Subtype-Specific Brain Atrophy and White Matter Alterations in Mild Cognitive Impairment
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Magnetic Resonance Imaging Acquisition
2.3. Magnetic Resonance Image Preprocessing
2.4. Automated Fiber Quantification (AFQ)
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics and Neuropsychological Testing
3.2. Differences in White Matter Tract Profiles Among aMCI, naMCI, and NC Groups
3.3. Differences in Gray Matter Among the Three Groups
3.4. Correlation Between Structural Brain Alterations and Neuropsychological Scores
3.5. Relationship Between White Matter Microstructure and Cortical Thickness
3.6. Mediation Analyses
3.7. Validation of Structural Abnormalities for Classification Between aMCI and naMCI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MCI | mild cognitive impairment |
| aMCI | amnestic mild cognitive impairment |
| naMCI | non-amnestic mild cognitive impairment |
| AFQ | automated fiber quantification |
| ACC | anterior cingulate cortex |
| IFOF | inferior fronto-occipital fasciculus |
| AD | Alzheimer’s disease |
| DTI | diffusion tensor imaging |
| FA | fractional anisotropy |
| MRI | magnetic resonance imaging |
| CDR | Clinical Dementia Rating |
| MMSE | Mini-Mental State Examination |
| MoCA | Montreal Cognitive Assessment |
| MIS | Memory Index Score |
| BNT | Boston naming test |
| Stroop C | Stroop color and word test part three |
| CDT | Clock Drawing Test |
| AVLT | Auditory Verbal Learning Test |
| VFT | verbal fluency test |
| SDMT | symbol digit modality test |
| DST | digit span test |
| MD | mean diffusivity |
| AD | axial diffusivity |
| RD | radial diffusivity |
| ATR | anterior thalamic radiation |
| CST | corticospinal tract |
| CCing | cingulum cingulate |
| CHippo | cingulum hippocampus |
| ILF | inferior longitudinal fasciculus |
| SLF | superior longitudinal fasciculus |
| UF | uncinate fasciculus |
| AF | arcuate fasciculus |
| CC | corpus callosum |
| FDR | false discovery rate |
| IFGop | opercular part of inferior frontal gyrus |
References
- Yeung, M.K.; Chau, A.K.-Y.; Chiu, J.Y.-C.; Shek, J.T.-L.; Leung, J.P.-Y.; Wong, T.C.-H. Differential and subtype-specific neuroimaging abnormalities in amnestic and nonamnestic mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 80, 101675. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, E.C.; Smirnov, D.S.; Thomas, K.R.; Graves, L.V.; Bangen, K.J.; Delano-Wood, L.; Galasko, D.R.; Salmon, D.P.; Bondi, M.W. Data-Driven vs Consensus Diagnosis of MCI: Enhanced Sensitivity for Detection of Clinical, Biomarker, and Neuropathologic Outcomes. Neurology 2021, 97, e1288–e1299. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, J.H.; Byun, M.S.; Yi, D.; Jung, G.; Park, J.E.; Lee, D.Y. Comparison of Amyloid Positivity Rate and Accumulation Pattern between Amnestic and Non-Amnestic Type Mild Cognitive Impairment. Psychiatry Investig. 2020, 17, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Scafato, E.; Custodero, C.; Piazzolla, G.; Capogna, L.; Procaccio, A.; Gandin, C.; Galluzzo, L.; Ghirini, S.; Matone, A.; et al. Biopsychosocial frailty and mild cognitive impairment subtypes: Findings from the Italian project on the epidemiology of Alzheimer’s disease (IPREA). Alzheimer’s Dement. 2023, 19, 3306–3315. [Google Scholar] [CrossRef]
- Facal, D.; Guàrdia-Olmos, J.; Pereiro, A.X.; Lojo-Seoane, C.; Peró, M.; Juncos-Rabadán, O. Using an Overlapping Time Interval Strategy to Study Diagnostic Instability in Mild Cognitive Impairment Subtypes. Brain Sci. 2019, 9, 242. [Google Scholar] [CrossRef]
- Yu, J.; Lam, C.L.; Lee, T.M. White matter microstructural abnormalities in amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based studies. Neurosci. Biobehav. Rev. 2017, 83, 405–416. [Google Scholar] [CrossRef]
- Wang, S.; Rao, J.; Yue, Y.; Xue, C.; Hu, G.; Qi, W.; Ma, W.; Ge, H.; Zhang, F.; Zhang, X.; et al. Altered Frequency-Dependent Brain Activation and White Matter Integrity Associated With Cognition in Characterizing Preclinical Alzheimer’s Disease Stages. Front. Hum. Neurosci. 2021, 15, 625232. [Google Scholar] [CrossRef]
- Du, C.; Dang, M.; Chen, K.; Chen, Y.; Zhang, Z. Divergent brain regional atrophy and associated fiber disruption in amnestic and non-amnestic MCI. Alzheimer’s Res. Ther. 2023, 15, 199. [Google Scholar] [CrossRef]
- Allali, G.; Montembeault, M.; Saj, A.; Wong, C.H.; Cooper-Brown, L.A.; Bherer, L.; Beauchet, O. Structural Brain Volume Covariance Associated with Gait Speed in Patients with Amnestic and Non-Amnestic Mild Cognitive Impairment: A Double Dissociation. J. Alzheimer’s Dis. 2019, 71, S29–S39. [Google Scholar] [CrossRef]
- Raghavan, S.; Reid, R.I.; Przybelski, S.A.; Lesnick, T.G.; Graff-Radford, J.; Schwarz, C.G.; Knopman, D.S.; Mielke, M.M.; Machulda, M.M.; Petersen, R.C.; et al. Diffusion models reveal white matter microstructural changes with ageing, pathology and cognition. Brain Commun. 2021, 3, fcab106. [Google Scholar] [CrossRef]
- Fingerhut, H.; Gozdas, E.; Hosseini, S.H. Quantitative MRI Evidence for Cognitive Reserve in Healthy Elders and Prodromal Alzheimer’s Disease. J. Alzheimer’s Dis. 2022, 89, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Yao, H.; Feng, F.; Wang, P.; Zhou, B.; Jin, D.; Yang, Z.; Li, J.; Zhao, C.; Wang, L.; et al. Characterizing white matter connectivity in Alzheimer’s disease and mild cognitive impairment: An automated fiber quantification analysis with two independent datasets. Cortex 2020, 129, 390–405. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Yin, H.; Zhang, Y.; Zhang, D.; Wang, S.; Cao, Y.; Li, M.; Wang, B.; Zong, F.; Zhao, J. Impairment and Plasticity of Language-Related White Matter in Patients With Brain Arteriovenous Malformations. Stroke 2022, 53, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, S.; Qiu, Q.; Fang, Y.; Zhao, L.; Yue, L.; Wang, J.; Yan, F.; Li, X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer’s disease. Transl. Psychiatry 2024, 14, 301. [Google Scholar] [CrossRef]
- Zheng, R.; Zhang, W.; Li, Y.; Zhu, X.; Lan, Z.; Rushmore, J.; Rathi, Y.; Makris, N.; O’dOnnell, L.J.; Zhang, F. AGFS-tractometry: A novel atlas-guided fine-scale tractometry approach for enhanced along-tract group statistical comparison using diffusion MRI tractography. Med. Image Anal. 2025, 109, 103892. [Google Scholar] [CrossRef]
- Andica, C.; Kamagata, K.; Uchida, W.; Saito, Y.; Takabayashi, K.; Hagiwara, A.; Takeshige-Amano, H.; Hatano, T.; Hattori, N.; Aoki, S. Fiber-Specific White Matter Alterations in Parkinson’s Disease Patients with GBA Gene Mutations. Mov. Disord. 2023, 38, 2019–2030. [Google Scholar] [CrossRef]
- Ding, W.; Ren, P.; Yi, L.; Si, Y.; Yang, F.; Li, Z.; Bao, H.; Yan, S.; Zhang, X.; Li, S.; et al. Association of cortical and subcortical microstructure with disease severity: Impact on cognitive decline and language impairments in frontotemporal lobar degeneration. Alzheimer’s Res. Ther. 2023, 15, 58. [Google Scholar] [CrossRef]
- Andica, C.; Kamagata, K.; Uchida, W.; Takabayashi, K.; Shimoji, K.; Kaga, H.; Someya, Y.; Tamura, Y.; Kawamori, R.; Watada, H.; et al. White matter fiber-specific degeneration in older adults with metabolic syndrome. Mol. Metab. 2022, 62, 101527. [Google Scholar] [CrossRef]
- Wei, X.; Wang, S.; Zhang, M.; Yan, Y.; Wang, Z.; Wei, W.; Tuo, H.; Wang, Z. Alterations of diffusion kurtosis measures in gait-related white matter in the “ON–OFF state” of Parkinson’s disease. Chin. Med. J. 2025, 138, 1094–1102. [Google Scholar] [CrossRef]
- Li, W.P.; Zhao, H.; Zhang, X.; Liang, X.; Liu, Y.; Zhang, W.; Zhang, B. Study on the white matter neuronal integrity in amnestic mild cognitive impairment based on automating fiber-tract quantification. Chin. Med. J. 2020, 100, 172–177. [Google Scholar] [CrossRef]
- Zhong, X.; Chen, B.; Hou, L.; Wang, Q.; Liu, M.; Yang, M.; Zhang, M.; Zhou, H.; Wu, Z.; Zhang, S.; et al. Shared and specific dynamics of brain activity and connectivity in amnestic and nonamnestic mild cognitive impairment. CNS Neurosci. Ther. 2022, 28, 2053–2065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Li, W.; Liu, B.; Wu, W.; Zhao, H.; Liu, R.; Zhang, Y.; Yin, Z.; Yu, T.; et al. Characterization of white matter changes along fibers by automated fiber quantification in the early stages of Alzheimer’s disease. NeuroImage Clin. 2019, 22, 101723. [Google Scholar] [CrossRef] [PubMed]
- Walle, C.V.; Keymeulen, A.; Oostra, A.; Schiettecatte, E.; Dhooge, I.; Smets, K.; Herregods, N. Apparent diffusion coefficient values of the white matter in magnetic resonance imaging of the neonatal brain may help predict outcome in congenital cytomegalovirus infection. Pediatr. Radiol. 2024, 54, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, W.; Xue, C.; Hu, G.; Ma, W.; Qi, W.; Dong, L.; Lin, X.; Chen, J. Voxelwise Meta-Analysis of Gray Matter Abnormalities in Mild Cognitive Impairment and Subjective Cognitive Decline Using Activation Likelihood Estimation. J. Alzheimer’s Dis. 2020, 77, 1495–1512. [Google Scholar] [CrossRef]
- Zhao, Y.; Sallie, S.N.; Cui, H.; Zeng, N.; Du, J.; Yuan, T.; Li, D.; De Ridder, D.; Zhang, C. Anterior Cingulate Cortex in Addiction: New Insights for Neuromodulation. Neuromodulation 2020, 24, 187–196. [Google Scholar] [CrossRef]
- Ott, F.; Legler, E.; Kiebel, S.J. Forward planning driven by context-dependant conflict processing in anterior cingulate cortex. NeuroImage 2022, 256, 119222. [Google Scholar] [CrossRef]
- Minamoto, T.; Haruno, M. Distinctive types of aversiveness are represented as the same in a portion of the dorsal anterior cingulate cortex: An fMRI study with the cue paradigm. Neuroscience 2022, 503, 28–44. [Google Scholar] [CrossRef]
- Vermeylen, L.; Wisniewski, D.; González-García, C.; Hoofs, V.; Notebaert, W.; Braem, S. Shared Neural Representations of Cognitive Conflict and Negative Affect in the Medial Frontal Cortex. J. Neurosci. 2020, 40, 8715–8725. [Google Scholar] [CrossRef]
- Cipolotti, L.; Mole, J.; Ruffle, J.K.; Nelson, A.; Gray, R.; Nachev, P. Cognitive control & the anterior cingulate cortex: Necessity & coherence. Cortex 2025, 182, 87–99. [Google Scholar] [CrossRef]
- Xin, H.; Liang, C.; Fu, Y.; Feng, M.; Wang, S.; Gao, Y.; Sui, C.; Zhang, N.; Guo, L.; Wen, H. Disrupted brain structural networks associated with depression and cognitive dysfunction in cerebral small vessel disease with microbleeds. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 131, 110944. [Google Scholar] [CrossRef]
- You, Y.X.; Shahar, S.; Mohamad, M.; Rajab, N.F.; Haron, H.; Din, N.C.; Md, H.A.H. Neuroimaging Functional Magnetic Resonance Imaging Task-Based Dorsolateral Prefrontal Cortex Activation Following 12 Weeks of Cosmos caudatus Supplementation Among Older Adults With Mild Cognitive Impairment. J. Magn. Reson. Imaging 2021, 54, 1804–1818. [Google Scholar] [CrossRef] [PubMed]
- Giannini, L.A.A.; Ohm, D.T.; Rozemuller, A.J.M.; Dratch, L.; Suh, E.; van Deerlin, V.M.; Trojanowski, J.Q.; Lee, E.B.; van Swieten, J.C.; Grossman, M.; et al. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration. Acta Neuropathol. 2022, 144, 1065–1084. [Google Scholar] [CrossRef] [PubMed]
- Pezzoli, S.; Giorgio, J.; Martersteck, A.; Dobyns, L.; Harrison, T.M.; Jagust, W.J. Successful cognitive aging is associated with thicker anterior cingulate cortex and lower tau deposition compared to typical aging. Alzheimer’s Dement. 2024, 20, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Thirugnanachandran, T.; Beare, R.; Mitchell, M.; Wong, C.; Vuong, J.; Singhal, S.; Slater, L.-A.; Hilton, J.; Sinnott, M.; Srikanth, V.; et al. Anterior Cerebral Artery Stroke: Role of Collateral Systems on Infarct Topography. Stroke 2021, 52, 2930–2938. [Google Scholar] [CrossRef]
- Benussi, A.; Premi, E.; Grassi, M.; Alberici, A.; Cantoni, V.; Gazzina, S.; Archetti, S.; Gasparotti, R.; Fumagalli, G.G.; Bouzigues, A.; et al. Diagnostic accuracy of research criteria for prodromal frontotemporal dementia. Alzheimer’s Res. Ther. 2024, 16, 10. [Google Scholar] [CrossRef]
- Gorbach, T.; Pudas, S.; Bartrés-Faz, D.; Brandmaier, A.M.; Düzel, S.; Henson, R.N.; Idland, A.; Lindenberger, U.; Bros, D.M.; Mowinckel, A.M.; et al. Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. Alzheimer’s Dement. 2020, 12, e12110. [Google Scholar] [CrossRef]
- Wei, X.; Du, X.; Xie, Y.; Suo, X.; He, X.; Ding, H.; Zhang, Y.; Ji, Y.; Chai, C.; Liang, M.; et al. Mapping cerebral atrophic trajectory from amnestic mild cognitive impairment to Alzheimer’s disease. Cereb. Cortex 2023, 33, 1310–1327. [Google Scholar] [CrossRef]
- Xie, L.; Das, S.R.; Wisse, L.E.M.; Ittyerah, R.; de Flores, R.; Shaw, L.M.; Yushkevich, P.A.; Wolk, D.A.; Initiative, F.T.A.D.N. Baseline structural MRI and plasma biomarkers predict longitudinal structural atrophy and cognitive decline in early Alzheimer’s disease. Alzheimer’s Res. Ther. 2023, 15, 79. [Google Scholar] [CrossRef]
- Chen, H.; Huang, L.; Li, H.; Qian, Y.; Yang, D.; Qing, Z.; Luo, C.; Li, M.; Zhang, B.; Xu, Y. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment. CNS Neurosci. Ther. 2020, 26, 576–588. [Google Scholar] [CrossRef]
- Yu, Z.; Pang, H.; Yu, H.; Wu, Z.; Ding, Z.; Fan, G. Segmental disturbance of white matter microstructure in predicting mild cognitive impairment in idiopathic Parkinson’s disease: An individualized study based on automated fiber quantification tractography. Park. Relat. Disord. 2023, 115, 105802. [Google Scholar] [CrossRef]
- Rosario, B.L.; Rosso, A.L.; Aizenstein, H.J.; Harris, T.; Newman, A.B.; Satterfield, S.; Studenski, S.A.; Yaffe, K.; Rosano, C. Cerebral White Matter and Slow Gait: Contribution of Hyperintensities and Normal-appearing Parenchyma. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Szeszko, P.R.; Kowalchyk, M.; Chu, K.-W.; Aladin, S.; Dolgopolskaia, E.-S.; Ng, S.; Hollander, S.; Perez-Rodriguez, M.M.; McClure, M.M.; Kahn, R.S.; et al. Investigation of brain white matter and social cognition in schizophrenia and schizotypal personality disorder using neurite orientation dispersion and density imaging. Mol. Psychiatry 2025, 30, 4792–4800. [Google Scholar] [CrossRef]
- Popal, H.; Quimby, M.; Hochberg, D.; Dickerson, B.C.; Collins, J.A. Altered functional connectivity of cortical networks in semantic variant Primary Progressive Aphasia. NeuroImage Clin. 2020, 28, 102494. [Google Scholar] [CrossRef] [PubMed]
- Vallesi, A.; Arbula, S.; Capizzi, M.; Causin, F.; D’Avella, D. Domain-independent neural underpinning of task-switching: An fMRI investigation. Cortex 2015, 65, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, M.; Moscufo, N.; Meier, D.; Skudlarski, P.; Pearlson, G.D.; White, W.B.; Wolfson, L.; Guttmann, C.R. Thalamic fractional anisotropy predicts accrual of cerebral white matter damage in older subjects with small-vessel disease. J. Cereb. Blood Flow Metab. 2014, 34, 1321–1327. [Google Scholar] [CrossRef]
- Chu, W.T.; Wang, W.-E.; Zaborszky, L.; Golde, T.E.; DeKosky, S.; Duara, R.; Loewenstein, D.A.; Adjouadi, M.; Coombes, S.A.; Vaillancourt, D.E. Association of Cognitive Impairment With Free Water in the Nucleus Basalis of Meynert and Locus Coeruleus to Transentorhinal Cortex Tract. Neurology 2022, 98, e700–e710. [Google Scholar] [CrossRef]
- Carlos, A.F.; Weigand, S.D.; Pham, N.T.T.; Petersen, R.C.; Jack, C.R.; Dickson, D.W.; Whitwell, J.L.; Josephs, K.A. White matter hyperintensities and TDP-43 pathology in Alzheimer’s disease. Alzheimer’s Dement. 2025, 21, ealz14516. [Google Scholar] [CrossRef]
- Ling, J.M.; Klimaj, S.; Toulouse, T.; Mayer, A.R. A prospective study of gray matter abnormalities in mild traumatic brain injury. Neurology 2013, 81, 2121–2127. [Google Scholar] [CrossRef]
- Lenfeldt, N.; Larsson, A.; Nyberg, L.; Birgander, R.; Forsgren, L. Fractional anisotropy in the substantia nigra in Parkinson’s disease: A complex picture. Eur. J. Neurol. 2015, 22, 1408–1414. [Google Scholar] [CrossRef]
- Qin, L.; Guo, Z.; McClure, M.A.; Mu, Q. White matter changes from mild cognitive impairment to Alzheimer’s disease: A meta-analysis. Acta Neurol. Belg. 2021, 121, 1435–1447. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, X.; He, X.; Wang, L.; Wang, K.; Qiu, B. Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia. Neurosci. Lett. 2016, 627, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; D’ALbis, M.; Boisgontier, J.; Poupon, C.; Mangin, J.; Guevara, P.; Duclap, D.; Hamdani, N.; Petit, J.; Monnet, D.; et al. Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism. Acta Psychiatr. Scand. 2016, 134, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Stammen, C.; Fraenz, C.; Grazioplene, R.G.; Schlüter, C.; Merhof, V.; Johnson, W.; Güntürkün, O.; DeYoung, C.G.; Genç, E. Robust associations between white matter microstructure and general intelligence. Cereb. Cortex 2023, 33, 6723–6741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhao, T.; Ding, Y.; Cheng, J.; Cao, C. Brain plasticity associated with prolonged shooting training: A multimodal neuroimaging investigation from a cross-sectional study. Front. Hum. Neurosci. 2025, 19, 1530642. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Yao, L.; He, N.; Tang, Y.; Chen, L.; Long, F.; Chen, Y.; Kemp, G.J.; Lui, S.; et al. Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer’s disease. Cereb. Cortex 2024, 34, bhae094. [Google Scholar] [CrossRef]
- Fortea, L.; Ysbæk-Nielsen, A.T.; Macoveanu, J.; Petersen, J.Z.; Fisher, P.M.; Kessing, L.V.; Knudsen, G.M.; Radua, J.; Vieta, E.; Miskowiak, K.W. Aberrant resting-state functional connectivity underlies cognitive and functional impairments in remitted patients with bipolar disorder. Acta Psychiatr. Scand. 2023, 148, 570–582. [Google Scholar] [CrossRef]
- Varela-López, B.; Zurrón, M.; Lindín, M.; Díaz, F.; Galdo-Alvarez, S. Compensation versus deterioration across functional networks in amnestic mild cognitive impairment subtypes. GeroScience 2025, 47, 1805–1822. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wang, H.; Lei, M.; Jiang, Y.; Xiong, D.; Chen, Y.; Zhang, Y.; Zhao, G.; Wang, Y.; et al. Resting-state network alterations in depression: A comprehensive meta-analysis of functional connectivity. Psychol. Med. 2025, 55, e63. [Google Scholar] [CrossRef]
- Kim, H.; Hillis, A.E.; Themistocleous, C. Machine Learning Classification of Patients with Amnestic Mild Cognitive Impairment and Non-Amnestic Mild Cognitive Impairment from Written Picture Description Tasks. Brain Sci. 2024, 14, 652. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, I.; Lee, S.; Choi, H.; Ahn, M.; Ryu, O.; Jang, D.; Lee, U. Machine learning-based classification of aMCI and non-aMCI using gait and MRI-based characteristics. Alzheimer’s Dement. 2025, 20, e086713. [Google Scholar] [CrossRef]





| aMCI | naMCI | NC | p Value | Post Hoc Groupwise | |||
|---|---|---|---|---|---|---|---|
| aMCI vs. naMCI | aMCI vs. NC | naMCI vs. NC | |||||
| Discovery dataset | |||||||
| Number of subjects | 58 | 35 | 95 | ||||
| Education (years) | 11.10 ± 3.36 | 13.00 ± 4.29 | 12.73 ± 4.04 | 0.009 | 0.126 | 0.008 | 1.000 |
| Age (year) | 67.33 ± 8.02 | 61.73 ± 8.35 | 62.18 ± 8.15 | <0.001 | 0.008 | 0.001 | 1.000 |
| Sex (M/F) | 31/27 | 14/21 | 53/42 | 0.148 | – | – | – |
| MMSE | 27.53 ± 1.66 | 27.00 ± 1.92 | 29.06 ± 0.95 | <0.001 | 0.835 | <0.001 | <0.001 |
| MoCA | 21.40 ± 2.37 | 19.85 ± 1.64 | 27.66 ± 1.26 | <0.001 | 0.214 | <0.001 | <0.001 |
| MIS | 2.66 ± 2.01 | 6.94 ± 3.59 | 12.32 ± 2.24 | <0.001 | 0.001 | <0.001 | <0.001 |
| BNT | 21.67 ± 1.70 | 20.67 ± 2.53 | 22.34 ± 1.77 | 0.005 | 0.092 | 0.026 | <0.001 |
| Stroop C (second) | 97.02 ± 19.39 | 114.03 ± 27.03 | 82.07 ± 15.00 | <0.001 | 0.022 | <0.001 | <0.001 |
| CDT | 8.79 ± 1.17 | 8.48 ± 1.37 | 9.52 ± 0.62 | <0.001 | 1.000 | 0.002 | <0.001 |
| Replication dataset | |||||||
| Number of subjects | 61 | 39 | 67 | ||||
| Education (years) | 11.87 ± 2.74 | 12.62 ± 2.96 | 12.22 ± 2.55 | 0.421 | – | – | – |
| Age (year) | 65.34 ± 7.29 | 64.64 ± 8.21 | 62.85 ± 7.48 | 0.189 | – | – | – |
| Sex (M/F) | 28/36 | 17/22 | 23/44 | 0.477 | – | – | – |
| MMSE | 26.90 ± 1.97 | 27.92 ± 2.02 | 28.57 ± 1.28 | <0.001 | 0.008 | <0.001 | 0.479 |
| MoCA | 22.13 ± 2.34 | 22.56 ± 2.57 | 26.19 ± 1.49 | <0.001 | 1.000 | <0.001 | <0.001 |
| AVLT | 17.16 ± 1.70 | 27.38 ± 7.79 | 37.40 ± 3.27 | <0.001 | <0.001 | <0.001 | 0.002 |
| VFT | 18.41 ± 4.62 | 16.77 ± 5.71 | 20.34 ± 4.58 | 0.004 | 0.906 | 0.049 | 0.005 |
| Stroop C (second) | 84.48 ± 24.03 | 100.59 ± 34.78 | 79.87 ± 16.40 | 0.008 | 0.134 | 0.659 | 0.006 |
| SDMT | 33.74 ± 9.40 | 29.38 ± 7.34 | 39.25 ± 9.39 | <0.001 | 0.069 | 0.005 | <0.001 |
| DST | 11.23 ± 2.08 | 11.46 ± 1.34 | 12.64 ± 1.91 | <0.001 | 1.000 | 0.001 | 0.007 |
| CDT | 8.74 ± 1.26 | 8.18 ± 1.28 | 9.37 ± 0.95 | <0.001 | 0.099 | 0.003 | <0.001 |
| aMCI | naMCI | NC | F | p (FDR Corrected) | Post Hoc Groupwise | |||
|---|---|---|---|---|---|---|---|---|
| aMCI vs. naMCI | aMCI vs. NC | naMCI vs. NC | ||||||
| Discovery dataset | ||||||||
| rh_G_and_S_cingul_Ant | 2.377 ± 0.130 | 2.294 ± 0.113 | 2.397 ± 0.139 | 8.250 | <0.001 | 0.010 | 1.000 | <0.001 |
| rh_G_orbital | 2.393 ± 0.116 | 2.298 ± 0.091 | 2.395 ± 0.130 | 8.999 | <0.001 | 0.004 | 1.000 | <0.001 |
| rh_S_orbital_H_Shaped | 2.153 ± 0.128 | 2.061 ± 0.147 | 2.192 ± 0.166 | 9.511 | <0.001 | 0.005 | 0.992 | <0.001 |
| rh_S_suborbital | 2.125 ± 0.281 | 1.949 ± 0.212 | 2.048 ± 0.252 | 8.046 | <0.001 | <0.001 | 0.024 | 0.109 |
| rh_G_temp_sup_G_T_transv | 2.266 ± 0.190 | 2.188 ± 0.205 | 2.312 ± 0.222 | 6.369 | 0.019 | 0.005 | 1.000 | 0.003 |
| rh_G_front_inf_Opercular | 2.329 ± 0.116 | 2.271 ± 0.148 | 2.358 ± 0.122 | 5.930 | 0.025 | 0.021 | 1.000 | 0.003 |
| Replication dataset | ||||||||
| rh_G_and_S_cingul_Ant | 2.564 ± 0.126 | 2.512 ± 0.124 | 2.560 ± 0.121 | 6.340 | 0.037 | 0.001 | 0.086 | 0.035 |
| rh_G_front_inf_Opercular | 2.671 ± 0.129 | 2.565 ± 0.159 | 2.655 ± 0.131 | 7.500 | 0.037 | <0.001 | 0.164 | 0.007 |
| rh_G_front_sup | 2.845 ± 0.121 | 2.767 ± 0.137 | 2.825 ± 0.125 | 6.635 | 0.037 | 0.001 | 0.027 | 0.091 |
| rh_G_pariet_inf_Angular | 2.567 ± 0.164 | 2.460 ± 0.157 | 2.562 ± 0.137 | 7.058 | 0.037 | <0.001 | 0.218 | 0.007 |
| rh_G_front_middle | 2.600 ± 0.122 | 2.519 ± 0.124 | 2.592 ± 0.121 | 5.654 | 0.049 | 0.001 | 0.297 | 0.014 |
| aMCI | naMCI | NC | F | p (FDR Corrected) | Post Hoc Groupwise | |||
|---|---|---|---|---|---|---|---|---|
| aMCI vs. naMCI | aMCI vs. NC | naMCI vs. NC | ||||||
| Discovery dataset | ||||||||
| Left_Thalamus_Proper | 5828.09 ± 530.19 | 5967.15 ± 727.54 | 6234.03 ± 677.61 | 2.882 | 0.149 | – | – | – |
| Left_Caudate | 3310.53 ± 585.76 | 3291.28 ± 594.38 | 3331.29 ± 414.61 | 0.003 | 0.997 | – | – | – |
| Left_Putamen | 4685.58 ± 563.52 | 4734.38 ± 571.93 | 4743.28 ± 533.23 | 0.163 | 0.915 | – | – | – |
| Left_Pallidum | 1726.68 ± 190.66 | 1814.65 ± 223.93 | 1815.93 ± 260.62 | 1.117 | 0.462 | – | – | – |
| Left_Hippocampus | 3512.86 ± 417.48 | 3723.32 ± 352.91 | 3782.75 ± 374.33 | 4.183 | 0.079 | – | – | – |
| Left_Amygdala | 1411.37 ± 249.02 | 1501.94 ± 239.04 | 1583.97 ± 252.89 | 3.460 | 0.119 | – | – | – |
| Left_Accumbens_area | 496.88 ± 75.01 | 515.40 ± 79.56 | 534.63 ± 79.38 | 1.819 | 0.257 | – | – | – |
| Right_Thalamus_Proper | 5820.23 ± 632.01 | 5923.84 ± 633.40 | 6173.41 ± 641.51 | 2.072 | 0.257 | – | – | – |
| Right_Caudate | 3499.36 ± 602.73 | 3567.63 ± 640.05 | 3490.45 ± 491.94 | 0.491 | 0.722 | – | – | – |
| Right_Putamen | 4810.84 ± 645.74 | 4909.79 ± 592.86 | 4866.90 ± 546.51 | 0.481 | 0.722 | – | – | – |
| Right_Pallidum | 1649.38 ± 189.81 | 1748.69 ± 253.50 | 1745.26 ± 241.11 | 1.825 | 0.257 | – | – | – |
| Right_Hippocampus | 3532.62 ± 310.17 | 3795.44 ± 419.90 | 3830.16 ± 367.82 | 7.187 | 0.014 | 0.008 | <0.001 | 0.890 |
| Right_Amygdala | 1473.45 ± 280.99 | 1605.48 ± 243.82 | 1623.56 ± 247.08 | 2.786 | 0.149 | – | – | – |
| Right_Accumbens_area | 499.20 ± 77.50 | 512.28 ± 84.02 | 543.35 ± 82.23 | 4.388 | 0.079 | – | – | – |
| Replication dataset | ||||||||
| Left_Thalamus_Proper | 6964.91 ± 747.30 | 7176.90 ± 609.14 | 7475.82 ± 750.46 | 5.587 | 0.028 | 0.288 | 0.001 | 0.095 |
| Left_Caudate | 3254.44 ± 477.55 | 3129.79 ± 314.66 | 3286.68 ± 416.61 | 1.387 | 0.322 | – | – | – |
| Left_Putamen | 4591.15 ± 609.08 | 4511.05 ± 439.91 | 4702.15 ± 493.93 | 1.291 | 0.324 | – | – | – |
| Left_Pallidum | 1975.75 ± 262.28 | 1973.40 ± 221.64 | 1986.76 ± 204.47 | 0.075 | 0.927 | – | – | – |
| Left_Hippocampus | 3849.90 ± 322.91 | 4015.21 ± 279.57 | 4082.78 ± 368.63 | 6.569 | 0.028 | 0.024 | 0.001 | 0.535 |
| Left_Amygdala | 1556.15 ± 202.94 | 1594.91 ± 162.36 | 1600.60 ± 147.75 | 0.701 | 0.535 | – | – | – |
| Left_Accumbens_area | 331.37 ± 82.65 | 358.09 ± 82.98 | 367.98 ± 86.82 | 1.489 | 0.321 | – | – | – |
| Right_Thalamus_Proper | 7080.36 ± 781.66 | 7216.39 ± 755.10 | 7546.25 ± 783.04 | 4.207 | 0.060 | – | – | – |
| Right_Caudate | 3254.64 ± 475.56 | 3162.89 ± 348.42 | 3345.48 ± 432.53 | 2.117 | 0.248 | – | – | – |
| Right_Putamen | 4635.91 ± 621.97 | 4570.72 ± 444.11 | 4772.59 ± 469.81 | 1.656 | 0.302 | – | – | – |
| Right_Pallidum | 1930.31 ± 274.04 | 1899.48 ± 197.38 | 1987.36 ± 184.86 | 1.886 | 0.271 | – | – | – |
| Right_Hippocampus | 4057.41 ± 384.20 | 4285.34 ± 403.75 | 4302.51 ± 400.01 | 5.154 | 0.033 | 0.013 | 0.005 | 0.868 |
| Right_Amygdala | 1704.13 ± 212.28 | 1752.96 ± 197.96 | 1787.67 ± 163.59 | 2.631 | 0.175 | – | – | – |
| Right_Accumbens_area | 432.57 ± 79.10 | 465.78 ± 70.60 | 471.88 ± 79.94 | 2.667 | 0.175 | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wei, L.; Lu, J.; Li, X.; Yang, H.; Wang, H.; Zhu, Z.; Chen, J.; Zhang, B. Subtype-Specific Brain Atrophy and White Matter Alterations in Mild Cognitive Impairment. Brain Sci. 2026, 16, 51. https://doi.org/10.3390/brainsci16010051
Wei L, Lu J, Li X, Yang H, Wang H, Zhu Z, Chen J, Zhang B. Subtype-Specific Brain Atrophy and White Matter Alterations in Mild Cognitive Impairment. Brain Sciences. 2026; 16(1):51. https://doi.org/10.3390/brainsci16010051
Chicago/Turabian StyleWei, Liangpeng, Jiaming Lu, Xin Li, Huiquan Yang, Haoyao Wang, Zhengyang Zhu, Jiu Chen, and Bing Zhang. 2026. "Subtype-Specific Brain Atrophy and White Matter Alterations in Mild Cognitive Impairment" Brain Sciences 16, no. 1: 51. https://doi.org/10.3390/brainsci16010051
APA StyleWei, L., Lu, J., Li, X., Yang, H., Wang, H., Zhu, Z., Chen, J., & Zhang, B. (2026). Subtype-Specific Brain Atrophy and White Matter Alterations in Mild Cognitive Impairment. Brain Sciences, 16(1), 51. https://doi.org/10.3390/brainsci16010051

