Cerebral Blood Flow and Blood–Brain Barrier Water Exchange in Major Depressive Disorder: Evidence from Diffusion-Prepared Arterial Spin Labelling MRI
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Investigations
2.3.1. Clinical
2.3.2. Laboratory
2.3.3. Imaging
Acquisition
Processing
2.4. Statistical Analyses
3. Results
3.1. Sociodemographic, Clinical Characteristics and Inflammatory Markers
3.2. Global Cerebral Blood Flow and Blood–Brain Barrier Water Exchange
3.3. Regional Cerebral Blood Flow and Blood–Brain Barrier Water Exchange
3.4. Logistic Regression Modelling of MDD Predictors
3.5. Associations of kw and CBF with Sociodemographic, Clinical Characteristics, and Inflammatory Marker Concentrations Among MDD Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MRI | Magnetic resonance imaging |
| DP-pCASL | Diffusion-prepared pseudo-continuous arterial spin labelling |
| CBF | Cerebral blood flow |
| BBB | Blood–brain barrier |
| kw | Water exchange across the blood–brain barrier |
| MDD | Major depressive disorder |
| LPS | Lipopolysaccharide |
| IL-6 | Interleukin 6 |
| IL-10 | Interleukin 10 |
| TNF-α | Tumour necrosis factor α |
| IFN-γ | Interferon-γ |
| TJ | Tight junction |
| AQP4 | Aquaporin 4 |
| GBCA | Gadolinium-based contrast agent |
| DCE-MRI | Dynamic contrast-enhanced magnetic resonance imaging |
| PET | Positron emission tomography |
| ASL | Arterial spin labelling |
| CSF | Cerebrospinal fluid |
| MADRS | Montgomery–Åsberg Depression Rating Scale |
| FDR | False discovery rate |
| BMI | Body mass index |
| ROC | Receiver operating curve |
| CG | Control group |
| IQR | Interquartile range |
| SD | Standard deviation |
| MOC | Medial orbitofrontal cortex |
| RMCF | Rostral middle frontal cortex |
| rACC | Rostral anterior cingulate cortex |
| cACC | Caudal anterior cingulate cortex |
| PCC | Posterior cingulate cortex |
| ICC | Isthmus cingulate cortex |
| AUC | Area under curve |
Appendix A
| Region | Significance in MDD | Study Protocol | Reference |
|---|---|---|---|
| Amygdala | Increased activity in automatic negative stimuli processing | fMRI study of 57 patients with MDD and 37 controls | [61] |
| Reduced intrinsic connectivity | fMRI study of 55 patients with MDD and 19 controls | [62] | |
| Unpredictable chronic mild stress associated with increased inflammatory cytokines (IL-1β, IL6, TNF-α) | Mouse model with experimental and control groups, messenger RNA quantification in the amygdala | [63] | |
| Increased activity in young adults with family history of depression, possible marker of low resilience | fMRI study of 27 young adults with family history of MDD and 45 controls without family history | [64] | |
| Increased CBF of the right amygdala increases risk of MDD in first-degree relatives of patients with MDD | ASL MRI 33-month follow-up study of 200 first-degree relatives of MDD patients and 100 controls with no first-degree family history of MDD | [52] | |
| vmPFC | Ventromedial frontal cortex hypoactivity during reward positivity and correlation with anhedonia in patients with MDD | MEG study of 43 patients with MDD | [65] |
| vmPFC hyperactivity predicts poor outcomes to sertraline treatment in late-life MDD | fMRI study of 36 older patients with MDD | [66] | |
| Abnormal vmPFC–amygdala connectivity to happy faces in females with MDD | fMRI study of 19 female patients with MDD during depressive episode and 19 controls | [67] | |
| Increased cortical thickness of the vmPFC in medication-free patients with MDD | Meta-analysis of 15 structural MRI studies with 529 MDD patients and 586 controls | [68] | |
| DLPFC | Impaired DLPFC neuroplasticity in patients with treatment-resistant MDD | TMS–EEG study of 60 patients with treatment-resistant MDD and 60 controls | [69] |
| Normalization of altered DLPFC–precuneus connectivity reduces depressive symptoms | fMRI functional connectivity neurofeedback study of 20 participants | [70] | |
| 20-Hz rTMS over the left DLPFC positively impacted depression severity | rTMS study of 28 female subjects with MDD separated into experimental and control groups | [71] | |
| Left DLPFC increased functional measures in response to treatment of MDD | Meta-analysis of 37 eligible functional neuroimaging studies | [72] | |
| tDCS of the DLPFC reduced anhedonia in depressed patients | Randomised double-blind sham-controlled trial of tDCS with 70 patients separated into three groups | [73] | |
| Cingulate | Gray matter volume of the anterior cingulate cortex associated with suicidal ideation in patients with MDD | Meta-analysis of 246 patients with MDD and 235 controls | [74] |
| Dysconnectivity of dorsal anterior cingulate cortex with cognition-related regions | Meta-analysis of 44 resting state fMRI studies | [75] | |
| Increased amplitude of low-frequency fluctuation in the dorsal anterior cingulate cortex in patients with MDD | Resting state fMRI study of 30 first-episode drug-naïve patients with MDD and 52 controls | [76] | |
| Altered subregional anterior cingulate cortex functional connectivity in patients with MDD and associated with depressive and anxious symptom severity | fMRI study of 41 newly diagnosed drug-naïve patients with MDD and 43 controls | [77] |
References
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major Depressive Disorder: Hypothesis, Mechanism, Prevention and Treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef]
- Wu, S.; Yin, Y.; Du, L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell. Mol. Neurobiol. 2022, 42, 2571–2591. [Google Scholar] [CrossRef] [PubMed]
- Kealy, J.; Greene, C.; Campbell, M. Blood-Brain Barrier Regulation in Psychiatric Disorders. Neurosci. Lett. 2020, 726, 133664. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A Blood–Brain Barrier Overview on Structure, Function, Impairment, and Biomarkers of Integrity. Fluids Barriers CNS 2020, 17, 69. [Google Scholar] [CrossRef] [PubMed]
- Varatharaj, A.; Galea, I. The Blood-Brain Barrier in Systemic Inflammation. Brain Behav. Immun. 2017, 60, 1–12. [Google Scholar] [CrossRef]
- Nagelhus, E.A.; Ottersen, O.P. Physiological Roles of Aquaporin-4 in Brain. Physiol. Rev. 2013, 93, 1543–1562. [Google Scholar] [CrossRef] [PubMed]
- Benveniste, H.; Elkin, R.; Heerdt, P.M.; Koundal, S.; Xue, Y.; Lee, H.; Wardlaw, J.; Tannenbaum, A. The Glymphatic System and Its Role in Cerebral Homeostasis. J. Appl. Physiol. 2020, 129, 1330–1340. [Google Scholar] [CrossRef]
- Bohr, T.; Hjorth, P.G.; Holst, S.C.; Hrabětová, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.-A.; Martens, E.A.; Mori, Y.; et al. The Glymphatic System: Current Understanding and Modeling. iScience 2022, 25, 104987. [Google Scholar] [CrossRef]
- Zou, K.; Deng, Q.; Zhang, H.; Huang, C. Glymphatic System: A Gateway for Neuroinflammation. Neural Regen. Res. 2024, 19, 2661–2672. [Google Scholar] [CrossRef]
- Shang, B.; Wang, T.; Zhao, S.; Yi, S.; Zhang, T.; Yang, Y.; Zhang, F.; Zhang, D.; Xu, X.; Xu, J.; et al. Higher Blood-Brain Barrier Permeability in Patients with Major Depressive Disorder Identified by DCE-MRI Imaging. Psychiatry Res. Neuroimaging 2024, 337, 111761. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Luo, Y.; Yang, Y.; Upreti, B.; Cheng, Y.; Cui, R.; Liu, S.; Xu, J. Increasing of Blood Brain Barrier Permeability and the Association With Depression and Anxiety in Systemic Lupus Erythematosus Patients. Front. Med. 2022, 9, 852835. [Google Scholar] [CrossRef]
- Leterrier, S.; Goutal, S.; Hugon, G.; Goislard, M.; Saba, W.; Hosten, B.; Specklin, S.; Winkeler, A.; Tournier, N. Imaging Quantitative Changes in Blood-Brain Barrier Permeability Using [18F]2-Fluoro-2-Deoxy-Sorbitol ([18F]FDS) PET in Relation to Glial Cell Recruitment in a Mouse Model of Endotoxemia. J. Cereb. Blood Flow Metab. 2024, 44, 1117–1127. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, K.; Shao, T.; Hou, L.; Zhang, S.; Ye, W.; Josephson, L.; Meyer, J.H.; Zhang, M.-R.; Vasdev, N.; et al. Recent Developments on PET Radiotracers for TSPO and Their Applications in Neuroimaging. Acta Pharm. Sin. B 2021, 11, 373–393. [Google Scholar] [CrossRef]
- De Picker, L.J.; Morrens, M.; Branchi, I.; Haarman, B.C.M.; Terada, T.; Kang, M.S.; Boche, D.; Tremblay, M.-E.; Leroy, C.; Bottlaender, M.; et al. TSPO PET Brain Inflammation Imaging: A Transdiagnostic Systematic Review and Meta-Analysis of 156 Case-Control Studies. Brain Behav. Immun. 2023, 113, 415–431. [Google Scholar] [CrossRef]
- Turkheimer, F.E.; Althubaity, N.; Schubert, J.; Nettis, M.A.; Cousins, O.; Dima, D.; Mondelli, V.; Bullmore, E.T.; Pariante, C.; Veronese, M. Increased Serum Peripheral C-Reactive Protein Is Associated with Reduced Brain Barriers Permeability of TSPO Radioligands in Healthy Volunteers and Depressed Patients: Implications for Inflammation and Depression. Brain Behav. Immun. 2021, 91, 487–497. [Google Scholar] [CrossRef]
- Turkheimer, F.E.; Veronese, M.; Mondelli, V.; Cash, D.; Pariante, C.M. Sickness Behaviour and Depression: An Updated Model of Peripheral-Central Immunity Interactions. Brain Behav. Immun. 2023, 111, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.J.; Asselin, M.-C.; Hinz, R.; Parkes, L.M.; Allan, S.; Schiessl, I.; Boutin, H.; Dickie, B.R. In Vivo Methods for Imaging Blood–Brain Barrier Function and Dysfunction. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1051–1083. [Google Scholar] [CrossRef] [PubMed]
- Dickie, B.R.; Parker, G.J.M.; Parkes, L.M. Measuring Water Exchange across the Blood-Brain Barrier Using MRI. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 116, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Ma, S.J.; Casey, M.; D’Orazio, L.; Ringman, J.M.; Wang, D.J.J. Mapping Water Exchange across the Blood–Brain Barrier Using 3D Diffusion-Prepared Arterial Spin Labeled Perfusion MRI. Magn. Reson. Med. 2019, 81, 3065–3079. [Google Scholar] [CrossRef]
- Zachariou, V.; Pappas, C.; Bauer, C.E.; Shao, X.; Liu, P.; Lu, H.; Wang, D.J.J.; Gold, B.T. Regional Differences in the Link between Water Exchange Rate across the Blood–Brain Barrier and Cognitive Performance in Normal Aging. GeroScience 2023, 46, 265–282. [Google Scholar] [CrossRef]
- Li, Y.; Ying, Y.; Yao, T.; Jia, X.; Liang, H.; Tang, W.; Jia, X.; Song, H.; Shao, X.; Wang, D.J.J.; et al. Decreased Water Exchange Rate across Blood–Brain Barrier in Hereditary Cerebral Small Vessel Disease. Brain 2023, 146, 3079–3087. [Google Scholar] [CrossRef]
- Gold, B.T.; Shao, X.; Sudduth, T.L.; Jicha, G.A.; Wilcock, D.M.; Seago, E.R.; Wang, D.J.J. Water Exchange Rate across the Blood-Brain Barrier Is Associated with CSF Amyloid-β 42 in Healthy Older Adults. Alzheimer’s Dement. 2021, 17, 2020–2029. [Google Scholar] [CrossRef]
- Shao, X.; Jann, K.; Ma, S.J.; Yan, L.; Montagne, A.; Ringman, J.M.; Zlokovic, B.V.; Wang, D.J.J. Comparison Between Blood-Brain Barrier Water Exchange Rate and Permeability to Gadolinium-Based Contrast Agent in an Elderly Cohort. Front. Neurosci. 2020, 14, 571480. [Google Scholar] [CrossRef]
- Wengler, K.T.; Chen, K.Y.; DeLorenzo, C.; Schweitzer, M.E.; Canli, T.; He, X. Blood-Brain Barrier Water Permeability Disruption in Major Depressive Disorder. In Abstract Archives of the RSNA, 2019; RSNA: Chicago, IL, USA, 2019; Volume SSM19-05. [Google Scholar]
- Chithiramohan, T.; Parekh, J.N.; Kronenberg, G.; Haunton, V.J.; Minhas, J.S.; Panerai, R.B.; Robinson, T.G.; Divall, P.; Subramaniam, H.; Mukaetova-Ladinska, E.; et al. Investigating the Association between Depression and Cerebral Haemodynamics-A Systematic Review and Meta-Analysis. J. Affect. Disord. 2022, 299, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Wang, W.; Nie, Z.; Gong, Q.; Yao, L.; Xiang, D.; Zhang, N.; Tu, N.; Feng, H.; Zong, X.; et al. Dysregulated Cerebral Blood Flow, Rather than Gray Matter Volume, Exhibits Stronger Correlations with Blood Inflammatory and Lipid Markers in Depression. NeuroImage Clin. 2024, 41, 103581. [Google Scholar] [CrossRef]
- Choi, K.W.; Jang, E.H.; Kim, A.Y.; Kim, H.; Park, M.J.; Byun, S.; Fava, M.; Mischoulon, D.; Papakostas, G.I.; Yu, H.Y.; et al. Predictive Inflammatory Biomarkers for Change in Suicidal Ideation in Major Depressive Disorder and Panic Disorder: A 12-Week Follow-up Study. J. Psychiatr. Res. 2021, 133, 73–81. [Google Scholar] [CrossRef]
- Daria, S.; Proma, M.A.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Serum Interferon-Gamma Level Is Associated with Drug-Naïve Major Depressive Disorder. SAGE Open Med. 2020, 8, 2050312120974169. [Google Scholar] [CrossRef]
- Kim, Y.; Pang, Y.; Park, H.; Kim, O.; Lee, H. Cytokine Associated with Severity of Depressive Symptoms in Female Nurses in Korea. Front. Public Health 2023, 11, 1194519. [Google Scholar] [CrossRef] [PubMed]
- Ting, E.Y.-C.; Yang, A.C.; Tsai, S.-J. Role of Interleukin-6 in Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2194. [Google Scholar] [CrossRef]
- Anjum, S.; Qusar, M.M.A.S.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Altered Serum Interleukin-7 and Interleukin-10 Are Associated with Drug-Free Major Depressive Disorder. Ther. Adv. Psychopharmacol. 2020, 10, 2045125320916655. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Emon, M.P.Z.; Shahriar, M.; Nahar, Z.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, S.N.; Islam, M.R. Higher Levels of Serum IL-1β and TNF-α Are Associated with an Increased Probability of Major Depressive Disorder. Psychiatry Res. 2021, 295, 113568. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.C. The Endotoxin Hypothesis of Neurodegeneration. J. Neuroinflamm. 2019, 16, 180. [Google Scholar] [CrossRef]
- Milasauskiene, E.; Burkauskas, J.; Jesmanas, S.; Gleizniene, R.; Borutaite, V.; Skemiene, K.; Vaitkiene, P.; Adomaitiene, V.; Lukosevicius, S.; Gradauskiene, B.; et al. The Links between Neuroinflammation, Brain Structure and Depressive Disorder: A Cross-Sectional Study Protocol. PLoS ONE 2024, 19, e0311218. [Google Scholar] [CrossRef] [PubMed]
- Bunevicius, A.; Staniute, M.; Brozaitiene, J.; Pommer, A.M.; Pop, V.J.M.; Montgomery, S.A.; Bunevicius, R. Evaluation of Depressive Symptoms in Patients with Coronary Artery Disease Using the Montgomery Åsberg Depression Rating Scale. Int. Clin. Psychopharmacol. 2012, 27, 249–255. [Google Scholar] [CrossRef]
- Kilroy, E.; Apostolova, L.; Liu, C.; Yan, L.; Ringman, J.; Wang, D.J.J. Reliability of Two-Dimensional and Three-Dimensional Pseudo-Continuous Arterial Spin Labeling Perfusion MRI in Elderly Populations: Comparison with 15o-Water Positron Emission Tomography. J. Magn. Reson. Imaging 2014, 39, 931–939. [Google Scholar] [CrossRef]
- Shao, X.; Wang, Y.; Moeller, S.; Wang, D.J.J. A Constrained Slice-Dependent Background Suppression Scheme for Simultaneous Multislice Pseudo-Continuous Arterial Spin Labeling. Magn. Reson. Med. 2018, 79, 394–400. [Google Scholar] [CrossRef]
- Hoopes, A.; Mora, J.S.; Dalca, A.V.; Fischl, B.; Hoffmann, M. SynthStrip: Skull-Stripping for Any Brain Image. NeuroImage 2022, 260, 119474. [Google Scholar] [CrossRef]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An Automated Labeling System for Subdividing the Human Cerebral Cortex on MRI Scans into Gyral Based Regions of Interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Benjamini, Y.; Krieger, A.M.; Yekutieli, D. Adaptive Linear Step-up Procedures That Control the False Discovery Rate. Biometrika 2006, 93, 491–507. [Google Scholar] [CrossRef]
- Kamintsky, L.; Cairns, K.A.; Veksler, R.; Bowen, C.; Beyea, S.D.; Friedman, A.; Calkin, C. Blood-Brain Barrier Imaging as a Potential Biomarker for Bipolar Disorder Progression. NeuroImage Clin. 2020, 26, 102049. [Google Scholar] [CrossRef]
- Pappas, C.; Zachariou, V.; Bauer, C.E.; Sudduth, T.L.; Wilcock, D.M.; Shao, X.; Wang, D.J.J.; Gold, B.T. Plasma IL-6 Levels Are Negatively Associated with MRI-Based Water Exchange Rate Across the Blood-Brain Barrier. Alzheimer’s Dement. 2023, 19, e074268. [Google Scholar] [CrossRef]
- Morgan, C.A.; Thomas, D.L.; Shao, X.; Mahroo, A.; Manson, T.J.; Suresh, V.; Jansson, D.; Ohene, Y.; Günther, M.; Wang, D.J.J.; et al. Measurement of Blood–Brain Barrier Water Exchange Rate Using Diffusion-Prepared and Multi-Echo Arterial Spin Labelling: Comparison of Quantitative Values and Age Dependence. NMR Biomed. 2024, 37, e5256. [Google Scholar] [CrossRef]
- Pappas, C.; Bauer, C.E.; Zachariou, V.; Maillard, P.; Caprihan, A.; Shao, X.; Wang, D.J.J.; Gold, B.T. MRI Free Water Mediates the Association between Water Exchange Rate across the Blood Brain Barrier and Executive Function among Older Adults. Imaging Neurosci. 2024, 2, 1–15. [Google Scholar] [CrossRef]
- Du, W.; Chen, H.; Gróf, I.; Lemaitre, L.; Bocsik, A.; Perdyan, A.; Mieczkowski, J.; Deli, M.A.; Hortobágyi, T.; Wan, Q.; et al. Antidepressant-Induced Membrane Trafficking Regulates Blood-Brain Barrier Permeability. Mol. Psychiatry 2024, 29, 3590–3598. [Google Scholar] [CrossRef] [PubMed]
- Marek, S.; Tervo-Clemmens, B.; Calabro, F.J.; Montez, D.F.; Kay, B.P.; Hatoum, A.S.; Donohue, M.R.; Foran, W.; Miller, R.L.; Hendrickson, T.J.; et al. Reproducible Brain-Wide Association Studies Require Thousands of Individuals. Nature 2022, 603, 654–660. [Google Scholar] [CrossRef]
- Gratton, C.; Nelson, S.M.; Gordon, E.M. Brain-Behavior Correlations: Two Paths toward Reliability. Neuron 2022, 110, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Leidhin, C.N.; McMorrow, J.; Carey, D.; Newman, L.; Williamson, W.; Fagan, A.J.; Chappell, M.A.; Kenny, R.A.; Meaney, J.F.; Knight, S.P. Age-Related Normative Changes in Cerebral Perfusion: Data from The Irish Longitudinal Study on Ageing (TILDA). NeuroImage 2021, 229, 117741. [Google Scholar] [CrossRef] [PubMed]
- Ritter, C.; Buchmann, A.; Müller, S.T.; Hersberger, M.; Haynes, M.; Ghisleni, C.; Tuura, R.; Hasler, G. Cerebral Perfusion in Depression: Relationship to Sex, Dehydroepiandrosterone Sulfate and Depression Severity. NeuroImage Clin. 2021, 32, 102840. [Google Scholar] [CrossRef]
- Muer, J.D.; Didier, K.D.; Wannebo, B.M.; Sanchez, S.; Khademi Motlagh, H.; Haley, T.L.; Carter, K.J.; Banks, N.F.; Eldridge, M.W.; Serlin, R.C.; et al. Sex Differences in Gray Matter, White Matter, and Regional Brain Perfusion in Young, Healthy Adults. Am. J. Physiol.-Heart Circ. Physiol. 2024, 327, H847–H858. [Google Scholar] [CrossRef]
- Ghisleni, C.; Bollmann, S.; Biason-Lauber, A.; Poil, S.-S.; Brandeis, D.; Martin, E.; Michels, L.; Hersberger, M.; Suckling, J.; Klaver, P.; et al. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion. PLoS ONE 2015, 10, e0135827. [Google Scholar] [CrossRef]
- Zhang, N.; Qin, J.; Yan, J.; Zhu, Y.; Xu, Y.; Zhu, X.; Ju, S.; Li, Y. Increased ASL-CBF in the Right Amygdala Predicts the First Onset of Depression in Healthy Young First-Degree Relatives of Patients with Major Depression. J. Cereb. Blood Flow Metab. 2020, 40, 54–66. [Google Scholar] [CrossRef]
- Ramasubbu, R.; Brown, E.C.; Marcil, L.D.; Talai, A.S.; Forkert, N.D. Automatic Classification of Major Depression Disorder Using Arterial Spin Labeling MRI Perfusion Measurements. Psychiatry Clin. Neurosci. 2019, 73, 486–493. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, R.C.-M.; Mak, A. Interleukin (IL)-6, Tumour Necrosis Factor Alpha (TNF-α) and Soluble Interleukin-2 Receptors (sIL-2R) Are Elevated in Patients with Major Depressive Disorder: A Meta-Analysis and Me-ta-Regression. J. Affect. Disord. 2012, 139, 230–239. [Google Scholar] [CrossRef]
- Mac Giollabhui, N.; Ng, T.H.; Ellman, L.M.; Alloy, L.B. The Longitudinal Associations of Inflammatory Bi-omarkers and Depression Revisited: Systematic Review, Meta-Analysis, and Meta-Regression. Mol. Psychiatry 2021, 26, 3302–3314. [Google Scholar] [CrossRef]
- Kosanovic Rajacic, B.; Sagud, M.; Begic, D.; Nikolac Perkovic, M.; Kozmar, A.; Rogic, D.; Mihaljevic Peles, A.; Bozicevic, M.; Pivac, N. Increased Interleukin-6 Levels in Responders with Treatment-Resistant Depression After Bright Light Therapy. Biomolecules 2025, 15, 295. [Google Scholar] [CrossRef] [PubMed]
- Elgellaie, A.; Thomas, S.J.; Kaelle, J.; Bartschi, J.; Larkin, T. Pro-Inflammatory Cytokines IL-1α, IL-6 and TNF-α in Major Depressive Disorder: Sex-Specific Associations with Psychological Symptoms. Eur. J. Neurosci. 2023, 57, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; de Andrade, N.Q.; Morris, G.; Fernandes, B.S.; Brunoni, A.R.; et al. Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Mol. Neurobiol. 2018, 55, 4195–4206. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, S.; Greggersen, W.; Kahl, K.G.; Hüppe, M.; Schweiger, U. Elevated IL-6 Levels in Patients with Atypical Depression but Not in Patients with Typical Depression. Psychiatry Res. 2014, 217, 34–38. [Google Scholar] [CrossRef]
- Yang, C.; Tiemessen, K.M.; Bosker, F.J.; Wardenaar, K.J.; Lie, J.; Schoevers, R.A. Interleukin, Tumor Necrosis Factor-α and C-Reactive Protein Profiles in Melancholic and Non-Melancholic Depression: A Systematic Review. J. Psychosom. Res. 2018, 111, 58–68. [Google Scholar] [CrossRef]
- Klug, M.; Enneking, V.; Borgers, T.; Jacobs, C.M.; Dohm, K.; Kraus, A.; Grotegerd, D.; Opel, N.; Repple, J.; Suslow, T.; et al. Persistence of Amygdala Hyperactivity to Subliminal Negative Emotion Processing in the Long-Term Course of Depression. Mol. Psychiatry 2024, 29, 1501–1509. [Google Scholar] [CrossRef]
- Ramasubbu, R.; Konduru, N.; Cortese, F.; Bray, S.; Gaxiola, I.; Goodyear, B. Reduced Intrinsic Connectivity of Amygdala in Adults with Major Depressive Disorder. Front. Psychiatry 2014, 5, 17. [Google Scholar] [CrossRef]
- Nazir, S.; Farooq, R.K.; Nasir, S.; Hanif, R.; Javed, A. Therapeutic Effect of Thymoquinone on Behavioural Response to UCMS and Neuroinflammation in Hippocampus and Amygdala in BALB/c Mice Model. Psychopharmacology 2022, 239, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Barbour, T.; Holmes, A.J.; Farabaugh, A.H.; DeCross, S.N.; Coombs, G.; Boeke, E.A.; Wolthusen, R.P.F.; Nyer, M.; Pedrelli, P.; Fava, M.; et al. Elevated Amygdala Activity in Young Adults With Familial Risk for Depression: A Potential Marker of Low Resilience. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Pirrung, C.J.H.; Singh, G.; Hogeveen, J.; Quinn, D.; Cavanagh, J.F. Hypoactivation of the Ventromedial Frontal Cortex in Major Depressive Disorder: A Magnetoencephalography Study of the Reward Positivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 10, 750–758. [Google Scholar] [CrossRef]
- Emam, H.; Steffens, D.C.; Pearlson, G.D.; Wang, L. Increased Ventromedial Prefrontal Cortex Activity and Connectivity Predict Poor Sertraline Treatment Outcome in Late-Life Depression. Int. J. Geriatr. Psychiatry 2019, 34, 730–737. [Google Scholar] [CrossRef]
- de Almeida, J.R.C.; Kronhaus, D.M.; Sibille, E.L.; Langenecker, S.A.; Versace, A.; Labarbara, E.J.; Phillips, M.L. Abnormal Left Sided Orbitomedial Prefrontal Cortical-Amygdala Connectivity during Happy and Fear Face Processing: A Potential Neural Mechanism of Female MDD. Front. Psychiatry 2011, 2, 69. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Chen, Z.; Long, J.; Dai, J.; Huang, X.; Lui, S.; Radua, J.; Vieta, E.; Kemp, G.J.; et al. Meta-Analysis of Cortical Thickness Abnormalities in Medication-Free Patients with Major Depressive Disorder. Neuropsychopharmacology 2020, 45, 703–712. [Google Scholar] [CrossRef]
- Kaneko, N.; Wada, M.; Nakajima, S.; Takano, M.; Taniguchi, K.; Honda, S.; Mimura, M.; Noda, Y. Neuroplasticity of the Left Dorsolateral Prefrontal Cortex in Patients with Treatment-Resistant Depression as Indexed with Paired Associative Stimulation: A TMS–EEG Study. Cereb. Cortex 2024, 34, bhad515. [Google Scholar] [CrossRef]
- Taylor, J.E.; Yamada, T.; Kawashima, T.; Kobayashi, Y.; Yoshihara, Y.; Miyata, J.; Murai, T.; Kawato, M.; Motegi, T. Depressive Symptoms Reduce When Dorsolateral Prefrontal Cortex-Precuneus Connectivity Normalizes after Functional Connectivity Neurofeedback. Sci. Rep. 2022, 12, 2581. [Google Scholar] [CrossRef] [PubMed]
- Asgharian Asl, F.; Vaghef, L. The Effectiveness of High-Frequency Left DLPFC-rTMS on Depression, Response Inhibition, and Cognitive Flexibility in Female Subjects with Major Depressive Disorder. J. Psychiatr. Res. 2022, 149, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Saberi, A.; Ebneabbasi, A.; Rahimi, S.; Sarebannejad, S.; Sen, Z.D.; Graf, H.; Walter, M.; Sorg, C.; Camilleri, J.A.; Laird, A.R.; et al. Convergent Functional Effects of Antidepressants in Major Depressive Disorder: A Neuroimaging Meta-Analysis. Mol. Psychiatry 2025, 30, 736–751. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Chen, Y.; Huang, H.; Yang, W.; Lyu, D.; Wang, F.; Huang, Q.; Zhang, M.; Chen, S.; Wei, Z.; et al. Efficacy of Transcranial Direct Current Stimulation for Treating Anhedonia in Patients with Depression: A Randomized, Double-Blind, Sham-Controlled Clinical Trial. J. Affect. Disord. 2024, 350, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Xia, L.; Yi, J.; Jia, Y.; Wei, L.; Shen, S.; Wu, N.; Wang, D.; Zhou, H.; Li, X.; et al. Structural Brain Changes in the Anterior Cingulate Cortex of Major Depressive Disorder Individuals with Suicidal Ideation: Evidence from the REST-Meta-MDD Project. Psychol. Med. 2025, 55, e24. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, Y.; Bao, W.; Liang, K.; Cao, L.; Tang, M.; Li, H.; Hu, X.; Zhang, L.; Sun, H.; et al. Distinctive Intrinsic Functional Connectivity Alterations of Anterior Cingulate Cortex Subdivisions in Major Depressive Disorder: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2024, 159, 105583. [Google Scholar] [CrossRef]
- Tariq, A.; Hussain, A.U.; Ali, Y.; Sidra, H.; Hashmi, H.; Imtiaz, B.; Shahab, H.; Partab, F.N.U.; Shweta, F.N.U.; Tariq, A.; et al. Alterations in Cerebral Intrinsic Activity in First-Episode, Drug-Naive Patients With Major Depressive Disorder. Cureus 2025, 17, e83737. [Google Scholar] [CrossRef]
- Peng, X.; Wu, X.; Gong, R.; Yang, R.; Wang, X.; Zhu, W.; Lin, P. Sub-Regional Anterior Cingulate Cortex Functional Connectivity Revealed Default Network Subsystem Dysfunction in Patients with Major Depressive Disorder. Psychol. Med. 2021, 51, 1687–1695. [Google Scholar] [CrossRef] [PubMed]

| MDD, n = 85 | Controls, n = 51 | Group Differences | |
|---|---|---|---|
| Age, years; median (IQR) | 42.0 (26.0) | 39.0 (24.0) | U = 2344.5, p = 0.426 |
| Gender | χ2 = 0.094, p = 0.759 | ||
| Female, n (%) | 63 (74.1) | 39 (76.5) | |
| Male, n (%) | 22 (25.9) | 12 (23.5) | |
| Body mass index, kg/m2; median (IQR) | 24.51 (7.78) | 24.67 (8.19) | U = 2256.0, p = 0.691 |
| Smoking status | χ2 = 12.24, p < 0.001 | ||
| Yes, n (%) | 34 (40) | 6 (11.8) | |
| No, n (%) | 51 (60) | 45 (88.2) | |
| Somatic comorbidities | χ2 = 0.863, p = 0.353 | ||
| Yes, n (%) | 13 (15.3) | 11 (21.6) | |
| No, n (%) | 72 (84.7) | 40 (78.4) | |
| MDD duration, years; median (IQR) | 8 (11) | - | - |
| Current MDD episode duration, months; median (IQR) | 5 (8) | - | - |
| MADRS, total score; median (IQR) | 30 (11) | 2 (3) | U = 4331.0, p < 0.001 |
| Use of psychotropic medications, n (%) | 85 (100) | 0 | - |
| Antidepressant, n (%) | 83 (97.6) | 0 | |
| Benzodiazepine, n (%) | 57 (67.1) | 0 | |
| Low-dose antipsychotic, n (%) | 50 (58.8) | 0 | |
| Mood stabiliser, n (%) | 7 (8.2) | 0 | |
| LPS, pg/mL; median (IQR) | 148.04 (163.73) | 97.15 (76.57) | U = 2940.5, p < 0.001 |
| IL-6, pg/mL; median (IQR) | 1.36 (2.63) | 1.34 (2.53) | U = 2201.0, p = 0.880 |
| IL-10, pg/mL; median (IQR) | 1.74 (2.85) | 0 (0) | U = 3489.0, p < 0.001 |
| TNFα, pg/mL; median (IQR) | 0 (0) | 0 (0) | U = 2295.0, p = 0.079 |
| IFN-γ, pg/mL; median (IQR) | 3.28 (5.96) | 1.30 (3.90) | U = 2898.0, p < 0.001 |
| LPS > 143.58 pg/mL and/or IL-10 > 0 pg/mL | χ2 = 57.780, p < 0.001 | ||
| Yes, n (%) | 18 (35.3) | 80 (94.1) | |
| No, n (%) | 33 (64.7) | 5 (5.9) |
| MDD, n = 85 | Controls, n = 51 | Group Differences | |
|---|---|---|---|
| kw, min−1; mean (SD) | 127.97 (17.89) | 128.14 (19.50) | t = 0.053, p = 0.958 |
| female | 128.96 (16.64) | 128.43 (16.86) | t = −0.155, p = 0.877 |
| male | 125.14 (21.25) | 127.22 (27.29) | t = 0.246, p = 0.807 |
| CBF, mL/100 g/min; mean (SD) | 51.10 (13.45) | 57.21 (10.39) | t = 2.781, p = 0.006 |
| female | 54.53 (12.73) | 58.91 (10.62) | t = 1.795, p = 0.076 |
| male | 41.28 (10.43) | 51.68 (7.56) | t = 3.036, p = 0.005 |
| MDD, n = 85 | Controls, n = 51 | Group Differences | |
|---|---|---|---|
| Amygdala | |||
| Left | |||
| kw, min−1; mean (SD) | 121.56 (20.42) | 124.01 (22.98) | t = 0.645, p = 0.520 |
| CBF, mL/100 g/min; mean (SD) | 44.17 (10.31) | 46.81 (10.00) | t = 1.460, p = 0.147 |
| Right | |||
| kw, min−1; mean (SD) | 120.92 (23.94) | 112.13 (24.82) | t = −2.044, p = 0.043 |
| CBF, mL/100 g/min; median (IQR) | 43.42 (12.59) | 46.29 (13.29) | U = 1749.0, p = 0.060 |
| Medial orbitofrontal cortex (MOC) | |||
| Left | |||
| kw, min−1; mean (SD) | 125.39 (19.64) | 125.04 (22.13) | t = −0.097, p = 0.923 |
| CBF, mL/100 g/min; mean (SD) | 50.36 (13.60) | 57.75 (11.17) | t = 3.272, p = 0.001 |
| Right | |||
| kw, min−1; mean (SD) | 130.02 (19.65) | 125.94 (23.87) | t = −1.080, p = 0.282 |
| CBF, mL/100 g/min; mean (SD) | 52.03 (14.33) | 58.59 (10.91) | t = 2.818, p = 0.003 |
| Rostral middle frontal cortex (RMFC) | |||
| Left | |||
| kw, min−1; median (IQR) | 133.39 (33.11) | 135.12 (29.38) | U = 2088.0, p = 0.721 |
| CBF, mL/100 g/min; mean (SD) | 51.48 (15.98) | 61.47 (13.37) | t = 3.747, p < 0.001 |
| Right | |||
| kw, min−1; mean (SD) | 129.51 (21.27) | 130.67 (20.51) | t = 0.311, p = 0.756 |
| CBF, mL/100 g/min; mean (SD) | 52.90 (15.67) | 60.75 (13.46) | t = 2.980, p = 0.003 |
| Rostral anterior cingulate cortex (rACC) | |||
| Left | |||
| kw, min−1; mean (SD) | 134.23 (22.05) | 132.27 (22.91) | t = −0.495, p = 0.621 |
| CBF, mL/100 g/min; mean (SD) | 65.04 (16.91) | 74.15 (13.43) | t = 3.467, p < 0.001 |
| Right | |||
| kw, min−1; mean (SD) | 138.69 (24.27) | 133.89 (24.93) | t = −1.113, p = 0.268 |
| CBF, mL/100 g/min; mean (SD) | 68.48 (17.71) | 75.34 (14.51) | t = 2.335, p = 0.021 |
| Caudal anterior cingulate cortex (cACC) | |||
| Left | |||
| kw, min−1; mean (SD) | 112.30 (28.17) | 109.72 (28.57) | t = −0.515, p = 0.608 |
| CBF, mL/100 g/min; mean (SD) | 47.27 (17.88) | 53.21 (15.26) | t = 1.979, p = 0.050 |
| Right | |||
| kw, min−1; mean (SD) | 115.27 (24.05) | 119.51 (24.27) | t = 0.992, p = 0.323 |
| CBF, mL/100 g/min; mean (SD) | 48.49 (16.29) | 57.29 (15.64) | t = 3.097, p = 0.002 |
| Posterior cingulate cortex (PCC) | |||
| Left | |||
| kw, min−1; mean (SD) | 101.38 (30.44) | 107.96 (27.55) | t = 1.263, p = 0.209 |
| CBF, mL/100 g/min; mean (SD) | 48.56 (16.77) | 57.48 (17.97) | t = 2.925, p = 0.004 |
| Right | |||
| kw, min−1; mean (SD) | 105.22 (27.82) | 108.33 (30.07) | t = 0.611, p = 0.542 |
| CBF, mL/100 g/min; mean (SD) | 50.92 (17.06) | 58.17 (19.28) | t = 2.283, p = 0.024 |
| Isthmus cingulate cortex (ICC) | |||
| Left | |||
| kw, min−1; mean (SD) | 120.34 (29.30) | 128.79 (29.60) | t = 1.622, p = 0.107 |
| CBF, mL/100 g/min; mean (SD) | 63.44 (18.54) | 69.27 (16.76) | t = 1.838, p = 0.068 |
| Right | |||
| kw, min−1; mean (SD) | 120.70 (28.94) | 125.73 (30.01) | t = 0.968, p = 0.335 |
| CBF, mL/100 g/min; mean (SD) | 63.39 (19.28) | 69.81 (18.84) | t = 1.897, p = 0.060 |
| Model | Coefficient B | p Value | OR (95% CI) | |
|---|---|---|---|---|
| Factors | Age, years | 0.000 | 0.994 | 1.000 (0.996–1.041) |
| Male gender | −0.551 | 0.384 | 0.577 (0.167–1.994) | |
| BMI > 30 kg/m2 | 0.540 | 0.455 | 1.716 (0.416–7.078) | |
| Smoking status | 0.614 | 0.297 | 1.848 (0.583–5.860) | |
| Somatic comorbidities | −0.131 | 0.846 | 0.878 (0.236–3.267) | |
| LPS > 143.58 pg/mL and/or IL-10 > 0 pg/mL | 3.358 | <0.001 | 28.744 (8.387–98.503) | |
| Composite regional CBF < 59.22 mL/100 g/min | 1.760 | 0.004 | 5.813 (1.782–18.969) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jesmanas, S.; Milašauskienė, E.; Burkauskas, J.; Borutaitė, V.; Škėmienė, K.; Adomaitienė, V.; Gradauskienė, B.; Lukoševičius, S.; Gleiznienė, R.; Brown, G.C.; et al. Cerebral Blood Flow and Blood–Brain Barrier Water Exchange in Major Depressive Disorder: Evidence from Diffusion-Prepared Arterial Spin Labelling MRI. Brain Sci. 2026, 16, 27. https://doi.org/10.3390/brainsci16010027
Jesmanas S, Milašauskienė E, Burkauskas J, Borutaitė V, Škėmienė K, Adomaitienė V, Gradauskienė B, Lukoševičius S, Gleiznienė R, Brown GC, et al. Cerebral Blood Flow and Blood–Brain Barrier Water Exchange in Major Depressive Disorder: Evidence from Diffusion-Prepared Arterial Spin Labelling MRI. Brain Sciences. 2026; 16(1):27. https://doi.org/10.3390/brainsci16010027
Chicago/Turabian StyleJesmanas, Simonas, Eglė Milašauskienė, Julius Burkauskas, Vilmantė Borutaitė, Kristina Škėmienė, Virginija Adomaitienė, Brigita Gradauskienė, Saulius Lukoševičius, Rymantė Gleiznienė, Guy C. Brown, and et al. 2026. "Cerebral Blood Flow and Blood–Brain Barrier Water Exchange in Major Depressive Disorder: Evidence from Diffusion-Prepared Arterial Spin Labelling MRI" Brain Sciences 16, no. 1: 27. https://doi.org/10.3390/brainsci16010027
APA StyleJesmanas, S., Milašauskienė, E., Burkauskas, J., Borutaitė, V., Škėmienė, K., Adomaitienė, V., Gradauskienė, B., Lukoševičius, S., Gleiznienė, R., Brown, G. C., & Steiblienė, V. (2026). Cerebral Blood Flow and Blood–Brain Barrier Water Exchange in Major Depressive Disorder: Evidence from Diffusion-Prepared Arterial Spin Labelling MRI. Brain Sciences, 16(1), 27. https://doi.org/10.3390/brainsci16010027

