Fidgeting Increases Pupil Diameter During Auditory Processing in Young Healthy Adults
Highlights
- Both hand and leg fidgeting increased pupil diameter during auditory processing. Hand fidgeting produced the largest increase, indicating enhanced arousal or engagement rather than increased processing load.
- Despite these physiological changes, auditory task performance remained stable across all conditions. This suggests that mild fidgeting does not interfere with auditory processing in healthy young adults.
- Light fidgeting may serve as a simple, non-disruptive means of maintaining attention or preventing mind wandering during listening tasks.
- These results may inform educational or clinical approaches aimed at supporting attention regulation, particularly for individuals with attentional difficulties or auditory processing challenges. However, further evidence is needed.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethical Considerations
2.3. Experimental Methods
2.3.1. Experimental Environment
2.3.2. Method of Presenting Auditory Tasks (Figure 1)
Order of Execution and Evaluation Strategy

2.3.3. Three Conditions for Fidgeting
2.4. Equipment
2.4.1. Experimental System
2.4.2. APT
2.4.3. Eye Tracker
2.5. Data Analysis Methods
2.5.1. Pupil Diameter Preprocessing
2.5.2. Analysis of Fidgeting Effects on Cognitive Resource Allocation
2.5.3. Analysis of Fidgeting Type Differences
2.5.4. Analysis of Fidgeting Effects on APT Performance
3. Results
3.1. Participant Profile
3.2. Pupil Diameter Changes During APT: Comparison Among Three Conditions
3.3. Comparison of Pupil Diameter Changes During APT Across Two Types of Fidgeting Conditions (Table 3)
| Leg Fidgeting | Hand Fidgeting | p | r | |||
|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | |||
| Fast Speech | 0.085 | 0.276 | 0.219 | 0.426 | 0.088 | −0.30 |
| Speech in Noise | 0.111 | 0.291 | 0.282 | 0.457 | 0.049 * | −0.350 |
| +10 dB | 0.123 | 0.295 | 0.278 | 0.432 | 0.046 * | −0.058 |
| +5 dB | 0.109 | 0.295 | 0.284 | 0.456 | 0.046 * | −0.347 |
| 0 dB | 0.141 | 0.314 | 0.299 | 0.469 | 0.067 | −0.319 |
| −5 dB | 0.100 | 0.311 | 0.275 | 0.459 | 0.075 | −0.310 |
| −10 dB | 0.083 | 0.298 | 0.253 | 0.455 | 0.046 * | −0.347 |
| −15 dB | 0.105 | 0.288 | 0.278 | 0.469 | 0.044 * | −0.366 |
| Multiple Speech | 0.027 | 0.321 | 0.161 | 0.438 | 0.046 * | −0.347 |
| Auditory Attention | 0.146 | 0.301 | 0.162 | 0.427 | 0.755 | −0.054 |
3.4. Comparison of APT Correct Answer Rates Across Three Conditions (Table 4)
| Reference Value (%) | Control (%) | Leg Fidgeting (%) | Hand Fidgeting (%) | p | W | ||
|---|---|---|---|---|---|---|---|
| Fast Speech | Initial words | 96.7 (2.6) | 79.24 (14.41) | 80.00 (12.49) | 79.24 (10.95) | 0.568 | 0.017 |
| Middle words | 91.7 (5.2) | 75.30 (17.75) | 73.94 (19.14) | 74.55 (16.21) | 0.500 | 0.020 | |
| Final words | 90.8 (4.9) | 83.18 (18.42) | 82.12 (17.37) | 82.88 (14.98) | 0.590 | 0.016 | |
| Speech in Noise | - | 65.91 (4.75) | 65.99 (5.21) | 67.34 (5.16) | 0.750 | 0.008 | |
| +10 dB | 100.0 (0.0) | 100.00 (0.00) | 100.00 (0.00) | 100.00 (0.00) | 1.000 | 0 | |
| +5 dB | 97.2 (6.9) | 95.45 (8.48) | 94.95 (9.61) | 95.96 (9.20) | 0.729 | 0.010 | |
| 0 dB | 94.3 (8.8) | 94.44 (9.77) | 94.95 (9.61) | 94.95 (11.23) | 0.814 | 0.006 | |
| −5 dB | 66.8 (10.4) | 68.18 (14.43) | 69.70 (13.27) | 70.20 (13.46) | 0.907 | 0.003 | |
| −10 dB | 14.0 (12.5) | 21.72 (16.15) | 19.70 (13.89) | 21.21 (11.07) | 0.532 | 0.020 | |
| −15 dB | 2.8 (6.9) | 17.17 (11.23) | 16.67 (13.61) | 17.17 (8.69) | 0.912 | 0.003 | |
| Multiple Speech | 94.2 (8.0) | 79.85 (29.76) | 76.97 (31.82) | 77.88 (32.15) | 0.771 | 0.008 | |
| Auditory Attention | 95.8 (8.0) | 98.18 (3.86) | 96.36 (5.12) | 96.82 (5.34) | 0.120 | 0.064 | |
| Reaction Time (ms) | 632.3 (77.3) | 787.09 (264.23) | 760.03 (228.53) | 850.45 (230.89) | 0.148 | 0.058 | |
3.5. Comparison of APT Correct Answer Rates Across Two Types of Fidgeting Conditions (Table 5)
| Leg Fidgeting (%) | Hand Fidgeting (%) | p | r | ||||
|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | ||||
| Fast Speech | Initial words | 0.76 | 11.22 | 0.00 | 9.13 | 0.594 | 0.09 |
| Middle words | −1.36 | 18.23 | −0.76 | 10.45 | 0.844 | 0.03 | |
| Final words | −1.06 | 14.50 | −0.30 | 10.07 | 0.854 | 0.03 | |
| Speech in Noise | 0.08 | 4.51 | 1.43 | 5.12 | 0.248 | 0.20 | |
| +10 dB | 0.00 | 0.00 | 0.00 | 0.00 | 1.000 | 0.00 | |
| +5 dB | −0.51 | 11.23 | 0.51 | 8.69 | 0.420 | 0.14 | |
| 0 dB | 0.51 | 8.69 | 0.51 | 9.61 | 0.739 | 0.06 | |
| −5 dB | 1.52 | 15.00 | 2.02 | 15.76 | 0.739 | 0.06 | |
| −10 dB | −2.02 | 15.76 | −0.51 | 15.62 | 0.487 | 0.12 | |
| −15 dB | −0.51 | 13.29 | 0.00 | 10.05 | 0.827 | 0.04 | |
| Multiple Speech | −2.88 | 18.91 | −1.97 | 16.92 | 0.806 | 0.04 | |
| Auditory Attention | −1.82 | 6.61 | −1.36 | 6.99 | 0.676 | 0.07 | |
| Reaction Time | −27.06 | 155.71 | 63.36 | 230.38 | 0.004 * | 0.50 | |
4. Discussion
4.1. Fidgeting, Arousal Modulation, and Performance Maintenance
4.2. Why Hand Fidgeting Produces Larger Pupil Dilation
4.2.1. Sensory Engagement in Manual Movements
4.2.2. Motor and Arousal Networks
4.2.3. Variation Across Auditory Processing Tasks
4.3. Study Limitations
- (1)
- Fidgeting was intentional, not spontaneous:
- (2)
- Ceiling and floor effects in APT performance:
- (3)
- Ambiguity in interpreting pupil dilation:
- (4)
- Limited generalizability:
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| APT | Auditory processing test |
| SNR | Signal-to-noise ratio |
| VAS | Visual analog scale |
| SMA | Supplementary motor area |
| LC-NE | Locus coeruleus–noradrenaline system |
| DAQ | Data acquisition module |
References
- Farley, J.; Risko, E.F.; Kingstone, A. Everyday attention and lecture retention: The effects of time, fidgeting, and mind wandering. Front. Psychol. 2013, 4, 619. [Google Scholar] [CrossRef] [PubMed]
- Geiger, B. Discipline in K through 8th grade classrooms. Education 2000, 121, 383–393. [Google Scholar]
- Son, H.M.; Calub, C.A.; Fan, B.; Dixon, J.F.; Rezaei, S.; Borden, J.; Schweitzer, J.B.; Liu, X. A quantitative analysis of fidgeting in ADHD and its relation to performance and sustained attention on a cognitive task. Front. Psychiatry 2024, 15, 1394096. [Google Scholar] [CrossRef] [PubMed]
- Rapport, M.D.; Bolden, J.; Kofler, M.J.; Sarver, D.E.; Raiker, J.S.; Alderson, R.M. Hyperactivity in boys with attention-deficit/hyperactivity disorder (ADHD): A ubiquitous core symptom or manifestation of working memory deficits? J. Abnorm. Child Psychol. 2009, 37, 521–534. [Google Scholar] [CrossRef]
- Brink, K.E.; Costigan, R.D. Development of listening competence in business education. Curr. Opin. Psychol. 2023, 50, 101581. [Google Scholar] [CrossRef] [PubMed]
- Remedios, L.; Clarke, D.; Hawthorne, L. Learning to listen and listening to learn: One student’s experience of small group collaborative learning. Aust. Educ. Res. 2012, 39, 333–348. [Google Scholar] [CrossRef]
- Deveci, T. (Ed.) Listening as a lifelong learning skill—What, why, and how. In Proceedings of the 16th International Conference on Literature, Languages, Humanities and Social Sciences, Budapest, Hungary, 3–4 October 2018. [Google Scholar]
- Granholm, E.; Asarnow, R.F.; Sarkin, A.J.; Dykes, K.L. Pupillary responses index cognitive resource limitations. Psychophysiology 1996, 33, 457–461. [Google Scholar] [CrossRef]
- Peelle, J.E. Listening Effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear Hear. 2018, 39, 204–214. [Google Scholar] [CrossRef]
- Pichora-Fuller, M.K.; Kramer, S.E.; Eckert, M.A.; Edwards, B.; Hornsby, B.W.Y.; Humes, L.E.; Lemke, U.; Lunner, T.; Matthen, M.; Mackersie, C.L.; et al. Hearing Impairment and Cognitive Energy: The framework for understanding effortful listening (FUEL). Ear Hear. 2016, 37, 5S–27S. [Google Scholar] [CrossRef]
- Giuliani, N.P.; Venkitakrishnan, S.; Wu, Y.-H. Input-Related Demands: Vocoded sentences evoke different pupillometrics and subjective listening effort than sentences in speech-shaped noise. Int. J. Audiol. 2024, 63, 199–206. [Google Scholar] [CrossRef]
- Bönitz, H.; Lunner, T.; Finke, M.; Fiedler, L.; Lyxell, B.; Riis, S.K.; Ng, E.; Valdes, A.L.; Büchner, A.; Wendt, D. How do we allocate our resources when listening and memorizing speech in noise? A pupillometry study. Ear Hear. 2021, 42, 846–859. [Google Scholar] [CrossRef]
- Gusso, M.d.M.; Serur, G.; Nohama, P. Pupil reactions to tactile stimulation: A systematic review. Front. Neurosci. 2021, 15, 610841. [Google Scholar] [CrossRef] [PubMed]
- Just, M.A.; Carpenter, P.A.; Miyake, A. Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work. Theor. Issues Ergon. 2003, 4, 56–88. [Google Scholar] [CrossRef]
- Winn, M.B.; Edwards, J.R.; Litovsky, R.Y. The impact of auditory spectral resolution on listening effort revealed by pupil dilation. Ear Hear. 2015, 36, e153-65. [Google Scholar] [CrossRef] [PubMed]
- Zekveld, A.A.; Koelewijn, T.; Kramer, S.E. The pupil dilation response to auditory stimuli: Current state of knowledge. Trends Hear. 2018, 22, 2331216518777174. [Google Scholar] [CrossRef]
- Wendt, D.; Koelewijn, T.; Książek, P.; Kramer, S.E.; Lunner, T. Toward a more comprehensive understanding of the impact of masker type and signal-to-noise ratio on the pupillary response while performing a speech-in-noise test. Hear. Res. 2018, 369, 67–78. [Google Scholar] [CrossRef]
- Steindorf, L.; Pink, S.; Rummel, J.; Smallwood, J. When there is noise on Sherlock Holmes: Mind wandering increases with perceptual processing difficulty during reading and listening. Cogn. Res. Princ. Implic. 2023, 8, 31. [Google Scholar] [CrossRef]
- Ohlenforst, B.; Zekveld, A.A.; Lunner, T.; Wendt, D.; Naylor, G.; Wang, Y.; Versfeld, N.J.; Kramer, S.E. Impact of stimulus-related factors and hearing impairment on listening effort as indicated by pupil dilation. Hear. Res. 2017, 351, 68–79. [Google Scholar] [CrossRef]
- Suwabe, K.; Kuwamizu, R.; Hyodo, K.; Yoshikawa, T.; Otsuki, T.; Zempo-Miyaki, A.; Yassa, M.A.; Soya, H. Improvement of mnemonic discrimination with acute light exercise is mediated by pupil-linked arousal in healthy older adults. Neurobiol. Aging 2024, 133, 107–114. [Google Scholar] [CrossRef]
- Joshi, S.; Li, Y.; Kalwani, R.M.; Gold, J.I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 2016, 89, 221–234. [Google Scholar] [CrossRef]
- Fish, S.C.; Granholm, E. Easier tasks can have higher processing loads: Task difficulty and cognitive resource limitations in schizophrenia. J. Abnorm. Psychol. 2008, 117, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Zekveld, A.A.; Kramer, S.E.; Festen, J.M. Pupil response as an indication of effortful listening: The influence of sentence intelligibility. Ear Hear. 2010, 31, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Driesen, M.; Rijmen, J.; Hulsbosch, A.-K.; Danckaerts, M.; Wiersema, J.R.; Van der Oord, S. Tools or toys? The effect of fidget spinners and bouncy bands on the academic performance in children with varying ADHD-symptomatology. Contemp. Educ. Psychol. 2023, 75, 102214. [Google Scholar] [CrossRef]
- Andrade, J. What does doodling do? Appl. Cogn. Psychol. 2010, 24, 100–106. [Google Scholar] [CrossRef]
- Grodner, K. To Fidget or Not to Fidget: The Effect of Movement on Cognition. Master’s Thesis, Murray State University, Murray, KY, USA, 2015. [Google Scholar]
- Croley, K.E.; Drevon, D.D.; Decker, D.M.; Hixson, M.D.; Radley, K.C. The effect of the fidget cube on classroom behavior among students with perceived attention difficulties. Behav. Anal. Pract. 2023, 16, 547–557. [Google Scholar] [CrossRef]
- Kercood, S.; Grskovic, J.A.; Lee, D.L.; Emmert, S. The Effects of fine motor movement and tactile stimulation on the math problem solving of students with attention problems. J. Behav. Educ. 2007, 16, 303–310. [Google Scholar] [CrossRef]
- Koiler, R.; Schimmel, A.; Bakhshipour, E.; Shewokis, P.A.; Getchell, N. The impact of fidget spinners on fine motor skills in individuals with and without ADHD: An exploratory analysis. J. Behav. Brain Sci. 2022, 12, 82–101. [Google Scholar] [CrossRef]
- Aspiranti, K.B.; Hulac, D.M. Using fidget spinners to improve on-task classroom behavior for students with ADHD. Behav. Anal. Pract. 2022, 15, 454–465. [Google Scholar] [CrossRef]
- Graziano, P.A.; Garcia, A.M.; Landis, T.D. To fidget or not to fidget, that is the question: A systematic classroom evaluation of fidget spinners among young children with ADHD. J. Atten. Disord. 2020, 24, 163–171. [Google Scholar] [CrossRef]
- Biswas, R.; Kumar, Y.; Rani, R. Effect of Fidget Spinners in Enhancement of Cognitive Skills in Healthy Individuals: An Interventional Study. J. Neurol. Sci. 2022, 455, 121595. [Google Scholar] [CrossRef]
- Soares, J.S.; Storm, B.C. Putting a Negative Spin on It: Using a fidget spinner can impair memory for a video lecture. Appl. Cogn. Psychol. 2020, 34, 277–284. [Google Scholar] [CrossRef]
- Bantoft, C.; Summers, M.J.; Tranent, P.J.; Palmer, M.A.; Cooley, P.D.; Pedersen, S.J. Effect of standing or walking at a workstation on cognitive function: A randomized counterbalanced trial. Hum. Factors 2016, 58, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Polo-Recuero, B.; Rojo-Tirado, M.Á.; Ordóñez-Dios, A.; Breitkreuz, D.; Lorenzo, A. The effects of bike desks in formal education classroom-based physical activity: A systematic review. Sustainability 2021, 13, 7326. [Google Scholar] [CrossRef]
- Ruiter, M.; Loyens, S.; Paas, F. The effects of cycling on a desk bike on attention, retention and mood during a video lecture: Action during a video lecture. Appl. Cogn. Psychol. 2017, 31, 593–603. [Google Scholar] [CrossRef]
- Kuwamizu, R.; Yamazaki, Y.; Aoike, N.; Ochi, G.; Suwabe, K.; Soya, H. Pupil-linked arousal with very light exercise: Pattern of pupil dilation during graded exercise. J. Physiol. Sci. 2022, 72, 23. [Google Scholar] [CrossRef]
- Narukawa, S.; Nishimura, M.; Kuze, I.; Ohno, I.; Fukunaga, M.; Kobayasi, K.I.; Murai, S.A. Cortico-striatal activity associated with fidget spinner use: An fMRI study. Sci. Rep. 2023, 13, 15860. [Google Scholar] [CrossRef]
- Sharma, A.; Kraus, N.; McGee, T.J.; Nicol, T.G. Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr. Clin. Neurophysiol. 1997, 104, 540–545. [Google Scholar] [CrossRef]
- Ponton, C.W.; Eggermont, J.J.; Kwong, B.; Don, M. Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clin. Neurophysiol. 2000, 111, 220–236. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, England, 2013; ISBN 9781134742707. [Google Scholar]
- Kaga, K.; Obuchi, C.; Harashima, T.; Tanaka, K.; Sakamoto, K.; Kobayashi, Y. Auditory Processing Test (APT) Manual; Gakuensya: Tokyo, Japan, 2019. (In Japanese) [Google Scholar]
- Fujimoto, S.; Maeda, Y.; Obuchi, C.; Uchida, Y.; Harashima, T.; Nishizaki, K. Clinical feasibility of auditory processing tests in Japanese older adults: A pilot study. Acta Otolaryngol. 2019, 139, 625–631. [Google Scholar] [CrossRef]
- Lara-Muñoz, C.; De Leon, S.P.; Feinstein, A.R.; Puente, A.; Wells, C.K. Comparison of three rating scales for measuring subjective phenomena in clinical research: I. Use of experimentally controlled auditory stimuli. Arch. Med. Res. 2004, 35, 43–48. [Google Scholar] [CrossRef]
- Karvonen, J.; Vuorimaa, T. Heart rate and exercise intensity during sports activities: Practical application. Sports Med. 1988, 5, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Kercood, S.; Grskovic, J.A. Reducing the effects of auditory and visual distraction on the math performances of students with attention deficit hyperactivity disorder. Aust. J. Learn. Diffic. 2010, 15, 1–11. [Google Scholar] [CrossRef]
- Cash, C.D. Effects of early and late rest intervals on performance and overnight consolidation of a keyboard sequence. J. Res. Music Educ. 2009, 57, 252–266. [Google Scholar] [CrossRef]
- Fujiwara, T. Research on the recovery process of auditory fatigue. J. Jpn. Soc. Otorhinolaryngol. 1968, 71, 1306–1325. [Google Scholar] [CrossRef]
- Hatta, N.; Fukunaga, S.; Ohta, T. Characteristics of auditory information processing in two adult cases reporting listening difficulties. Kawasaki J. Med. Welf. 2018, 27, 449–455. [Google Scholar]
- Miles, K.; McMahon, C.; Boisvert, I.; Ibrahim, R.; de Lissa, P.; Graham, P.; Lyxell, B. Objective assessment of listening effort: Coregistration of pupillometry and EEG. Trends Hear. 2017, 21, 2331216517706396. [Google Scholar] [CrossRef]
- Hall, D.A.; Haggard, M.P.; Akeroyd, M.A.; Summerfield, A.Q.; Palmer, A.R.; Elliott, M.R.; Bowtell, R.W. Modulation and task effects in auditory processing measured using fMRI. Hum. Brain Mapp. 2000, 10, 107–119. [Google Scholar] [CrossRef]
- Santosa, H.; Hong, M.J.; Hong, K.-S. Lateralization of music processing with noises in the auditory cortex: An fNIRS study. Front. Behav. Neurosci. 2014, 8, 418. [Google Scholar] [CrossRef]
- Zekveld, A.A.; Kramer, S.E.; Festen, J.M. Cognitive Load during Speech Perception in Noise: The influence of age, hearing loss, and cognition on the pupil response. Ear Hear. 2011, 32, 498–510. [Google Scholar] [CrossRef]
- Schwarz, L.A.; Miyamichi, K.; Gao, X.J.; Beier, K.T.; Weissbourd, B.; DeLoach, K.E.; Ren, J.; Ibanes, S.; Malenka, R.C.; Kremer, E.J.; et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 2015, 524, 88–92. [Google Scholar] [CrossRef]
- Kang, O.E.; Huffer, K.E.; Wheatley, T.P. Pupil dilation dynamics track attention to high-level information. PLoS ONE 2014, 9, e102463. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, N.; Robison, M.K. Pupillary correlates of lapses of sustained attention. Cogn. Affect. Behav. Neurosci. 2016, 16, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Alhanbali, S.; Munro, K.J.; Dawes, P.; Carolan, P.J.; Millman, R.E. Dimensions of self-reported listening effort and fatigue on a digits-in-noise task, and association with baseline pupil size and performance accuracy. Int. J. Audiol. 2021, 60, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Zekveld, A.A.; Kramer, S.E. Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology 2014, 51, 277–284. [Google Scholar] [CrossRef]
- Lu, H.; van der Linden, D.; Bakker, A.B. Changes in pupil dilation and P300 amplitude indicate the possible involvement of the locus coeruleus-norepinephrine (LC-NE) system in psychological flow. Sci. Rep. 2023, 13, 1908. [Google Scholar] [CrossRef]
- Mathôt, S.; Vilotijević, A. Methods in cognitive pupillometry: Design, Preprocessing, and statistical analysis. Behav. Res. Methods 2023, 55, 3055–3077. [Google Scholar] [CrossRef]
- Mathôt, S.; Fabius, J.; Van Heusden, E.; Van der Stigchel, S. Safe and sensible preprocessing and baseline correction of pupil-size data. Behav. Res. Methods 2018, 50, 94–106. [Google Scholar] [CrossRef]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-Motor Dual-Task Interference: A systematic review of neural correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef]
- Just, M.A.; Keller, T.A.; Cynkar, J. A decrease in brain activation associated with driving when listening to someone speak. Brain Res. 2008, 1205, 70–80. [Google Scholar] [CrossRef]
- Dunifon, C.M.; Rivera, S.; Robinson, C.W. Auditory stimuli automatically grab attention: Evidence from eye tracking and attentional manipulations. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 1947–1958. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, I.-S.; Madasu, C.; Lee, C. Effects of Chair-Based Fidgeting and Age on Prefrontal Brain Activity and Cognitive Performance. J. Speech-Lang. Hear. Disord. 2023, 32, 91–98. [Google Scholar] [CrossRef]
- Van Impe, A.; Coxon, J.P.; Goble, D.J.; Wenderoth, N.; Swinnen, S.P. Age-related changes in brain activation underlying single- and dual-task performance: Visuomanual drawing and mental arithmetic. Neuropsychologia 2011, 49, 2400–2409. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A.; Sabb, F.W.; Foerde, K.; Tom, S.M.; Asarnow, R.F.; Bookheimer, S.Y.; Knowlton, B.J. The neural correlates of motor skill automaticity. J. Neurosci. 2005, 25, 5356–5364. [Google Scholar] [CrossRef] [PubMed]
- Jueptner, M.; Weiller, C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 1998, 121, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 2003, 42, 33–84. [Google Scholar] [CrossRef]
- Turesky, T.K.; Olulade, O.A.; Luetje, M.M.; Eden, G.F. An fMRI study of finger tapping in children and adults. Hum. Brain Mapp. 2018, 39, 3203–3215. [Google Scholar] [CrossRef]
- Mima, T.; Sadato, N.; Yazawa, S.; Hanakawa, T.; Fukuyama, H.; Yonekura, Y.; Shibasaki, H. Brain structures related to active and passive finger movements in man. Brain 1999, 122, 1989–1997. [Google Scholar] [CrossRef]
- Hansen, E.A. On voluntary rhythmic leg movement behaviour and control during pedalling. Acta Physiol. 2015, 214, 1–18. [Google Scholar] [CrossRef]
- Fontes, E.B.; Bortolotti, H.; Grandjean da Costa, K.; Machado de Campos, B.; Castanho, G.K.; Hohl, R.; Noakes, T.; Min, L.L. Modulation of cortical and subcortical brain areas at low and high exercise intensities. Br. J. Sports Med. 2020, 54, 110–115. [Google Scholar] [CrossRef]
- Jodo, E.; Chiang, C.; Aston-Jones, G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 1998, 83, 63–79. [Google Scholar] [CrossRef]
- Kuwamizu, R.; Yamazaki, Y.; Aoike, N.; Hiraga, T.; Hata, T.; Yassa, M.A.; Soya, H. Pupil dynamics during very light exercise predict benefits to prefrontal cognition. Neuroimage 2023, 277, 120244. [Google Scholar] [CrossRef]
- Eckstein, M.K.; Guerra-Carrillo, B.; Miller Singley, A.T.; Bunge, S.A. Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Dev. Cogn. Neurosci. 2017, 25, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, R.L.; Murphy, P.R.; Nieuwenhuis, S. Pupil diameter tracks lapses of attention. PLoS ONE 2016, 11, e0165274. [Google Scholar] [CrossRef]
- Thomson, D.R.; Besner, D.; Smilek, D. A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspect. Psychol. Sci. 2015, 10, 82–96. [Google Scholar] [CrossRef]
- Decambron, M.; Leclercq, F.; Renard, C.; Vincent, C. Speech audiometry in noise: SNR loss per age-group in normal hearing subjects. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2022, 139, 61–64. [Google Scholar] [CrossRef]
- Obuchi, C.; Kawase, T.; Sasame, Y.; Yamamoto, Y.; Sasaki, K.; Iwasaki, J.; Okamoto, H.; Kaga, K. Traits of developmental disorders in adults with listening difficulties without diagnosis of autism spectrum disorder and/or attention-deficit/hyperactivity disorder. J. Clin. Med. 2024, 13, 6281. [Google Scholar] [CrossRef]
- Howells, F.M.; Stein, D.J.; Russell, V.A. Synergistic tonic and phasic activity of the locus coeruleus norepinephrine (LC-NE) arousal system is required for optimal attentional performance. Metab. Brain Dis. 2012, 27, 267–274. [Google Scholar] [CrossRef]

| Characteristics | All, n = 33 |
|---|---|
| Age, mean (SD), years | 20.52 (1.37) |
| Sex, n (%) | |
| Male | 13 (39.39) |
| Female | 20 (60.61) |
| VAS (Subjective Difficulty of the Task) (SD) | Control (A) | Leg Fidgeting (B) | Hand Fidgeting (C) | Statistically Significant | p | r, η2 | |
|---|---|---|---|---|---|---|---|
| Mean (SD) | Mean (SD) | Mean (SD) | |||||
| Fast Speech | 64.3 (20.9) | 0.02 (0.21) | 0.10 (0.16) | 0.24 (0.35) | A < C | 0.002 | 0.36 |
| Speech in Noise | 61.6 (23.6) | −0.06 (0.41) | 0.05 (0.15) | 0.22 (0.37) | A < C | 0.014 | 0.49 |
| +10 dB | −0.12 (0.24) | 0.00 (0.12) | 0.16 (0.33) | A < C | 0.014 | 0.49 | |
| +5 dB | −0.10 (0.22) | 0.01 (0.16) | 0.19 (0.37) | A < C | 0.014 | 0.49 | |
| 0 dB | −0.11 (0.26) | 0.03 (0.16) | 0.19 (0.39) | A < B, A < C | 0.029, 0.003 | 0.45, 0.58 | |
| −5 dB | −0.06 (0.24) | 0.04 (0.15) | 0.21 (0.38) | n.s. | 0.144 | 0.06 | |
| −10 dB | 0.00 (0.23) | 0.08 (0.17) | 0.26 (0.36) | A < C | 0.042 | 0.43 | |
| −15 dB | 0.01 (0.22) | 0.11 (0.17) | 0.29 (0.38) | n.s. | 0.078 | 0.08 | |
| Multiple Speech | 45.2 (32.8) | −0.06 (0.23) | −0.03 (0.23) | 0.11 (0.35) | n.s. | 0.109 | 0.07 |
| Auditory Attention | 24.0 (1.80) | −0.19 (0.32) | −0.05 (0.23) | −0.03 (0.44) | n.s. | 0.207 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kataoka, S.; Miyaguchi, H.; Ishizuki, C.; Fukuda, H.; Yasunaga, M.; Kirimoto, H. Fidgeting Increases Pupil Diameter During Auditory Processing in Young Healthy Adults. Brain Sci. 2026, 16, 127. https://doi.org/10.3390/brainsci16020127
Kataoka S, Miyaguchi H, Ishizuki C, Fukuda H, Yasunaga M, Kirimoto H. Fidgeting Increases Pupil Diameter During Auditory Processing in Young Healthy Adults. Brain Sciences. 2026; 16(2):127. https://doi.org/10.3390/brainsci16020127
Chicago/Turabian StyleKataoka, Satoko, Hideki Miyaguchi, Chinami Ishizuki, Hiroshi Fukuda, Masanori Yasunaga, and Hikari Kirimoto. 2026. "Fidgeting Increases Pupil Diameter During Auditory Processing in Young Healthy Adults" Brain Sciences 16, no. 2: 127. https://doi.org/10.3390/brainsci16020127
APA StyleKataoka, S., Miyaguchi, H., Ishizuki, C., Fukuda, H., Yasunaga, M., & Kirimoto, H. (2026). Fidgeting Increases Pupil Diameter During Auditory Processing in Young Healthy Adults. Brain Sciences, 16(2), 127. https://doi.org/10.3390/brainsci16020127

