Transcranial Magnetic Stimulation as a Diagnostic Tool in Mild Cognitive Impairment: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategies and Selection of the Studies
2.2. Study Selection Criteria
2.3. Data Collection and Extraction
2.4. Quality Assessment
3. Results
3.1. Study Characteristics
3.2. Short-Latency Afferent Inhibition (SAI)
3.3. Short-Intracortical Inhibition (SICI)
3.4. Intracortical Facilitation (ICF)
3.5. Long-Intracortical Inhibition (LICI)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
aMCI | amnestic mild cognitive impairment |
CSF | cerebrospinal fluid |
DC | diagnostic confidence |
DLB | dementia with Lewy bodies |
EEG | electromyography |
EMG | electroencephalography |
FTD | frontotemporal dementia |
GABA | gamma-aminobutyric acid |
HC | healthy control |
ICF | intracortical facilitation |
iRBD | idiopathic REM behavioral disorder |
ISI | interstimulus interval |
LICI | long interval intracortical inhibition |
LTD | long-term depression |
LTP | long-term potentiation |
MCI | mild cognitive impairment |
MCI-AD | mild cognitive impairment due to Alzheimer’s disease |
MCI-DLB | mild cognitive impairment due to dementia with Lewy bodies |
MCI-FTD | mild cognitive impairment due to frontotemporal dementia |
MCI non-AD | mild cognitive impairment not due to Alzheimer’s disease |
MCI-other | mild cognitive impairment due to other than AD/FTD/DLB |
MD | multiple domain |
na-MCI | non-amnestic mild cognitive impairment |
PAS | paired associative stimulation |
PD | Parkinson‘s disease |
PD-MCI | Parkinson’s disease with mild cognitive impairment |
PD-RBD | Parkinson’s disease with REM behavioral disorder |
PDD | Parkinson‘s disease dementia |
PET | positron emission tomography |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RBD | REM behavioral disorder |
rTMS | repetitive transcranial magnetic stimulation |
SAI | short-latency afferent inhibition |
SD | single domain |
SICI | short-interval intracortical inhibition |
TBS | theta-burst stimulation |
TEP | transcranial magnetic stimulation-evoked potential |
TMS | transcranial magnetic stimulation |
References
- American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Washington, DC, USA; London, UK, 2013; 947p, ISBN 978-0-89042-554-1. [Google Scholar]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- De Mendonça, A.; Ribeiro, F.; Guerreiro, M.; Garcia, C. Frontotemporal Mild Cognitive Impairment. J. Alzheimer’s Dis. 2004, 6, 1–9. [Google Scholar] [CrossRef]
- Jellinger, K.A. Mild Cognitive Impairment in Amyotrophic Lateral Sclerosis: Current View. J. Neural Transm. 2025, 132, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Goldman, J.G.; Tröster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic Criteria for Mild Cognitive Impairment in Parkinson’s Disease: Movement Disorder Society Task Force Guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.-P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and Management of Dementia with Lewy Bodies: Fourth Consensus Report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild Cognitive Impairment: A Concept in Evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef]
- Petersen, R.C.; Negash, S. Mild Cognitive Impairment: An Overview. CNS Spectr. 2008, 13, 45–53. [Google Scholar] [CrossRef]
- Rossini, P.M.; Miraglia, F.; Vecchio, F. Early Dementia Diagnosis, MCI-to-dementia Risk Prediction, and the Role of Machine Learning Methods for Feature Extraction from Integrated Biomarkers, in Particular for EEG Signal Analysis. Alzheimer’s Dement. 2022, 18, 2699–2706. [Google Scholar] [CrossRef]
- Frisoni, G.B.; Festari, C.; Massa, F.; Cotta Ramusino, M.; Orini, S.; Aarsland, D.; Agosta, F.; Babiloni, C.; Borroni, B.; Cappa, S.F.; et al. European Intersocietal Recommendations for the Biomarker-Based Diagnosis of Neurocognitive Disorders. Lancet Neurol. 2024, 23, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Antczak, J.; Rusin, G.; Słowik, A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J. Clin. Med. 2021, 10, 2875. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Grassi, M.; Palluzzi, F.; Koch, G.; Di Lazzaro, V.; Nardone, R.; Cantoni, V.; Dell’Era, V.; Premi, E.; Martorana, A.; et al. Classification Accuracy of Transcranial Magnetic Stimulation for the Diagnosis of Neurodegenerative Dementias. Ann. Neurol. 2020, 87, 394–404. [Google Scholar] [CrossRef]
- Mimura, Y.; Nishida, H.; Nakajima, S.; Tsugawa, S.; Morita, S.; Yoshida, K.; Tarumi, R.; Ogyu, K.; Wada, M.; Kurose, S.; et al. Neurophysiological Biomarkers Using Transcranial Magnetic Stimulation in Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2021, 121, 47–59. [Google Scholar] [CrossRef]
- Vucic, S.; Chen, K.-H.S.; Kiernan, M.C.; Hallett, M.; Benninger, D.H.; Di Lazzaro, V.; Rossini, P.M.; Benussi, A.; Berardelli, A.; Currà, A.; et al. Clinical Diagnostic Utility of Transcranial Magnetic Stimulation in Neurological Disorders. Updated Report of an IFCN Committee. Clin. Neurophysiol. 2023, 150, 131–175. [Google Scholar] [CrossRef]
- Hanoglu, L.; Toplutas, E.; Saricaoglu, M.; Velioglu, H.A.; Yildiz, S.; Yulug, B. Therapeutic Role of Repetitive Transcranial Magnetic Stimulation in Alzheimer’s and Parkinson’s Disease: Electroencephalography Microstate Correlates. Front. Neurosci. 2022, 16, 798558. [Google Scholar] [CrossRef] [PubMed]
- Neuteboom, D.; Zantvoord, J.B.; Goya-Maldonado, R.; Wilkening, J.; Dols, A.; Van Exel, E.; Lok, A.; De Haan, L.; Scheepstra, K.W.F. Accelerated Intermittent Theta Burst Stimulation in Major Depressive Disorder: A Systematic Review. Psychiatry Res. 2023, 327, 115429. [Google Scholar] [CrossRef] [PubMed]
- Guidi, L.; Evangelisti, S.; Siniscalco, A.; Lodi, R.; Tonon, C.; Mitolo, M. Non-Pharmacological Treatments in Lewy Body Disease: A Systematic Review. Dement. Geriatr. Cogn. Disord. 2023, 52, 16–31. [Google Scholar] [CrossRef]
- Costanzo, M.; Cutrona, C.; Leodori, G.; Malimpensa, L.; D’antonio, F.; Conte, A.; Belvisi, D. Exploring Easily Accessible Neurophysiological Biomarkers for Predicting Alzheimer’s Disease Progression: A Systematic Review. Alzheimer’s Res. Ther. 2024, 16, 244. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Bella, R.; Benussi, A.; Bologna, M.; Borroni, B.; Capone, F.; Chen, K.-H.S.; Chen, R.; Chistyakov, A.V.; Classen, J.; et al. Diagnostic Contribution and Therapeutic Perspectives of Transcranial Magnetic Stimulation in Dementia. Clin. Neurophysiol. 2021, 132, 2568–2607. [Google Scholar] [CrossRef]
- Benussi, A.; Alberici, A.; Ferrari, C.; Cantoni, V.; Dell’Era, V.; Turrone, R.; Cotelli, M.S.; Binetti, G.; Paghera, B.; Koch, G.; et al. The Impact of Transcranial Magnetic Stimulation on Diagnostic Confidence in Patients with Alzheimer Disease. Alzheimer’s Res. Ther. 2018, 10, 90. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.; Sundman, M.; Ton That, V.; Green, J.; Trapani, C. Cortical Excitability and Plasticity in Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Transcranial Magnetic Stimulation Studies. Ageing Res. Rev. 2022, 79, 101660. [Google Scholar] [CrossRef]
- Nardone, R.; Tezzon, F.; Höller, Y.; Golaszewski, S.; Trinka, E.; Brigo, F. Transcranial Magnetic Stimulation (TMS)/Repetitive TMS in Mild Cognitive Impairment and Alzheimer’s Disease. Acta Neurol. Scand. 2014, 129, 351–366. [Google Scholar] [CrossRef]
- Casarotto, S.; Määttä, S.; Herukka, S.-K.; Pigorini, A.; Napolitani, M.; Gosseries, O.; Niskanen, E.; Könönen, M.; Mervaala, E.; Rosanova, M.; et al. Transcranial Magnetic Stimulation-Evoked EEG/Cortical Potentials in Physiological and Pathological Aging. NeuroReport 2011, 22, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, F.; Vecchio, F.; Vollero, L.; Guerra, A.; Petrichella, S.; Ponzo, D.; Määtta, S.; Mervaala, E.; Könönen, M.; Ursini, F.; et al. Sensorimotor Cortex Excitability and Connectivity in Alzheimer’s Disease: A TMS-EEG Co-Registration Study: Sensorimotor Cortex Excitability and Connectivity in AD. Hum. Brain Mapp. 2016, 37, 2083–2096. [Google Scholar] [CrossRef] [PubMed]
- Bagattini, C.; Mutanen, T.P.; Fracassi, C.; Manenti, R.; Cotelli, M.; Ilmoniemi, R.J.; Miniussi, C.; Bortoletto, M. Predicting Alzheimer’s Disease Severity by Means of TMS–EEG Coregistration. Neurobiol. Aging 2019, 80, 38–45. [Google Scholar] [CrossRef]
- Casula, E.P.; Pellicciari, M.C.; Bonnì, S.; Borghi, I.; Maiella, M.; Assogna, M.; Minei, M.; Motta, C.; D’Acunto, A.; Porrazzini, F.; et al. Decreased Frontal Gamma Activity in Alzheimer Disease Patients. Ann. Neurol. 2022, 92, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Reis, J.; Schwenkreis, P.; Rosanova, M.; Strafella, A.; Badawy, R.; Müller-Dahlhaus, F. TMS and Drugs Revisited 2014. Clin. Neurophysiol. 2015, 126, 1847–1868. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord, Roots and Peripheral Nerves: Basic Principles and Procedures for Routine Clinical and Research Application. An Updated Report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Takács, V.T.; Cserép, C.; Schlingloff, D.; Pósfai, B.; Szőnyi, A.; Sos, K.E.; Környei, Z.; Dénes, Á.; Gulyás, A.I.; Freund, T.F.; et al. Co-Transmission of Acetylcholine and GABA Regulates Hippocampal States. Nat. Commun. 2018, 9, 2848. [Google Scholar] [CrossRef]
- Ziemann, U.; Rothwell, J.C.; Ridding, M.C. Interaction between Intracortical Inhibition and Facilitation in Human Motor Cortex. J. Physiol. 1996, 496, 873–881. [Google Scholar] [CrossRef]
- Ziemann, U.; Paulus, W.; Nitsche, M.A.; Pascual-Leone, A.; Byblow, W.D.; Berardelli, A.; Siebner, H.R.; Classen, J.; Cohen, L.G.; Rothwell, J.C. Consensus: Motor Cortex Plasticity Protocols. Brain Stimul. 2008, 1, 164–182. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Orekhov, Y.; Ziemann, U. The Role of GABAB Receptors in Intracortical Inhibition in the Human Motor Cortex. Exp. Brain Res. 2006, 173, 86–93. [Google Scholar] [CrossRef]
- Vucic, S.; Howells, J.; Trevillion, L.; Kiernan, M.C. Assessment of Cortical Excitability Using Threshold Tracking Techniques. Muscle Nerve 2006, 33, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Di Lorenzo, F.; Dell’Era, V.; Cosseddu, M.; Alberici, A.; Caratozzolo, S.; Cotelli, M.S.; Micheli, A.; Rozzini, L.; Depari, A.; et al. Transcranial Magnetic Stimulation Distinguishes Alzheimer Disease from Frontotemporal Dementia. Neurology 2017, 89, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, N.; Fonov, V.; Dadar, M.; Spreng, R.N.; Collins, D.L. Degeneration in Nucleus Basalis of Meynert Signals Earliest Stage of Alzheimer’s Disease Progression. Neurobiol. Aging 2024, 139, 54–63. [Google Scholar] [CrossRef]
- Benussi, A.; Dell’Era, V.; Cantoni, V.; Cotelli, M.S.; Cosseddu, M.; Spallazzi, M.; Micheli, A.; Turrone, R.; Alberici, A.; Borroni, B. TMS for Staging and Predicting Functional Decline in Frontotemporal Dementia. Brain Stimul. 2020, 13, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Dell’Era, V.; Cosseddu, M.; Cantoni, V.; Cotelli, M.S.; Cotelli, M.; Manenti, R.; Benussi, L.; Brattini, C.; Alberici, A.; et al. Transcranial Stimulation in Frontotemporal Dementia: A Randomized, Double-blind, Sham-controlled Trial. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12033. [Google Scholar] [CrossRef]
- Murley, A.G.; Rowe, J.B. Neurotransmitter Deficits from Frontotemporal Lobar Degeneration. Brain 2018, 141, 1263–1285. [Google Scholar] [CrossRef]
- Benussi, A.; Pilotto, A.; Cantoni, V.; Ferrari, E.; Borroni, B.; Padovani, A. Neurophysiological Correlates of Motor and Cognitive Dysfunction in Prodromal and Overt Dementia with Lewy Bodies. J. Alzheimer’s Dis. 2022, 86, 579–588. [Google Scholar] [CrossRef]
- Marra, C.; Quaranta, D.; Profice, P.; Pilato, F.; Capone, F.; Iodice, F.; Di Lazzaro, V.; Gainotti, G. Central Cholinergic Dysfunction Measured “in Vivo” Correlates with Different Behavioral Disorders in Alzheimer’s Disease and Dementia with Lewy Body. Brain Stimul. 2012, 5, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Di Lazzaro, V.; Pilato, F.; Dileone, M.; Saturno, E.; Profice, P.; Marra, C.; Daniele, A.; Ranieri, F.; Quaranta, D.; Gainotti, G.; et al. Functional Evaluation of Cerebral Cortex in Dementia with Lewy Bodies. NeuroImage 2007, 37, 422–429. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Benussi, A.; Grassi, M.; Palluzzi, F.; Cantoni, V.; Cotelli, M.S.; Premi, E.; Di Lorenzo, F.; Pellicciari, M.C.; Ranieri, F.; Musumeci, G.; et al. Classification Accuracy of TMS for the Diagnosis of Mild Cognitive Impairment. Brain Stimul. 2021, 14, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Colella, D.; Guerra, A.; Paparella, G.; Cioffi, E.; Di Vita, A.; Trebbastoni, A.; Berardelli, A.; Bologna, M. Motor Dysfunction in Mild Cognitive Impairment as Tested by Kinematic Analysis and Transcranial Magnetic Stimulation. Clin. Neurophysiol. 2021, 132, 315–322. [Google Scholar] [CrossRef]
- Kamble, N.; Bhattacharya, A.; Hegde, S.; Vidya, N.; Gothwal, M.; Yadav, R.; Pal, P.K. Cortical Excitability Changes as a Marker of Cognitive Impairment in Parkinson’s Disease. Behav. Brain Res. 2022, 422, 113733. [Google Scholar] [CrossRef]
- Mimura, Y.; Tobari, Y.; Nakajima, S.; Takano, M.; Wada, M.; Honda, S.; Bun, S.; Tabuchi, H.; Ito, D.; Matsui, M.; et al. Decreased Short-Latency Afferent Inhibition in Individuals with Mild Cognitive Impairment: A TMS-EEG Study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 132, 110967. [Google Scholar] [CrossRef]
- Nardone, R.; Bergmann, J.; Christova, M.; Caleri, F.; Tezzon, F.; Ladurner, G.; Trinka, E.; Golaszewski, S. Short Latency Afferent Inhibition Differs among the Subtypes of Mild Cognitive Impairment. J. Neural Transm. 2012, 119, 463–471. [Google Scholar] [CrossRef]
- Nardone, R.; Bergmann, J.; Kunz, A.; Christova, M.; Brigo, F.; Tezzon, F.; Trinka, E.; Golaszewski, S. Cortical Afferent Inhibition Is Reduced in Patients with Idiopathic REM Sleep Behavior Disorder and Cognitive Impairment: A TMS Study. Sleep Med. 2012, 13, 919–925. [Google Scholar] [CrossRef]
- Nardone, R.; Bergmann, J.; Brigo, F.; Christova, M.; Kunz, A.; Seidl, M.; Tezzon, F.; Trinka, E.; Golaszewski, S. Functional Evaluation of Central Cholinergic Circuits in Patients with Parkinson’s Disease and REM Sleep Behavior Disorder: A TMS Study. J. Neural Transm. 2013, 120, 413–422. [Google Scholar] [CrossRef]
- Olazarán, J.; Prieto, J.; Cruz, I.; Esteban, A. Cortical Excitability in Very Mild Alzheimer’s Disease: A Long-Term Follow-up Study. J. Neurol. 2010, 257, 2078–2085. [Google Scholar] [CrossRef] [PubMed]
- Padovani, A.; Benussi, A.; Cantoni, V.; Dell’Era, V.; Cotelli, M.S.; Caratozzolo, S.; Turrone, R.; Rozzini, L.; Alberici, A.; Altomare, D.; et al. Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease with Transcranial Magnetic Stimulation. J. Alzheimer’s Dis. 2018, 65, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Padovani, A.; Benussi, A.; Cotelli, M.S.; Ferrari, C.; Cantoni, V.; Dell’Era, V.; Turrone, R.; Paghera, B.; Borroni, B. Transcranial Magnetic Stimulation and Amyloid Markers in Mild Cognitive Impairment: Impact on Diagnostic Confidence and Diagnostic Accuracy. Alzheimer’s Res. Ther. 2019, 11, 95. [Google Scholar] [CrossRef]
- Peter, J.; Mayer, I.; Kammer, T.; Minkova, L.; Lahr, J.; Klöppel, S.; Grothe, M.J.; Orth, M. The Relationship between Cholinergic System Brain Structure and Function in Healthy Adults and Patients with Mild Cognitive Impairment. Sci. Rep. 2021, 11, 16080. [Google Scholar] [CrossRef]
- Sakuma, K.; Murakami, T.; Nakashima, K. Short Latency Afferent Inhibition Is Not Impaired in Mild Cognitive Impairment. Clin. Neurophysiol. 2007, 118, 1460–1463. [Google Scholar] [CrossRef]
- Tsutsumi, R.; Hanajima, R.; Hamada, M.; Shirota, Y.; Matsumoto, H.; Terao, Y.; Ohminami, S.; Yamakawa, Y.; Shimada, H.; Tsuji, S.; et al. Reduced Interhemispheric Inhibition in Mild Cognitive Impairment. Exp. Brain Res. 2012, 218, 21–26. [Google Scholar] [CrossRef]
- Yarnall, A.J.; Rochester, L.; Baker, M.R.; David, R.; Khoo, T.K.; Duncan, G.W.; Galna, B.; Burn, D.J. Short Latency Afferent Inhibition: A Biomarker for Mild Cognitive Impairment in Parkinson’s Disease? Mov. Disord. 2013, 28, 1285–1288. [Google Scholar] [CrossRef]
- Ammann, C.; Dileone, M.; Pagge, C.; Catanzaro, V.; Mata-Marín, D.; Hernández-Fernández, F.; Monje, M.H.G.; Sánchez-Ferro, Á.; Fernández-Rodríguez, B.; Gasca-Salas, C.; et al. Cortical Disinhibition in Parkinson’s Disease. Brain 2020, 143, 3408–3421. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Bahl, N.; Gunraj, C.A.; Mazzella, F.; Chen, R. Increased Motor Cortical Facilitation and Decreased Inhibition in Parkinson Disease. Neurology 2013, 80, 1746–1753. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Ponzo, V.; Motta, C.; Bonnì, S.; Picazio, S.; Caltagirone, C.; Bozzali, M.; Martorana, A.; Koch, G. Impaired Spike Timing Dependent Cortico-Cortical Plasticity in Alzheimer’s Disease Patients. J. Alzheimer’s Dis. 2018, 66, 983–991. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Motta, C.; Bonnì, S.; Mercuri, N.B.; Caltagirone, C.; Martorana, A.; Koch, G. LTP-like Cortical Plasticity Is Associated with Verbal Memory Impairment in Alzheimer’s Disease Patients. Brain Stimul. 2019, 12, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Varone, G.; Biabani, M.; Tremblay, S.; Brown, J.C.; Kallioniemi, E.; Rogasch, N.C. The Golden Age of Online Readout: EEG-Informed TMS from Manual Probing to Closed-Loop Neuromodulation. PsyArXiv 2025. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Syn. Meth. 2020, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
Publication | N | Gender, Female | Diagnosis | HC Group (Y = Yes; N = No) | Indices | Main Results |
---|---|---|---|---|---|---|
[54] | 43 | NA | AD, aMCI | Y | SAI | Impaired in AD vs. HC or aMCI |
[50] | 23 | 52.0% | MCI-AD | Y | SICI | No differences |
ICF | No differences | |||||
LICI | No differences | |||||
[47] | 50 | 36.0% | aMCI, na-MCI | Y | SAI | Impaired in aMCI vs. na-MCI or HC |
SICI | No differences | |||||
ICF | No differences | |||||
[55] | 28 | 64.2% | aMCI | Y | SAI | Impaired in aMCI vs. HC |
SICI | No differences | |||||
ICF | No differences | |||||
[48] | 25 | NA | iRBD | Y | SAI | Impaired in iRBD vs. HC |
SICI | No differences | |||||
ICF | No differences | |||||
[56] | 44 | 45.5% | PD, PD-MCI | Y | SAI | Impaired in PD-MCI vs. PD or HC |
[49] | 38 | 26.3% | PD-RBD, PD-nRBD | Y | SAI | Impaired in PD-RBD vs. PD-nRBD or HC Abnormal in PD-RBD with MCI |
SICI | No differences | |||||
ICF | No differences | |||||
[51] | 69 | 58.0% | MCI-AD, MCI non-AD | Y | SAI | Impaired in MCI-AD vs. MCI non-AD or HC |
SICI | Impaired in MCI non-AD vs. MCI-AD or HC | |||||
ICF | Impaired in MCI non-AD vs. MCI-AD or HC | |||||
[52] | 107 | 50.0% | MCI-AD, MCI-FTD, MCI-DLB, MCI-other | N | SAI SICI ICF | Increased DC in MCI-AD, MCI-FTD, MCI-DLB, MCI-other |
[43] | 153 | 47.0% | MCI-AD, MCI-FTD, MCI-DLB | Y | SAI | Impaired in MCI-AD and MCI-DLB vs. HC |
SICI | Impaired in MCI-FTD and MCI-DLB vs. HC | |||||
ICF | Impaired in MCI-FTD and MCI-DLB vs. HC | |||||
LICI | No differences | |||||
[44] | 30 | 40.0% | aMCI | Y | SAI | No differences |
SICI | No differences | |||||
[53] | 56 | 62.5% | MCI | Y | SAI | No differences |
[45] | 76 | 19.7% | PD, PD-MCI, PDD | Y | SICI | Impaired in PDD, PD-MCI and PD vs. HC |
ICF | Impaired in PDD, PD-MCI and PD vs. HC | |||||
[46] | 60 | 35.0% | MCI | Y | SAI | Impaired in MCI vs. HC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dognini, E.; Finazzi, S.; Campana, E.; Manenti, R.; Cotelli, M.; Borroni, B. Transcranial Magnetic Stimulation as a Diagnostic Tool in Mild Cognitive Impairment: A Systematic Review. Brain Sci. 2025, 15, 969. https://doi.org/10.3390/brainsci15090969
Dognini E, Finazzi S, Campana E, Manenti R, Cotelli M, Borroni B. Transcranial Magnetic Stimulation as a Diagnostic Tool in Mild Cognitive Impairment: A Systematic Review. Brain Sciences. 2025; 15(9):969. https://doi.org/10.3390/brainsci15090969
Chicago/Turabian StyleDognini, Elisa, Simona Finazzi, Elena Campana, Rosa Manenti, Maria Cotelli, and Barbara Borroni. 2025. "Transcranial Magnetic Stimulation as a Diagnostic Tool in Mild Cognitive Impairment: A Systematic Review" Brain Sciences 15, no. 9: 969. https://doi.org/10.3390/brainsci15090969
APA StyleDognini, E., Finazzi, S., Campana, E., Manenti, R., Cotelli, M., & Borroni, B. (2025). Transcranial Magnetic Stimulation as a Diagnostic Tool in Mild Cognitive Impairment: A Systematic Review. Brain Sciences, 15(9), 969. https://doi.org/10.3390/brainsci15090969