Does Music Experience Impact the Vascular Endothelial Response to Singing?
Abstract
1. Introduction
2. Methods
2.1. General Study Design
2.2. Singing (and Control) Interventions
2.3. Measures of Vascular Endothelial Function
2.4. Salivary Cortisol and Cytokine Collection
2.5. Borg Rate of Perceived Exertion (Borg RPE)
2.6. Brief Music Experience Questionnaire (BMEQ)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Bai, T.; Yu, S.; Feng, J. Advances in the Role of Endothelial Cells in Cerebral Small Vessel Disease. Front. Neurol. 2022, 13, 861714. [Google Scholar] [CrossRef]
- Thijssen, D.H.; Black, M.A.; Pyke, K.E.; Padilla, J.; Atkinson, G.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2–H12. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Kwon, T.G.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2015, 4, e002270. [Google Scholar] [CrossRef]
- Gokce, N.; Vita, J.A.; Bader, D.S.; Sherman, D.L.; Hunter, L.M.; Holbrook, M.; O’Malley, C.; Keaney, J.F., Jr.; Balady, G.J. Effect of exercise on upper and lower extremity endothelial function in patients with coronary artery disease. Am. J. Cardiol. 2002, 90, 124–127. [Google Scholar] [CrossRef]
- Watts, K.; Beye, P.; Siafarikas, A.; O’Driscoll, G.; Jones, T.W.; Davis, E.A.; Green, D.J. Effects of exercise training on vascular function in obese children. J. Pediatr. 2004, 144, 620–625. [Google Scholar] [CrossRef]
- Shpilsky, D.; Bambs, C.; Kip, K.; Patel, S.; Aiyer, A.; Olafiranye, O.; Reis, S.E.; Erqou, S. Association between ideal cardiovascular health and markers of subclinical cardiovascular disease. Clin. Cardiol. 2018, 41, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Kulinski, J.; Ofori, E.K.; Visotcky, A.; Smith, A.; Sparapani, R.; Fleg, J.L. Effects of music on the cardiovascular system. Trends Cardiovasc. Med. 2021, 32, 390–398. [Google Scholar] [CrossRef] [PubMed]
- de Witte, M.; Spruit, A.; van Hooren, S.; Moonen, X.; Stams, G.J. Effects of music interventions on stress-related outcomes: A systematic review and two meta-analyses. Health Psychol. Rev. 2020, 14, 294–324. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Scholp, A.; Jiang, J.J. A Review of the Physiological Effects and Mechanisms of Singing. J. Voice 2018, 32, 390–395. [Google Scholar] [CrossRef]
- Philip, K.E.; Lewis, A.; Buttery, S.C.; McCabe, C.; Manivannan, B.; Fancourt, D.; Orton, C.M.; Polkey, M.I.; Hopkinson, N.S. Physiological demands of singing for lung health compared with treadmill walking. BMJ Open Respir. Res. 2021, 8, e000959. [Google Scholar] [CrossRef] [PubMed]
- Bagherimohamadipour, M.; Hammad, M.; Visotcky, A.; Sparapani, R.; Kulinski, J. Effects of singing on vascular health in older adults with coronary artery disease: A randomized, crossover trial. Front. Cardiovasc. Med. 2025, 12, 1546462. [Google Scholar] [CrossRef]
- Rebecchini, L. Music, mental health, and immunity. Brain Behav. Immun. Health 2021, 18, 100374. [Google Scholar] [CrossRef] [PubMed]
- Robb, S.L.; Burns, D.S.; Carpenter, J.S. Reporting Guidelines for Music-based Interventions. Music Med. 2011, 3, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Schnall, R.P.; Sheffy, J.K.; Penzel, T. Peripheral arterial tonometry-PAT technology. Sleep Med. Rev. 2022, 61, 101566. [Google Scholar] [CrossRef]
- Hamburg, N.M.; Keyes, M.J.; Larson, M.G.; Vasan, R.S.; Schnabel, R.; Pryde, M.M.; Mitchell, G.F.; Sheffy, J.; Vita, J.A.; Benjamin, E.J. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 2008, 117, 2467–2474. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar]
- De Roos, N.M.; Bots, M.L.; Schouten, E.G.; Katan, M.B. Within-subject variability of flow-mediated vasodilation of the brachial artery in healthy men and women: Implications for experimental studies. Ultrasound Med. Biol. 2003, 29, 401–406. [Google Scholar] [CrossRef]
- Ghiadoni, L.; Faita, F.; Salvetti, M.; Cordiano, C.; Biggi, A.; Puato, M.; Di Monaco, A.; De Siati, L.; Volpe, M.; Ambrosio, G.; et al. Assessment of flow-mediated dilation reproducibility: A nationwide multicenter study. J. Hypertens. 2012, 30, 1399–1405. [Google Scholar] [CrossRef]
- Ryznar, R.; Wong, C.; Onat, E.; Towne, F.; LaPorta, A.; Payton, M. Principal component analysis of salivary cytokines and hormones in the acute stress response. Front. Psychiatry 2022, 13, 957545. [Google Scholar] [CrossRef]
- Sanada, K.; Montero-Marin, J.; Alda Diez, M.; Salas-Valero, M.; Perez-Yus, M.C.; Morillo, H.; Demarzo, M.M.; Garcia-Toro, M.; Garcia-Campayo, J. Effects of Mindfulness-Based Interventions on Salivary Cortisol in Healthy Adults: A Meta-Analytical Review. Front. Physiol. 2016, 7, 471. [Google Scholar] [CrossRef]
- Coquart, J.B.; Garcin, M.; Parfitt, G.; Tourny-Chollet, C.; Eston, R.G. Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Med. 2014, 44, 563–578. [Google Scholar] [CrossRef]
- Dawes, H.N.; Barker, K.L.; Cockburn, J.; Roach, N.; Scott, O.; Wade, D. Borg’s rating of perceived exertion scales: Do the verbal anchors mean the same for different clinical groups? Arch. Phys. Med. Rehabil. 2005, 86, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.D.; Swope, A.J.; Heide, F.J. The Music Experience Questionnaire: Development and correlates. J. Psychol. 2006, 140, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Kenward, M.G. (Eds.) Design and analysis for three or more treatments. In Design and Analysis of Cross-Over Trials; Chapman & Hall: London, UK, 1989; pp. 189–241. [Google Scholar]
- Hill, M.; Greene, M.; Johnson, J.K.; Tan, J.Y. United Voices Group-Singing Intervention to Address Loneliness and Social Isolation Among Older People with HIV During the COVID-19 Pandemic: Intervention Adaption Study. JMIR Form. Res. 2024, 8, e60387. [Google Scholar] [CrossRef]
- Tragantzopoulou, P.; Giannouli, V. A Song for the Mind: A Literature Review on Singing and Cognitive Health in Aging Populations. Brain Sci. 2025, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, N.; Mohrdieck, N.; Visotcky, A.; Kulinski, J. Predictors of improvement in cardiovascular biomarkers with singing. Am. Heart J. Plus 2025, 53, 100533. [Google Scholar] [CrossRef]
- Sakano, K.; Ryo, K.; Tamaki, Y.; Nakayama, R.; Hasaka, A.; Takahashi, A.; Ebihara, S.; Tozuka, K.; Saito, I. Possible benefits of singing to the mental and physical condition of the elderly. Biopsychosoc. Med. 2014, 8, 11. [Google Scholar] [CrossRef]
- Hill, E.E.; Zack, E.; Battaglini, C.; Viru, M.; Viru, A.; Hackney, A.C. Exercise and circulating cortisol levels: The intensity threshold effect. J. Endocrinol. Investig. 2008, 31, 587–591. [Google Scholar] [CrossRef]
- Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front. Psychiatry 2018, 9, 44. [Google Scholar] [CrossRef]
- Fancourt, D.; Williamon, A.; Carvalho, L.A.; Steptoe, A.; Dow, R.; Lewis, I. Singing modulates mood, stress, cortisol, cytokine and neuropeptide activity in cancer patients and carers. Ecancermedicalscience 2016, 10, 631. [Google Scholar] [CrossRef]
- Martinez, P.; Lien, L.; Zemore, S.; Bramness, J.G.; Neupane, S.P. Circulating cytokine levels are associated with symptoms of depression and anxiety among people with alcohol and drug use disorders. J. Neuroimmunol. 2018, 318, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Reagon, C.; Gale, N.; Enright, S.; Mann, M.; van Deursen, R. A mixed-method systematic review to investigate the effect of group singing on health related quality of life. Complement. Ther. Med. 2016, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, G.; Zhang, D.; Zhang, K.; Cao, C. Physiological Mechanisms Driving Microcirculatory Enhancement: The Impact of Physical Activity. Rev. Cardiovasc. Med. 2025, 26, 25302. [Google Scholar] [CrossRef]
- Zhang, J.; Long, F.; Duan, T.; Li, A.; Kong, R.; Zhu, Y.; Xiang, D. Exercise training combined with alprostadil improves myocardial infarction and coronary microcirculation disorder in aged rats by inhibiting mitogen-activated protein kinase (MAPK) signaling pathway activation. Ann. Transl. Med. 2022, 10, 1324. [Google Scholar] [CrossRef]
- Grassi, G. Assessment of sympathetic cardiovascular drive in human hypertension: Achievements and perspectives. Hypertension 2009, 54, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Amiya, E.; Watanabe, M.; Komuro, I. The Relationship between Vascular Function and the Autonomic Nervous System. Ann. Vasc. Dis. 2014, 7, 109–119. [Google Scholar] [CrossRef]
- Simonini, A.; Moscucci, M.; Muller, D.W.; Bates, E.R.; Pagani, F.D.; Burdick, M.D.; Strieter, R.M. IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 2000, 101, 1519–1526. [Google Scholar] [CrossRef]
- Zhang, H.; Park, Y.; Wu, J.; Chen, X.; Lee, S.; Yang, J.; Dellsperger, K.C.; Zhang, C. Role of TNF-alpha in vascular dysfunction. Clin. Sci. 2009, 116, 219–230. [Google Scholar] [CrossRef]
- Petrowski, K.; Schmalbach, B.; Linhardt, M.; Mekschrat, L.; Rohleder, N. The inflammatory immune system after wake up in healthy male individuals: A highly standardized and controlled study. Brain Behav. Immun. Health 2022, 25, 100504. [Google Scholar] [CrossRef]
- Chanda, M.L.; Levitin, D.J. The neurochemistry of music. Trends Cogn. Sci. 2013, 17, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef] [PubMed]
Total 65 (col%) | BMEQ 31 (col%) | No BMEQ 34 (col%) | p-Value | |
---|---|---|---|---|
Age (years): mean, SD | 67.7, 6.6 | 68.4, 6.7 | 66.8, 6.5 | 0.373 |
Female | 26 (40.0) | 16 (44.4) | 10 (34.5) | 0.415 |
Race | 0.376 | |||
Black | 7 (10.9) | 3 (8.3) | 4 (14.3) | |
White | 56 (87.5) | 33 (91.7) | 23 (82.1) | |
Asian | 1 (1.6) | 0 (0.0) | 1 (3.6) | |
Unknown | 1 | 0 | 1 | |
History of coronary artery disease | ||||
Myocardial infarction | 41 (63.1) | 21 (58.3) | 20 (69.0) | 0.377 |
Coronary stent | 47 (74.6) | 21 (61.8) | 26 (89.7) | 0.011 |
Coronary artery bypass | 18 (27.7) | 12 (33.3) | 6 (20.7) | 0.258 |
Diabetes mellitus | 19 (29.2) | 9 (25.0) | 10 (34.5) | 0.403 |
Hypertension | 49 (75.4) | 28 (77.8) | 21 (72.4) | 0.618 |
High cholesterol | 55 (84.6) | 30 (83.3) | 25 (86.2) | 0.750 |
Chronic kidney disease | 10 (15.4) | 6 (16.7) | 4 (13.8) | 0.750 |
Chronic respiratory disease | 18 (27.7) | 12 (33.3) | 6 (20.7) | 0.258 |
Heart failure | 12 (18.5) | 6 (16.7) | 6 (20.7) | 0.678 |
Prior smoking | 26 (40.0) | 14 (38.9) | 12 (41.4) | 0.839 |
BMI: mean, SD | 30.0, 8.3 | 30.1, 6.9 | 29.8, 10.0 | |
BMI category | 0.987 | |||
Underweight < 18.5 | 4 (6.2) | 2 (5.6) | 2 (6.9) | |
Healthy weight 18.5 < 25 | 12 (18.5) | 7 (19.4) | 5 (17.2) | |
Overweight 25: <30 | 17 (26.2) | 9 (25.0) | 8 (27.6) | |
Obese 30 or greater | 32 (49.2) | 18 (50.0) | 14 (48.3) | |
Physical or orthopedic limitations | 35 (53.8) | 20 (55.6) | 15 (51.7) | 0.758 |
Level of limitation | 0.277 | |||
None/Minimal | 51 (78.5) | 29 (80.6) | 22 (75.9) | |
Somewhat | 12 (18.5) | 7 (19.4) | 5 (17.2) | |
Very | 2 (3.1) | 0 (0.0) | 2 (6.9) |
Absolute (Post–Pre) | |||
---|---|---|---|
Estimate (SE) | 95% CI | p-Value | |
Log cortisol | |||
Coach | −0.04 (0.06) | (−0.16, 0.08) | 0.471 |
Video | −0.06 (0.06) | (−0.18, 0.06) | 0.283 |
Log IL-1β | |||
Coach | −0.07 (0.10) | (−0.07, 0.10) | 0.482 |
Video | −0.04 (0.10) | (−0.04, 0.10) | 0.715 |
Log IL-6 | |||
Coach | −0.17 (0.11) | (−0.40, 0.05) | 0.121 |
Video | −0.13 (0.11) | (−0.35, 0.09) | 0.230 |
Log IL-8 | |||
Coach | −0.002 (0.10) | (−0.21, 0.20) | 0.986 |
Video | 0.01 (0.10) | (−0.19, 0.21) | 0.928 |
Log TNF-α | |||
Coach | 0.01 (0.10) | (−0.20, 0.22) | 0.943 |
Video | 0.06 (0.10) | (−0.15, 0.27) | 0.571 |
Absolute (Post–Pre) | |||||
---|---|---|---|---|---|
Parameter | Estimate | SE | 95% CI | t Value | p-Value |
BMEQ—total score | |||||
fRHI | 0.58 | 0.93 | (−1.28, 2.44) | 0.630 | 0.535 |
RHI | 0.73 | 0.65 | (−0.56, 2.30) | 1.130 | 0.262 |
BA FMD % | −3.49 | 2.01 | (−7.50, 0.52) | −1.740 | 0.086 |
Absolute (Post–Pre) | |||||
---|---|---|---|---|---|
Estimate | SE | 95% CI | t Value | p-Value | |
Framingham reactive hyperemia index (fRHI) | |||||
Log IL-1β | −0.19 | 0.26 | (−0.70, 0.32) | −0.750 | 0.455 |
Log IL-6 | 0.13 | 0.14 | (−0.16, 0.41) | 0.880 | 0.381 |
Log IL-8 | 0.78 | 0.25 | (0.28, 1.28) | 3.150 | 0.002 |
Log TNF-α | −0.55 | 0.26 | (−1.07, −0.02) | −2.080 | 0.040 |
Reactive hyperemia index (RHI) | |||||
Log IL-1β | −0.20 | 0.19 | (−0.57, 0.18) | −1.040 | 0.302 |
Log IL-6 | 0.15 | 0.11 | (−0.06, 0.36) | 1.440 | 0.155 |
Log IL-8 | 0.47 | 0.18 | (−0.10, 0.84) | 2.560 | 0.012 |
Log TNF-α | −0.26 | 0.19 | (−0.65, 0.12) | −1.370 | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagherimohamadipour, M.; Hammad, M.; Visotcky, A.; Sparapani, R.; Kulinski, J. Does Music Experience Impact the Vascular Endothelial Response to Singing? Brain Sci. 2025, 15, 996. https://doi.org/10.3390/brainsci15090996
Bagherimohamadipour M, Hammad M, Visotcky A, Sparapani R, Kulinski J. Does Music Experience Impact the Vascular Endothelial Response to Singing? Brain Sciences. 2025; 15(9):996. https://doi.org/10.3390/brainsci15090996
Chicago/Turabian StyleBagherimohamadipour, Mehri, Muhammad Hammad, Alexis Visotcky, Rodney Sparapani, and Jacquelyn Kulinski. 2025. "Does Music Experience Impact the Vascular Endothelial Response to Singing?" Brain Sciences 15, no. 9: 996. https://doi.org/10.3390/brainsci15090996
APA StyleBagherimohamadipour, M., Hammad, M., Visotcky, A., Sparapani, R., & Kulinski, J. (2025). Does Music Experience Impact the Vascular Endothelial Response to Singing? Brain Sciences, 15(9), 996. https://doi.org/10.3390/brainsci15090996