beland, B.; Smith, D.; Liu, Y.; Chen, L.; Roberts, J.; Patel, M.; Johnson, K.; et al. Performance of an artificial intelligence tool for multi-step acute stroke imaging: A multicenter diagnostic study. Eur. J. Radiol. Open 2025, 15, 100678. [Google Scholar] [CrossRef] [PubMed]
  75. Leonardsen, A.C.L.; Hardeland, C.; Dehre, A.; Vik, E.; Jensen, T.; Hansen, R.; Pedersen, L.; Olsson, C.; Nilsson, A.; Larsson, K.; et al. Emergency medical services providers’ perspectives on the use of artificial intelligence in prehospital identification of stroke: A qualitative study in Norway and Sweden. BMC Emerg. Med. 2025, 25, 136. [Google Scholar] [CrossRef]
  76. Perez, K.; Wisniewski, D.; Ari, A.; Johnson, T.; Smith, P.; Li, J.; Patel, R.; Nguyen, M.; Chen, L.; Brown, A.; et al. Investigation into application of AI and telemedicine in rural communities: A systematic literature review. Healthcare 2025, 13, 324. [Google Scholar] [CrossRef] [PubMed]
  77. Mouridsen, K.; Thurner, P.; Zaharchuk, G. Artificial intelligence applications in stroke. Stroke 2020, 51, 2573–2579. [Google Scholar] [CrossRef] [PubMed]
  78. Liu, Y.; Wen, Z.; Wang, Y.; Chen, L.; Zhang, H.; Li, X.; Zhao, F.; Yang, J.; Xu, T.; Huang, Q.; et al. Artificial intelligence in ischemic stroke images: Current applications and future directions. Front. Neurol. 2024, 15, 1418060. [Google Scholar] [CrossRef]
  79. Savage, C.H.; Tanwar, M.; Abou Elkassem, A.; Patel, P.; Li, Y.; Wong, T.; Chen, R.; Smith, J.; Brown, M.; Garcia, L.; et al. Prospective evaluation of artificial intelligence triage of intracranial hemorrhage on noncontrast head CT examinations. AJR Am. J. Roentgenol. 2024, 223, e243–e1639. [Google Scholar] [CrossRef]
  80. Ceklic, E.; Ball, S.; Finn, J.; Brown, E.; Brink, D.; Bailey, P.; Smith, K.; Cameron, P.; Fitzgerald, M.; Walker, T.; et al. Ambulance dispatch prioritisation for traffic crashes using machine learning: A natural language approach. Int. J. Med. Inform. 2022, 168, 104886. [Google Scholar] [CrossRef]
  81. Rava, R.A.; Peterson, E.D.; Hastrup, S.; Mocco, J.; Smith, W.S.; Saver, J.L.; Liebeskind, D.S.; Jahan, R.; Jovin, T.G.; Nogueira, R.G.; et al. AI routing on mobile stroke units. Stroke 2021, 52, 3541–3550. [Google Scholar]
  82. Ramos, A.; Guerrero, W.R.; Pérez De La Ossa, N. Prehospital stroke triage. Neurology 2021, 97, S25–S33. [Google Scholar] [CrossRef] [PubMed]
  83. Wasselius, J.; Finn, E.L.; Persson, E.; Song, G.; Wu, S.; Feng, S.; Lindgren, A.; Norrving, B.; Engström, G.; Svensson, P.; et al. Detection of unilateral arm paresis after stroke by wearable accelerometers and machine learning. Sensors 2021, 21, 7784. [Google Scholar] [CrossRef]
  84. Scholz, M.L.; Collatz-Christensen, H.; Blomberg, S.N.F.; Boebel, S.; Verhoeven, J.; Krafft, T. Artificial intelligence in emergency medical services dispatching: Assessing the potential impact of an automatic speech recognition software on stroke detection taking the Capital Region of Denmark as case in point. Scand. J. Trauma Resusc. Emerg. Med. 2022, 30, 6. [Google Scholar] [CrossRef]
  85. Van Stigt, M.N.; Groenendijk, E.A.; Van Meenen, L.C.C.; van de Munckhof, A.; Coutinho, J.M.; de Maat, M.P.M.; Kerkhof, F.; van der Worp, H.B.; Roos, Y.B.W.E.M.; Dippel, D.W.J.; et al. Prehospital detection of large vessel occlusion stroke with EEG: Results of the ELECTRA-STROKE study. Neurology 2023, 101, e2522–e2532. [Google Scholar] [CrossRef] [PubMed]
  86. Caceres, J.A.; Adil, M.M.; Jadhav, V.; Chaudhry, S.A.; Pawar, S.; Rodriguez, G.J.; Suri, M.F.K.; Qureshi, A.I. Diagnosis of stroke by emergency medical dispatchers and its impact on the prehospital care of patients. J. Stroke Cerebrovasc. Dis. 2013, 22, e610–e614. [Google Scholar] [CrossRef] [PubMed]
  87. Oostema, J.A.; Chassee, T.; Reeves, M. Emergency dispatcher stroke recognition: Associations with downstream care. Prehosp. Emerg. Care 2018, 22, 466–471. [Google Scholar] [CrossRef]
  88. Jia, J.; Band, R.; Abboud, M.E.; Pajerowski, W.; Guo, M.; David, G.; Katz, J.M.; Newgard, C.D.; Callaway, C.W.; Pines, J.M.; et al. Accuracy of emergency medical services dispatcher and crew diagnosis of stroke in clinical practice. Front. Neurol. 2017, 8, 466. [Google Scholar] [CrossRef]
  89. Pottle, J. Virtual reality and the transformation of medical education. Future Healthc. J. 2019, 6, 181–185. [Google Scholar] [CrossRef]
  90. Bat-Erdene, B.O.; Saver, J.L. Automatic acute stroke symptom detection and emergency medical systems alerting by Mobile health technologies: A review. J. Stroke Cerebrovasc. Dis. 2021, 30, 105826. [Google Scholar] [CrossRef]
  91. Kim, H.S.; Kim, S.Y.; Kim, Y.H.; Park, K.S. A smartphone-based automatic diagnosis system for facial nerve palsy. Sensors 2015, 15, 26756–26768. [Google Scholar] [CrossRef]
  92. Raychev, R.I.; Saver, J.L.; Liebeskind, D.S.; Penkov, S.; Angelov, D.; Stoev, K.; Kim, J.; Chen, Y.; Liu, X.; Patel, R.; et al. Abstract WMP120: Development of smartphone-enabled machine learning algorithms for autonomous stroke detection. Stroke 2023, 54, 120. [Google Scholar] [CrossRef]
  93. Figurell, M.E.; Meyer, D.M.; Perrinez, E.S.; Mills, M.T.; Shuey, H.M.; Wu, D.; Vyas, R.; Carroll, J.; Amin-Hanjani, S.; Almekhlafi, M.A.; et al. Viz.ai implementation of stroke augmented intelligence and communications platform to improve indicators and outcomes for a comprehensive stroke center and network. AJNR Am. J. Neuroradiol. 2023, 44, 47–53. [Google Scholar] [CrossRef] [PubMed]
  94. Gunda, B.; Neuhaus, A.; Sipos, I.; Toth, G.; Jovin, T.G.; Nogueira, R.G.; Mocco, J.; Fargen, K.M.; Liebeskind, D.S.; Yan, B.; et al. Improved stroke care in a primary stroke center using AI-decision support. Cerebrovasc. Dis. Extra 2022, 12, 28–32. [Google Scholar] [CrossRef]
  95. Field, N.C.; Entezami, P.; Boulos, A.S.; Eker, O.; Heit, J.J.; Shakir, H.; Cruz-Gonzalez, I.; Jovin, T.G.; Nogueira, R.G.; Fargen, K.M.; et al. Artificial intelligence improves transfer times and ischemic stroke workflow metrics. Interv. Neuroradiol. 2023, 29, 15910199231209080. [Google Scholar] [CrossRef] [PubMed]
  96. Devlin, T.; Collins, G.; Heath, G.W.; Majid, A.; Huang, Y.; Nogueira, R.G.; Jovin, T.G.; Fargen, K.M.; Menon, B.K.; Almekhlafi, M.A.; et al. VALIDATE—Utilization of the Viz.ai mobile stroke care coordination platform to limit delays in LVO stroke diagnosis and endovascular treatment. Front. Stroke 2024, 3, 1381930. [Google Scholar] [CrossRef]
  97. Hassan, A.E.; Ringheanu, V.M.; Preston, L.; Alqaisi, F.; Fargen, K.M.; Nogueira, R.G.; Jovin, T.G.; Mocco, J.; Menon, B.K.; Zaidat, O.O.; et al. Artificial intelligence–parallel stroke workflow tool improves reperfusion rates and door-in to puncture interval. Stroke Vasc. Interv. Neurol. 2022, 2, e000224. [Google Scholar] [CrossRef] [PubMed]
  98. Olive-Gadea, M.; Crespo, C.; Granes, C.; Hernandez-Perez, M.; Laredo, C.; Renard, D.; Gory, B.; Lapergue, B.; Blanc, R.; Piotin, M.; et al. Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography. Stroke 2020, 51, 3133–3137. [Google Scholar] [CrossRef]
  99. McLouth, J.; Elstrott, S.; Chaibi, Y.; Toth, G.; Fraser, J.F.; Jovin, T.G.; Nogueira, R.G.; Jadhav, A.P.; Mocco, J.; Menon, B.K.; et al. Validation of a deep learning tool in the detection of intracranial hemorrhage and large vessel occlusion. Front. Neurol. 2021, 12, 656112. [Google Scholar] [CrossRef]
  100. Yahav-Dovrat, A.; Saban, M.; Merhav, G.; Lankri, I.; Abergel, E.; Eran, A.; Tanne, D.; Nogueira, R.G.; Sivan-Hoffmann, R. Evaluation of artificial intelligence-powered identification of large-vessel occlusions in a comprehensive stroke center. AJNR Am. J. Neuroradiol. 2021, 42, 247–254. [Google Scholar] [CrossRef]
  101. Schlossman, J.; Ro, D.; Salehi, S.; Chow, D.; Yu, W.; Chang, P.D.; Soun, J.E. Head-to-head comparison of commercial artificial intelligence solutions for detection of large vessel occlusion at a comprehensive stroke center. Front. Neurol. 2022, 13, 2315. [Google Scholar] [CrossRef]
  102. Luijten, S.P.R.; Wolff, L.; Duvekot, M.H.C.; van Doormaal, P.J.; Moudrous, W.; Kerkhoff, H.; Lycklama, A.N.; Bokkers, R.P.H.; Yo, L.S.F.; Hofmeijer, J.; et al. Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography. J. NeuroInterventional Surg. 2022, 14, 794–798. [Google Scholar] [CrossRef] [PubMed]
  103. Cimflova, P.; Golan, R.; Ospel, J.M.; Sojoudi, A.; Duszynski, C.; Elebute, I.; El-Hariri, H.; Hossein Mousavi, S.; Neto, L.A.S.M.; Pinky, N.; et al. Validation of a machine learning software tool for automated large vessel occlusion detection in patients with suspected acute stroke. Neuroradiology 2022, 64, 2245–2255. [Google Scholar] [CrossRef]
  104. Bathla, G.; Durjoy, D.; Priya, S.; Samaniego, E.; Derdeyn, C.P. Image-level detection of large vessel occlusion on 4D-CTA perfusion data using deep learning in acute stroke. J. Stroke Cerebrovasc. Dis. 2022, 31, 106757. [Google Scholar] [CrossRef]
  105. Adamou, A.; Beltsios, E.T.; Bania, A.; Katsanos, A.H.; Mavridis, D.; Mavridis, K.; Tsioufis, C.; Tsivgoulis, G.; Papadopoulos, D.; Tzoumas, N.; et al. Artificial intelligence-driven aspects for the detection of early stroke changes in non-contrast CT: A systematic review and meta-analysis. J. NeuroInterventional Surg. 2023, 15, e298–304. [Google Scholar] [CrossRef]
  106. Wolff, L.; Berkhemer, O.A.; Fransen, P.S.; van Zwam, W.H.; Lingsma, H.F.; van den Berg, L.A.; Beumer, D.; van Oostenbrugge, R.J.; Majoie, C.B.; Roos, Y.B.; et al. Validation of automated Alberta Stroke Program Early CT Score (ASPECTS) software for detection of early ischemic changes on non-contrast brain CT scans. Neuroradiology 2021, 63, 491–498. [Google Scholar] [CrossRef]
  107. Lee, S.J.; Park, G.; Kim, D.; Jung, S.; Song, S.; Hon, J.M.; Shin, D.H.; Lee, J.S. Clinical evaluation of a deep-learning model for automatic scoring of the Alberta Stroke Program Early CT Score on non-contrast CT. J. NeuroInterventional Surg. 2024, 16, 61–66. [Google Scholar] [CrossRef]
  108. Jiang, B.; Pham, N.; van Staalduinen, E.K.; Tien, S.; Chen, H.; Wang, Y.; Li, C.; Zhang, D.; Chen, X.; Liu, F.; et al. Deep learning applications in imaging of acute ischemic stroke: A systematic review and narrative summary. Radiology 2025, 315, e240775. [Google Scholar] [CrossRef] [PubMed]
  109. Alwood, B.T.; Meyer, D.; Inonita, C.; Bhogal, P.; McDonough, R.; Goyal, M.; Menon, B.K.; Demchuk, A.M.; Liebeskind, D.S.; Jahan, R.; et al. Multicenter comparison using two AI stroke CT perfusion software packages for determining thrombectomy eligibility. J. Stroke Cerebrovasc. Dis. 2024, 33, 107750. [Google Scholar] [CrossRef]
  110. Ali, F.; Hamid, U.; Zaidat, O.; Qureshi, A.I.; Jadhav, A.P.; Fargen, K.M.; Nogueira, R.G.; Mocco, J.; Jovin, T.G.; Menon, B.K.; et al. Role of artificial intelligence in telestroke: An overview. Front. Neurol. 2020, 11, 559322. [Google Scholar] [CrossRef] [PubMed]
  111. Mohamed, A.; Elsherif, S.; Legere, B.; Seetharam, K.; Shuaib, A.; Shuaib, W.; Dineen, R.A.; Jayaraman, M.V.; Jahan, R.; Almekhlafi, M.A.; et al. Is telestroke more effective than conventional treatment for acute ischemic stroke? A systematic review and meta-analysis of patient outcomes and thrombolysis rates. Int. J. Stroke 2023, 19, 280–292. [Google Scholar] [CrossRef] [PubMed]
  112. Vélez-Guerrero, M.A.; Callejas-Cuervo, M.; Mazzoleni, S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review. Sensors 2021, 21, 2146. [Google Scholar] [CrossRef] [PubMed]
  113. Várkuti, B.; Guan, C.; Pan, Y.; Pham, M.; Leeb, R.; Toni, I.; Millán, J.d.R.; Birbaumer, N.; Bütefisch, C.M. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair. 2012, 27, 53–62. [Google Scholar] [CrossRef]
  114. Cervera, M.A.; Soekadar, S.R.; Ushiba, J.; Millán, J.d.R.; Liu, M.; Birbaumer, N.; Cohen, L.G.; Ramos-Murguialday, A. Brain-computer interfaces for post-stroke motor rehabilitation: A meta-analysis. Ann. Clin. Transl. Neurol. 2018, 5, 651–663. [Google Scholar] [CrossRef]
  115. Bundy, D.T.; Souders, L.; Baranyai, K.; Mrachacz-Kersting, N.; Frolov, A.; Guan, C.; Várkuti, B.; Kraus, D.; Burianová, J.; Cervera, M.A.; et al. Contralesional brain–computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke 2017, 48, 1908–1915. [Google Scholar] [CrossRef]
  116. Mrachacz-Kersting, N.; Jiang, N.; Stevenson, A.J.; Farina, D.; Dremstrup, K.; Burianová, J.; Kraus, D.; Várkuti, B.; Cervera, M.A.; Guan, C.; et al. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 2016, 115, 1410–1421. [Google Scholar] [CrossRef]
  117. Senadheera, I.; Hettiarachchi, P.; Haslam, B.; Jayawardena, S.; Bandara, T.; Perera, H.; de Silva, D.; Fernando, S.; Pathirana, P.; Gunawardena, S.; et al. AI applications in adult stroke recovery and rehabilitation: A scoping review using AI. Sensors 2024, 24, 6585. [Google Scholar] [CrossRef]
  118. Bütefisch, C.M. Role of the contralesional hemisphere in post-stroke recovery of upper extremity motor function. Front. Neurol. 2015, 6, 214. [Google Scholar] [CrossRef]
  119. Dobkin, A. A Scoping Review of AI Applications in Adult Stroke Recovery and Rehabilitation. Int. J. Neurorehabilit. 2024, 11, 591. [Google Scholar]
  120. Choo, Y.J.; Chang, M.C. Use of machine learning in stroke rehabilitation: A narrative review. Brain Neurorehabilit. 2022, 15, e26. [Google Scholar] [CrossRef]
  121. Sale, P.; Ferriero, G.; Ciabattoni, L.; Cortese, A.M.; Ferracuti, F.; Romeo, L.; Piccione, F.; Masiero, S. Predicting Motor and Cognitive Improvement Through Machine Learning Algorithm in Human Subject that Underwent a Rehabilitation Treatment in the Early Stage of Stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 2962–2972. [Google Scholar] [CrossRef]
  122. Kim, S.; Park, S.W.; Jeong, T.; Lee, J.H.; Choi, Y.; Lim, J.; Han, K.; Jung, H.; Oh, M.; Kang, H.; et al. AI-driven cognitive telerehabilitation for stroke: A randomized controlled trial. Front. Neurol. 2025, 16, 1636017. [Google Scholar] [CrossRef]
  123. Liscano, Y.; Bernal, L.M.; Rodríguez, M.; Diaz Vallejo, J.A. Effectiveness of AI-assisted digital therapies for post-stroke aphasia rehabilitation: A systematic review. Brain Sci. 2025, 15, 1007. [Google Scholar] [CrossRef]
  124. Kim, W.; Cho, S.; Baek, D.; Bang, H.; Paik, N. Upper extremity functional evaluation by fugl-meyer assessment scoring using depth-sensing camera in hemiplegic stroke patients. PLoS ONE 2016, 11, e0158640. [Google Scholar] [CrossRef]
  125. Shull, P.B.; Jiang, S.; Zhu, Y.; Zhu, X. Hand gesture recognition and finger angle estimation via wrist-worn modified barometric pressure sensing. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 724–732. [Google Scholar] [CrossRef]
  126. Fassbender, K.; Walter, S.; Grunwald, I.Q.; Merzou, F.; Mathur, S.; Lesmeister, M.; Kappel, A.; Weber, R.; Müller, C.; Schmidt, D.; et al. Prehospital stroke management in the thrombectomy era. Lancet Neurol. 2020, 19, 601–610. [Google Scholar] [CrossRef] [PubMed]
  127. Walsh, K.B. Non-invasive sensor technology for prehospital stroke diagnosis: Current status and future directions. Int. J. Stroke 2019, 14, 592–602. [Google Scholar] [CrossRef]
  128. Schwartz, J.; Dreyer, R.P.; Murugiah, K.; Ranasinghe, I. Contemporary prehospital emergency medical services response times for suspected stroke in the United States. Prehosp. Emerg. Care 2016, 20, 560–565. [Google Scholar] [CrossRef]
  129. Kellner, C.P.; Sauvageau, E.; Snyder, K.V.; Fargen, K.M.; Arthur, A.S.; Turner, R.D.; Kan, P.; Levy, E.I.; Mocco, J.; Rasmussen, P.A.; et al. The VITAL study and overall pooled analysis with the VIPS non-invasive stroke detection device. J. NeuroInterventional Surg. 2018, 10, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
  130. Ebinger, M.; Siegerink, B.; Kunz, A.; Wendt, M.; Weber, J.E.; Schwabauer, E.; Malzahn, U.; Heuschmann, P.U.; Fiebach, J.B.; Endres, M.; et al. Association between dispatch of mobile stroke units and functional outcomes among patients with acute ischemic stroke in Berlin. JAMA 2021, 325, 454–466. [Google Scholar] [CrossRef] [PubMed]
  131. English, S.W.; Barrett, K.M.; Freeman, W.D.; Demaerschalk, B.M. Telemedicine-enabled ambulances and mobile stroke units for prehospital stroke management. J. Telemed. Telecare 2022, 28, 458–463. [Google Scholar] [CrossRef] [PubMed]
  132. Shlobin, N.A.; Baig, A.A.; Waqas, M.; Rai, A.T.; Turk, A.S.; Siddiqui, A.H.; Levy, E.I.; Mocco, J.; Nogueira, R.G.; Zaidat, O.O.; et al. Artificial intelligence for large-vessel-occlusion stroke: A systematic review. World Neurosurg. 2022, 159, 207–220. [Google Scholar] [CrossRef]
  133. Viz.ai. Viz.ai Granted De Novo FDA Clearance for First Artificial Intelligence Triage Software; PR Newswire: New York, NY, USA, 2018. [Google Scholar]
  134. RapidAI. RapidAI Receives FDA Clearance of Rapid LVO; RapidAI Press Release: Golden, CO, USA, 2020. [Google Scholar]
  135. Brainomix. Brainomix Receives FDA Clearance for Its Flagship Stroke AI Imaging Software (e-ASPECTS); Brainomix Newsroom: Oxford, UK, 2023. [Google Scholar]
  136. Avicenna.AI. Avicenna.AI Secures FDA Clearance for Two Healthcare AI Solutions Including CINA-ASPECTS; PR Newswire: New York, NY, USA, 2024. [Google Scholar]
  137. Aidoc. Aidoc Secures FDA Clearance for AI Stroke Software Detecting Large Vessel Occlusion on CTA; AuntMinnie.com: Arlington, VA, USA, 2022; Available online: https://www.auntminnie.com/imaging-informatics/artificial-intelligence/article/15625031/aidoc-secures-fda-clearance-for-ai-stroke-software (accessed on 26 January 2026).
  138. Methinks Software. FDA Clears AI Software Tool for Automated Detection of LVOs from CT Angiography (Methinks CTA Stroke); Practical Neurology: London, UK, 2025. [Google Scholar]
  139. Iosa, M.; Paolucci, S.; Antonucci, G.; Ciancarelli, I.; Morone, G. Application of an Artificial Neural Network to Identify the Factors Influencing Neurorehabilitation Outcomes of Patients with Ischemic Stroke Treated with Thrombolysis. Biomolecules 2023, 13, 334. [Google Scholar] [CrossRef] [PubMed]
  140. Campagnini, S.; Arienti, C.; Patrini, M.; Liuzzi, P.; Mannini, A.; Carrozza, M.C. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2022, 19, 54. [Google Scholar] [CrossRef] [PubMed]
  141. Nishi, H.; Oishi, N.; Ishii, A.; Ono, I.; Ogura, T.; Sunohara, T.; Chihara, H.; Fukumitsu, R.; Okawa, M.; Yamana, N.; et al. Predicting Clinical Outcomes of Large Vessel Occlusion Before Mechanical Thrombectomy Using Machine Learning. Stroke 2019, 50, 2379–2388. [Google Scholar] [CrossRef]
  142. Al-Janabi, O.M.; El Refaei, A.; Elgazzar, T.; Mahmood, Y.M.; Bakir, D.; Gajjar, A.; Alateya, A.; Jha, S.K.; Ghozy, S.; Kallmes, D.F.; et al. Current Stroke Solutions Using Artificial Intelligence: A Review of the Literature. Brain Sci. 2024, 14, 1182. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
  143. Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
  144. Budhu, J.A.; Anderson, N.; Branson, C.; Choudhury, A.; Du, R.; Essig, M.; Garg, N.; Gaynor, E.; Greenberg, B.; Johnson, C.; et al. Health equity considerations in the age of artificial intelligence. Neurology 2025, 105, e214356. [Google Scholar] [CrossRef]
Figure 1. Current state of AI applications in phases of stroke care. Arrows indicate progression of clinical care through the stroke continuum.
Figure 1. Current state of AI applications in phases of stroke care. Arrows indicate progression of clinical care through the stroke continuum.
Brainsci 16 00173 g001
Table 1. Pre-hospital-phase level of evidence [27].
Table 1. Pre-hospital-phase level of evidence [27].
Ref #AuthorDateStudy DesignTopicLevel of Evidence
[80]Ceklic E, et al.2022Retrospective observational cohort studyEMS routing optimizationB-NR
[81]Rava RA, et al.2021Retrospective modeling studyEMS routing optimizationB-NR
[82]Ramos A, et al.2021Narrative reviewEMS stroke recognitionC-EO
[83]Wasselius J, et al.2021Prospective diagnostic studyEMS stoke recognitionB-NR
[84]Scholz ML, et al.2022Retrospective modeling studyEMS stroke recognitionB-NR
[85]Van Stigt MN, et al.2013Prospective diagnostic studyEMS stroke recognitionB-NR
[86]Caceres JA, et al.2013Retrospective observational cohort studyEMS stroke recognitionB-NR
[87]Oostema JA, et al.2018Retrospective observational studyEMS stroke recognitionB-NR
[88]Jia J, et al. 2017Retrospective observational studyEMS stroke recognitionB-NR
[89]Pottle, J2019Narrative reviewEMS trainingC-EO
[12]Wollcott ZC, et al.2024Expert commentaryEMS workflow optimizationC-EO
[90]Bat-Erdine BO, et al.2021Narrative reviewPatient stroke recognitionC-EO
[91]Kim HS, et al.2015Observational diagnostic accuracy studyPatient stroke recognitionC-LD
[92]Raychey RI, et al.2023Proof of concept studyPatient stroke recognitionC-LD
Table 2. Acute-phase level of evidence [27].
Table 2. Acute-phase level of evidence [27].
Ref #AuthorYearStudy DesignTopicLevel of Evidence
[93]Figurell ME, et al.2023Retrospective workflow implementation studyWorkflow optimizationB-NR
[94]Gunda B, et al.2022Retrospective workflow implementation studyWorkflow optimizationB-NR
[95]Field NC, et al.2023Retrospective workflow implementation studyWorkflow optimizationB-NR
[96]Devlin T, et al.2024Retrospective multicenter cohort studyWorkflow optimizationB-NR
[97]Hassan AE, et al.2022Retrospective observational studyWorkflow optimizationB-NR
[31]Herzog L, et al.2023Prospective prognostic model studyPrognosticationB-NR
[33]Zhang H, et al.2024Retrospective prognostic model studyPrognosticationB-NR
[34]Velagapudi L, et al.2021Retrospective prognostic model studyPrognosticationB-NR
[35]Wang X, et al.2024Retrospective prognostic model studyPrognosticationB-NR
[32]Liu Y, et al.2024Retrospective predictive model studyPrognosticationB-NR
[28]van Os HJA, et al.2018Registry prognostic model studyPrognosticationB-NR
[29]Heo J, et al.2019Retrospective prognostic model studyPrognosticationB-NR
[30]Jung HS, et al.2024Prospective prognostic model studyPrognosticationB-NR
[11]Koska IO, et al.2023Narrative reviewAdvanced imaging interpretationC-EO
[32]Liu Y, et al.2024Narrative reviewAdvanced imaging interpretationC-EO
[14]Chandrabhatla AS, et al.2023Narrative reviewAdvanced imaging interpretationC-EO
[64]Ryu WS, et al.2024Retrospective diagnostic model studyAdvanced imaging interpretationB-NR
[66]Christiansen SD, et al.2024Retrospective diagnostic model studyAdvanced imaging interpretationB-NR
[79]Savage CH, et al2024Prospective observational diagnostic studyAdvanced imaging interpretationB-NR
[98]Olive-Gadea M, et al.2020Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[99]McLouth J, et al.2021Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[100]Yahav-Dovrat A, et al.2021Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[101]Schlossman J, et al.2022Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[102]Luijten SPR, et al.2022Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[103]Cimflova P, et al.2022Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[104]Bathla G, et al.2022Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[105]Adamou A, et al.2023Systematic reviewAdvanced imaging interpretationC-EO
[106]Wolff L, et al.2021Retrospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[107]Lee SJ, et al.2024Prospective diagnostic imaging studyAdvanced imaging interpretationB-NR
[108]Jiang B, et al.2025Systematic reviewAdvanced imaging interpretationC-EO
[109]Alwood BT, et al.2024Multicenter retrospective diagnostic studyAdvanced imaging interpretationB-NR
[15]Wang Z, et al.2024Systematic review GeneralC-EO
[16]Melo S, et al.2025Scoping reviewGeneralC-EO
[17]Heeralal VT, et al.2025Narrative reviewGeneralC-EO
[18]Heo J.2025Scoping reviewGeneralC-EO
[36]Colangelo G, et al.2024Retrospective predictive model studyPredictive analyticsB-NR
[37]Gao Y, et al.2024Retrospective predictive model studyPredictive analyticsB-NR
[38]Lip GYH, et al.2024Retrospective predictive model studyPredictive analyticsB-NR
[39]Vodencarevic A, et al.2022Retrospective predictive model studyPredictive analyticsB-NR
[40]Han L, et al.2019Retrospective predictive model studyPredictive analyticsB-NR
[41]Chen B, et al.2022Retrospective predictive model studyPredictive analyticsB-NR
[42]Chao CJ, et al.2022Retrospective predictive model studyPredictive analyticsB-NR
[43]Lin L, et al.2024Retrospective predictive model studyPredictive analyticsB-NR
[44]Araki T, et al.2017Retrospective predictive model studyPredictive analyticsB-NR
[45]Bai P, et al.2020Retrospective predictive model studyPredictive analyticsB-NR
[46]Sue SS, et al.2023Retrospective predictive model studyPredictive analyticsB-NR
[21]Chen YF, et al.2023Retrospective predictive model studyPredictive analyticsB-NR
[63]Rabinstein AA, et al.2021Retrospective predictive model studyPredictive analyticsB-NR
[65]Heo J, et al.2023Retrospective multicenter diagnostic model studyPrognosticationB-NR
[67]Li X, et al.2020Retrospective diagnostic model studyPrognosticationB-NR
[69]Lu X, et al.2024Retrospective diagnostic/prognostic model studyPrognosticationB-NR
[70]Heo J, et al.2022Retrospective prognostic model studyPrognosticationB-NR
[110]Ali F, et al.2020Narrative reviewTelemedicine optimizationC-EO
[111]Mohamed A, et al.2023Systematic review and meta-analysisTelemedicine optimizationC-EO
Table 3. Recovery-phase level of evidence [27].
Table 3. Recovery-phase level of evidence [27].
Ref #AuthorYearStudy designTopicLevel of Evidence
[112]Vélez-Guerrero MA, et al.2021Narrative reviewAssistive robotics/exoskeletonsC-EO
[113]Várkuti B, et al.2012Prospective interventional cohortBrain-computer interfacing devicesB-NR
[114]Cervera MA, et al.2018Meta analysis of RCTsBrain-computer interfacing devicesC-EO
[115]Bundy DT, et al.2017Prospective interventional cohort studyBrain-computer interfacing devicesB-NR
[116]Mrachacz-Kersting N, et al.2016Prospective interventional cohort studyBrain-computer interfacing devicesB-NR
[117]Senadheera I, et al.2024Scoping reviewGeneralC-EO
[118]Buetefisch CM2015Narrative reviewGeneralC-EO
[119]Dobkin A2024Scoping reviewGeneralC-EO
[120]Choo YJ, et al.2022Narrative reviewGeneralC-EO
[121]Sale P, et al.2018Prospective observational studyGeneralB-NR
[122]Kim S, et al.2025Multicenter RCTTele-rehabilitationB-R
[123]Liscano Y, et al.2025Systematic review and meta-analysisTele-rehabilitationB-R
[124]Kim W, et al.2016Prospective observational validation studyWearable sensor technologyB-NR
[125]Shull PB, et al.2019Prospective sensor validation studyWearable sensor technologyB-NR
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Sorkin, G.C.; Caffes, N.M.; Shank, J.P.; Hershey, J.L.; Knaub, D.E.; Krebs, J.C.; Niazi, M.H. Current State of the Clinical Applications of Artificial Intelligence in Stroke: A Literature Review. Brain Sci. 2026, 16, 173. https://doi.org/10.3390/brainsci16020173

AMA Style

Sorkin GC, Caffes NM, Shank JP, Hershey JL, Knaub DE, Krebs JC, Niazi MH. Current State of the Clinical Applications of Artificial Intelligence in Stroke: A Literature Review. Brain Sciences. 2026; 16(2):173. https://doi.org/10.3390/brainsci16020173

Chicago/Turabian Style

Sorkin, Grant C., Nicholas M. Caffes, John P. Shank, James L. Hershey, Dana E. Knaub, Jillian C. Krebs, and Muhammad H. Niazi. 2026. "Current State of the Clinical Applications of Artificial Intelligence in Stroke: A Literature Review" Brain Sciences 16, no. 2: 173. https://doi.org/10.3390/brainsci16020173

APA Style

Sorkin, G. C., Caffes, N. M., Shank, J. P., Hershey, J. L., Knaub, D. E., Krebs, J. C., & Niazi, M. H. (2026). Current State of the Clinical Applications of Artificial Intelligence in Stroke: A Literature Review. Brain Sciences, 16(2), 173. https://doi.org/10.3390/brainsci16020173

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Article metric data becomes available approximately 24 hours after publication online.
Back to TopTop