Brain Nuclei in the Regulation of Sexual Behavior, Peripheral Nerves Related to Reproduction, and Their Alterations in Neurodegenerative Diseases: A Brief Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Central Circuits of Male Sexual Behavior: Central and Spinal Integration
3.2. Influence of Sexual Behavior on the Neuroendocrine Function of the Greater Pelvic Ganglion
3.3. Testosterone and Its Neurobehavioral Action
3.4. Estradiol and the Role of Estrogens
3.5. Sexual and Reproductive Dysfunctions and Therapeutic Perspectives
3.6. Impact of Neurodegenerative Diseases on Male Sexual Behavior and Reproductive Function
3.6.1. Alzheimer’s Disease
3.6.2. Parkinson’s Disease
3.6.3. Autism Spectrum Disorder
3.6.4. Multiple Sclerosis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hull, E.M.; Rodríguez-Manzo, G. Male sexual behavior. In Hormones, Brain and Behavior; Elsevier: Amsterdam, The Netherlands, 2009; pp. 5–65. [Google Scholar] [CrossRef]
- Hull, E.M.; Dominguez, J.M. Sexual behavior in male rodents. Horm. Behav. 2007, 52, 45–55. [Google Scholar] [CrossRef]
- Pfaus, J.G. Pathways of sexual desire. J. Sex. Med. 2009, 6, 1506–1533. [Google Scholar] [CrossRef] [PubMed]
- Pfaus, J.G.; Damsma, G.; Nomikos, G.G.; Wenkstern, D.G.; Blaha, C.D.; Phillips, A.G. Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 1990, 530, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Lanuza, E.; Novejarque, A.; Martínez, R.J.; Martínez, H.J.; Agustín, P.C.; Martínez, G.F. Sexual pheromones and the evolution of the reward system of the brain: The chemosensory function of the amygdala. Brain Res. Bull. 2008, 75, 460–466. [Google Scholar] [CrossRef]
- Sakamoto, H. Brain-spinal cord neural circuits controlling male sexual function and behavior. Neurosci. Res. 2012, 72, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, Z.V. Efecto de la Conducta Sexual y la Denervación Preganglionar Sobre las Características Histológicas de la Próstata y del Ganglio Pélvico Mayor en la Rata. Ph.D. Thesis, Universidad Veracruzana, Xalapa, Mexico, 2021; pp. 1–100. [Google Scholar]
- Hernández, M.E.; Serrano, M.K.; Aranda, A.G.; Sanchez, V.Z.; Mateos, A. Quantification of neural and hormonal receptors at the prostate of long-term sexual behaving male rats after lesion of pelvic and hypogastric nerves. Physiol. Behav. 2020, 222, 112915. [Google Scholar] [CrossRef]
- Palacios, M.P.; Hernández, M.E.; Sánchez, Z.V. Efecto de la Lesión Nerviosa Sobre la Histología del Testículo y el Recuento Espermático. Bachelor’s Thesis, Universidad Veracruzana, Xalapa, Mexico, 2020. [Google Scholar]
- Coria, G.A.; James, G.P.; Cibrian-LLanderal, T.; Tecamachaitzi-Sivarán, M.; Triana del Rió, R. Cómo aprender a comportarse sexualmente. Rev. Neurobiol. 2010, 1, 1–15. [Google Scholar]
- Coria, A.G. Conducta sexual. In Neurofisiología de la Conducta; Universidad Veracruzana: Xalapa, Mexico, 2015; Volume 1, pp. 184–197. [Google Scholar]
- Ågmo, A. Sexual motivation—An inquiry into events determining the occurrence of sexual behavior. Behav. Brain Res. 1999, 105, 129–150. [Google Scholar] [CrossRef]
- Segovia, S.; Guillamón, A. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. Brain Res. Rev. 1993, 18, 51–74. [Google Scholar] [CrossRef]
- Powers, J.B.; Winans, S.S. Vomeronasal organ: Critical role in mediating sexual behavior of the male hamster. Science 1975, 187, 961–963. [Google Scholar] [CrossRef]
- Leonard, B.E.; Tuite, M. Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat. Int. Rev. Neurobiol. 1981, 22, 251–286. [Google Scholar] [CrossRef]
- Keverne, E.B. Importance of olfactory and vomeronasal systems for male sexual function. Physiol. Behav. 2004, 83, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.A.; Johnston, R.E. Hormonal and behavioral responses of male hamsters to females and female odors: Roles of olfaction, the vomeronasal system, and sexual experience. Physiol. Behav. 1994, 55, 129–138. [Google Scholar] [CrossRef]
- Kondo, Y.; Sudo, T.; Tomihara, K.; Sakuma, Y. Activation of accessory olfactory bulb neurons during copulatory behavior after deprivation of vomeronasal inputs in male rats. Brain Res. 2003, 962, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Veening, J.G.; Coolen, L.M. Neural activation following sexual behavior in the male and female rat brain. Behav. Brain Res. 1998, 92, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.A. On the organization of olfactory and vomeronasal cortices. Prog. Neurobiol. 2009, 87, 21–30. [Google Scholar] [CrossRef]
- Kelliher, K.R.; Wersinger, S.R. Olfactory regulation of the sexual behavior and reproductive physiology of the laboratory mouse: Effects and neural mechanisms. ILAR J. 2009, 50, 28–42. [Google Scholar] [CrossRef]
- Paredes, R.G.; Baum, M.J. Role of the medial preoptic area/anterior hypothalamus in the control of masculine sexual behavior. Neurosci. Biobehav. Rev. 1997, 21, 68–101. [Google Scholar] [CrossRef]
- Balthazart, J.; Ball, G.F. Topography in the preoptic region: Differential regulation of appetitive and consummatory male sexual behaviors. Front. Neuroendocrinol. 2007, 28, 161–178. [Google Scholar] [CrossRef]
- Balthazart, J.; Baillien, M.; Cornil, C.A.; Ball, G.F. Preoptic aromatase modulates male sexual behavior: Slow and fast mechanisms of action. Physiol. Behav. 2004, 83, 247–270. [Google Scholar] [CrossRef]
- Paredes, R.G.; Ågmo, A. Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence. Prog. Neurobiol. 2004, 73, 179–225. [Google Scholar] [CrossRef]
- Coolen, L.M.; Peters, H.J.P.W.; Veening, J.G. Fos immunoreactivity in the rat brain following consummatory elements of sexual behavior: A sex comparison. Brain Res. 1996, 738, 67–82. [Google Scholar] [CrossRef]
- Heimer, L.; Larsson, K. Impairment of mating behavior in male rats following lesions in the preoptic-anterior hypothalamic continuum. Brain Res. 1967, 3, 248–263. [Google Scholar] [CrossRef]
- Jürgens, U. The hypothalamus and behavioral patterns. Prog. Brain Res. 1974, 41, 445–463. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, R.S.; Cacciola, A.; Bruschetta, D.; Milardi, D.; Quattrini, F.; Sciarrone, F.; la Rosa, G.; Bramanti, P.; Anastasi, G. Neuroanatomy and function of human sexual behavior: A neglected or unknown issue? Brain Behav. 2019, 9, e01389. [Google Scholar] [CrossRef] [PubMed]
- Baum, M.J.; Everitt, B.J. Increased expression of c-fos in the medial preoptic area after mating in male rats: Role of afferent inputs from the medial amygdala and midbrain central tegmental field. Neuroscience 1992, 50, 627–646. [Google Scholar] [CrossRef]
- Morishita, M.; Kobayashi, K.; Mitsuzuka, M.; Takagi, R.; Ono, K.; Momma, R. Two-Step Actions of Testicular An-drogens in the Organization of a Male-Specific Neural Pathway from the Medial Preoptic Area to the Ventral Tegmental Area for Modulating Sexually Motivated Behavior. J. Neurosci. 2023, 43, 7322–7336. [Google Scholar] [CrossRef] [PubMed]
- Jennings, K.J.; de Lecea, L. Neural and hormonal control of sexual behavior. Endocrinology 2020, 161, bqaa150. [Google Scholar] [CrossRef] [PubMed]
- Flanigan, M.E.; Kash, T.L. Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur. J. Neurosci. 2022, 55, 2404–2420. [Google Scholar] [CrossRef]
- Valcourt, R.J.; Sachs, B.D. Penile reflexes and copulatory behavior in male rats following lesions in the bed nucleus of the stria terminalis. Brain Res. Bull. 1979, 4, 131–133. [Google Scholar] [CrossRef]
- Kimble, D.P.; Rogers, L.; Hendrickson, C.W. Hippocampal lesions disrupt maternal, not sexual, behavior in the albino rat. J. Comp. Physiol. Psychol. 1967, 63, 401–407. [Google Scholar] [CrossRef]
- Leuner, B.; Glasper, E.R.; Gould, E. Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones. PLoS ONE 2010, 5, e11597. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.E.; Allore, R.J.; Beck, S.G.; Handa, R.J. Distribution and hormonal regulation of androgen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus. Endocrinology 1995, 136, 3213–3221. [Google Scholar] [CrossRef]
- Risold, P.Y.; Swanson, L.W. Chemoarchitecture of the rat lateral septal nucleus. Brain Res. Rev. 1997, 24, 91–113. [Google Scholar] [CrossRef]
- Gogate, M.G.; Brid, S.V.; Wingkar, K.C.; Kantak, N.M. Septal regulation of male sexual behavior in rats. Physiol. Behav. 1995, 57, 1205–1207. [Google Scholar] [CrossRef]
- Agrawal, J.M. The role of septal nuclei in modulation of sexual behavior in young male rats. Natl. J. Physiol. Pharm. Pharmacol. 2018, 9, 121–125. [Google Scholar] [CrossRef]
- Kondo, Y.; Shinoda, A.; Yamanouchi, K.; Arai, Y. Role of septum and preoptic area in regulating masculine and feminine sexual behavior in male rats. Horm. Behav. 1990, 24, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Gulia, K.K.; Kumar, V.M.; Mallick, H.N. Role of the lateral septal noradrenergic system in the elaboration of male sexual behavior in rats. Pharmacol. Biochem. Behav. 2002, 72, 817–823. [Google Scholar] [CrossRef]
- Simerly, R.B.; Swanson, L.W.; Gorski, R.A. Demonstration of a sexual dimorphism in the distribution of serotonin-immunoreactive fibers in the medial preoptic nucleus of the rat. J. Comp. Neurol. 1984, 225, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.M.; Hull, E.M. Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav. 2005, 86, 356–368. [Google Scholar] [CrossRef]
- Dohanich, G.P.; Clemens, L.G. Brain areas implicated in cholinergic regulation of sexual behavior. Horm. Behav. 1981, 15, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Hull, E.M.; Bazzett, T.J.; Warner, R.K.; Eaton, R.C.; Thompson, J.T. Dopamine receptors in the ventral tegmental area modulate male sexual behavior in rats. Brain Res. 1990, 512, 1–6. [Google Scholar] [CrossRef]
- Gréco, B.; Edwards, D.A.; Michael, R.P.; Zumpe, D.; Clancy, A.N. Colocalization of androgen receptors and mating-induced Fos immunoreactivity in neurons that project to the central tegmental field in male rats. J. Comp. Neurol. 1999, 408, 220–236. [Google Scholar] [CrossRef]
- Balfour, M.E.; Yu, L.; Coolen, L.M. Sexual behavior and sex-associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacology 2004, 29, 718–730. [Google Scholar] [CrossRef]
- Romero, J.C.; Camacho, F.J.; Paredes, R.G. The role of the dorsolateral tegmentum in the control of male sexual behavior: A reevaluation. Behav. Brain Res. 2006, 170, 262–270. [Google Scholar] [CrossRef]
- Giuliano, F.; Allard, J. Dopamine and sexual function. Int. J. Impot. Res. 2001, 13, S18–S28. [Google Scholar] [CrossRef]
- Pitchers, K.K.; Coppens, C.M.; Beloate, L.N.; Fuller, J.; Van, S.; Frohmader, K.S. Endogenous opioid-induced neuroplasticity of dopaminergic neurons in the ventral tegmental area influences natural and opiate reward. J. Neurosci. 2014, 34, 8825–8836. [Google Scholar] [CrossRef]
- Rodríguez, M.G.; Canseco, A.A. A new role for GABAergic transmission in the control of male rat sexual behavior expression. Behav. Brain Res. 2017, 320, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Guevara, M.A.; Martinez, P.M.; Arteaga, S.M.; Bonilla, J.H.; Hernández, G.M. Electrophysiological correlates of the mesoaccumbens system during male rat sexual behaviour. Physiol. Behav. 2008, 95, 545–552. [Google Scholar] [CrossRef]
- Beloate, L.N.; Omrani, A.; Adan, R.A.; Webb, I.C.; Coolen, L.M. Ventral tegmental area dopamine cell activation during male rat sexual behavior regulates neuroplasticity and D-amphetamine cross-sensitization following sex abstinence. J. Neurosci. 2016, 36, 9949–9961. [Google Scholar] [CrossRef] [PubMed]
- van Furth, W.R.; van Ree, J.M. Sexual motivation: Involvement of endogenous opioids in the ventral tegmental area. Brain Res. 1996, 729, 20–28. [Google Scholar] [CrossRef]
- Garduño, G.R.; León, O.M.; Rodríguez, M.G. Opioid receptor and β-arrestin2 densities and distribution change after sexual experience in the ventral tegmental area of male rats. Physiol. Behav. 2018, 189, 107–115. [Google Scholar] [CrossRef] [PubMed]
- McHenry, J.A.; Otis, J.M.; Rossi, M.A.; Robinson, J.E.; Kosyk, O.; Miller, N.W. Hormonal gain control of a medial preoptic area social reward circuit. Nat. Neurosci. 2017, 20, 449–458. [Google Scholar] [CrossRef]
- Laredo, S.A.; Villalon, L.R.; Trainor, B.C. Rapid effects of estrogens on behavior: Environmental modulation and molecular mechanisms. Front. Neuroendocrinol. 2014, 35, 447–458. [Google Scholar] [CrossRef]
- Cortes, P.M.; Hernández, A.E.; Sotelo, T.C.; Guevara, M.A.; Medina, A.C.; Hernández-González, M. Effects of inactivation of the ventral tegmental area on prefronto-accumbens activity and sexual motivation in male rats. Physiol. Behav. 2019, 209, 112593. [Google Scholar] [CrossRef] [PubMed]
- Sipos, M.L.; Nyby, J.G. Concurrent androgenic stimulation of the ventral tegmental area and medial preoptic area: Synergistic effects on male-typical reproductive behaviors in house mice. Brain Res. 1996, 729, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Poeppl, T.B.; Langguth, B.; Rupprecht, R.; Safron, A.; Bzdok, D.; Laird, A.R. The neural basis of sex differences in sexual behavior: A quantitative meta-analysis. Front. Neuroendocrinol. 2016, 43, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.R.; Melis, T.; Cocco, C.; Succu, S.; Sanna, F.; Pillolla, G.; Boi, A.; Ferri, G.-L.; Argiolas, A. Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur. J. Neurosci. 2007, 26, 1026–1035. [Google Scholar] [CrossRef]
- Brown, D.J.; Hill, S.T.; Baker, H.W.G. Male fertility and sexual function after spinal cord injury. Prog. Brain Res. 2006, 152, 427–439. [Google Scholar] [CrossRef]
- Soon, L.; Miselis, R.; Rivier, C. Anatomical and functional evidence for a neural hypothalamic-testicular pathway that is independent of the pituitary. Endocrinology 2002, 143, 4447–4454. [Google Scholar] [CrossRef]
- Pfaus, J.G.; Phillips, A.G. Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav. Neurosci. 1991, 105, 727–743. [Google Scholar] [CrossRef]
- Schneiderman, I.; Zagoory, S.O.; Leckman, J.F.; Feldman, R. Oxytocin during the initial stages of romantic attachment: Relations to couples’ interactive reciprocity. Psychoneuroendocrinology 2012, 37, 1277–1285. [Google Scholar] [CrossRef]
- Wagner, C.K.; Clemens, L.G. Projections of the paraventricular nucleus of the hypothalamus to the sexually dimorphic lumbosacral region of the spinal cord. Brain Res. 1991, 539, 254–262. [Google Scholar] [CrossRef]
- Veening, J.G.; Coolen, L.M. Neural mechanisms of sexual behavior in the male rat: Emphasis on ejaculation-related circuits. Pharmacol. Biochem. Behav. 2014, 121, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Sengelaub, D.R.; Forger, N.G. The spinal nucleus of the bulbocavernosus: Firsts in androgen-dependent neural sex differences. Horm. Behav. 2008, 53, 596–612. [Google Scholar] [CrossRef] [PubMed]
- Forger, N.G.; Breedlove, S.M. Sexual dimorphism in human and canine spinal cord: Role of early androgen. Proc. Natl. Acad. Sci. USA 1986, 83, 7527–7531. [Google Scholar] [CrossRef] [PubMed]
- Breedlove, S.M.; Arnold, A.P. Hormone accumulation in a sexually dimorphic motor nucleus of the rat spinal cord. Science 1980, 210, 564–566. [Google Scholar] [CrossRef]
- Landa, G.J.N.; Palacios, A.M.P.; Morales, M.A.; Aranda, A.G.E.; Rojas, D.F.; Herrera, C.D. The Anatomy, Histology, and Function of the Major Pelvic Ganglion. Animals 2024, 14, 2570. [Google Scholar] [CrossRef]
- Allard, J.; Truitt, W.A.; McKenna, K.E.; Coolen, L.M. Spinal cord control of ejaculation. World J. Urol. 2005, 23, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Raskin, K.; Marie-Luce, C.; Picot, M.; Bernard, V.; Mailly, P.; Hardin, P.H. Characterization of the Spinal Nucleus of the Bulbocavernosus Neuromuscular System in Male Mice Lacking Androgen Receptor in the Nervous System. Endocrinology 2012, 153, 3376–3385. [Google Scholar] [CrossRef]
- Steers, W.D. Neural pathways and central sites involved in penile erection: Neuroanatomy and clinical implications. Neurosci. Biobehav. Rev. 2000, 24, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, F.; Rampin, O. Neural control of erection. Physiol. Behav. 2004, 83, 189–201. [Google Scholar] [CrossRef]
- Argiolas, A.; Melis, M.R. The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol. Behav. 2004, 83, 309–317. [Google Scholar] [CrossRef]
- Johnson, R.D. Descending pathways modulating the spinal circuitry for ejaculation: Effects of chronic spinal cord injury. Prog. Brain Res. 2006, 152, 415–426. [Google Scholar] [CrossRef]
- McKenna, K.E. Neural circuitry involved in sexual function. J. Spinal Cord Med. 2001, 24, 148–154. [Google Scholar] [CrossRef]
- Cechetto, D.F.; Saper, C.B. Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J. Comp. Neurol. 1988, 272, 579–604. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.H.; Manzo, J.; Fausto, R.D.; Aranda, G.; Herrera, D.; Suarez, J. A pelvic trinity: Prostate, hormones and nerves. Med. Res. Arch. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Palacios, M.; Hernández, M.E. Denervación de los Nervios Pélvicos e Hipogástricos y su Efecto Sobre la Histología Testicular, Proliferación, Meiosis, Apoptosis y Regulación del Receptor Andrógenos. Ph.D. Thesis, Universidad Veracruzana, Xalapa, Mexico, 2025; pp. 1–61. [Google Scholar]
- Sánchez-Zavaleta, V.; Mateos-Moreno, A.; Cruz-Rivas, V.H.; Aranda-Abreu, G.E.; Herrera-Covarrubias, D. Contribución del sistema nervioso autónomo y la conducta sexual en la fisiopatología de la próstata. Rev. Electrón. Neurobiol. 2021, 29, 1–16. [Google Scholar]
- Serrano, M.K.; Hernández, M.E. Efecto de la Denervación Hipogástrica y/o Pélvica Sobre la Expresión de Receptores a Andrógenos, Adrenérgicos, Colinérgicos y los Niveles de Testosterona Sérica en Próstata de Rata. Ph.D. Thesis, Universidad Veracruzana, Xalapa, Mexico, 2018; pp. 1–86. [Google Scholar]
- Keast, J.R. Plasticity of pelvic autonomic ganglia and urogenital innervation. Int. Rev. Cytol. 2006, 248, 141–208. [Google Scholar] [CrossRef]
- Rauchenwald, M.; Steers, W.D.; Desjardins, C. Efferent Innervation of the Rat Testis. Biol. Reprod. 1995, 52, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.E. Efecto de la Conducta Sexual y la Denervación Pélvica y/o Hipogástrica Sobre la Expresión de Receptores Adrenérgicos, Colinérgicos, Andrógenos y Prolactina en el Ganglio Pélvico Mayor de la Rata Macho. Ph.D. Thesis, Universidad Veracruzana, Xalapa, Mexico, 2021; pp. 1–87. [Google Scholar]
- Swerdloff, R.S.; Wang, C.; White, W.B.; Kaminetsky, J.; Gittelman, M.C.; Longstreth, J.A. A New Oral Testosterone Undecanoate Formulation Restores Testosterone to Normal Concentrations in Hypogonadal Men. J. Clin. Endocrinol. Metab. 2020, 105, 2515. [Google Scholar] [CrossRef] [PubMed]
- Plant, T.M. Neuroendocrine control of the onset of puberty. Front. Neuroendocrinol. 2015, 38, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, C.A.; Chang, C. Androgen receptor (AR) coregulators: An overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Putnam, S.K.; Du, J.; Sato, S.; Hull, E.M. Testosterone restoration of copulatory behavior correlates with medial preoptic dopamine release in castrated male rats. Horm. Behav. 2001, 39, 216–224. [Google Scholar] [CrossRef]
- Corona, G.; Monami, M.; Rastrelli, G.; Aversa, A.; Tishova, Y.; Saad, F. Testosterone and metabolic syndrome: A meta-analysis study. J. Sex. Med. 2011, 8, 272–283. [Google Scholar] [CrossRef]
- Simerly, R.B.; Swanson, L.W.; Chang, C.; Muramatsu, M. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ hybridization study. J. Comp. Neurol. 1990, 294, 76–95. [Google Scholar] [CrossRef]
- Foradori, C.D.; Weiser, M.J.; Handa, R.J. Non-genomic actions of androgens. Front. Neuroendocrinol. 2008, 29, 169–181. [Google Scholar] [CrossRef]
- Hull, E.M.; Muschamp, J.W.; Sato, S. Dopamine and serotonin: Influences on male sexual behavior. Physiol. Behav. 2004, 83, 291–307. [Google Scholar] [CrossRef]
- Bocklandt, S.; Vilain, E. Sex differences in brain and behavior: Hormones versus genes. Adv. Genet. 2007, 59, 245–266. [Google Scholar] [CrossRef]
- Taziaux, M.; Keller, M.; Bakker, J.; Balthazart, J. Sexual behavior activity tracks rapid changes in brain estrogen concentrations. J. Neurosci. 2007, 27, 6563–6572. [Google Scholar] [CrossRef]
- Sakamoto, H.; Kawata, M. Gastrin-releasing peptide system in the spinal cord controls male sexual behaviour. J. Neuroendocrinol. 2009, 21, 432–435. [Google Scholar] [CrossRef]
- Melis, M.R.; Argiolas, A. Central control of penile erection: A re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci. Biobehav. Rev. 2011, 35, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Young, L.J.; Wang, Z. The neurobiology of pair bonding. Nat. Neurosci. 2004, 7, 1048–1054. [Google Scholar] [CrossRef]
- Krüger, T.H.C.; Haake, P.; Chereath, D.; Knapp, W.; Janssen, O.E.; Exton, M.S.; Schedlowski, M.; Hartmann, U. Specificity of the neuroendocrine response to orgasm during sexual arousal in men. J. Endocrinol. 2003, 177, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Balthazart, J.; Ball, G.F. Is brain estradiol a hormone or a neurotransmitter? Trends Neurosci. 2006, 29, 241–249. [Google Scholar] [CrossRef]
- Brooks, D.C.; Coon, J.S.V.; Ercan, C.M.; Xu, X.; Dong, H.; Levine, J.E.; Bulun, S.E.; Zhao, H. Brain aromatase and the regulation of sexual activity in male mice. Endocrinology 2020, 161, bqaa137. [Google Scholar] [CrossRef]
- Cornil, C.A.; Court, L. Neurestrogens in the control of sexual behavior—Past, present and future. Curr. Opin. Endocr. Metab. Res. 2022, 24, 100334. [Google Scholar] [CrossRef]
- McEwen, B.S.; Akama, K.T.; Spencer-Segal, J.L.; Milner, T.A.; Waters, E.M. Estrogen effects on the brain: Actions beyond the hypothalamus via novel mechanisms. Behav. Neurosci. 2012, 126, 4–16. [Google Scholar] [CrossRef]
- Pomerol Monseny, J.M. Disfunción eréctil de origen psicógeno. Arch. Esp. Urol. 2010, 63, 599–602. [Google Scholar] [CrossRef]
- Herrero Mediavilla, R. Un paciente con disfunción sexual. Med. Integral 2002, 39, 56–62. [Google Scholar]
- Herrera, H.C.; Nafissa, I.; Avila, G.A.C. Neurofisiología de la hipersexualidad secundaria al tratamiento de enfermedad de Parkinson. eNeurobiología 2015, 6, 13. [Google Scholar]
- Hentzen, C.; Teng, M. Sexual dysfunction in patients with neurological disease. Curr. Sex. Health Rep. 2024, 16, 251–258. [Google Scholar] [CrossRef]
- Manuli, A.; Maggio, M.; De Pasquale, P.; Raciti, L.; Filoni, S.; Portaro, S. Determinants of sexual dysfunction in Parkinson’s disease patients: A secondary analysis of a multicenter cross-sectional study. J. Clin. Med. 2025, 14, 152. [Google Scholar] [CrossRef]
- Altmann, P.; Leithner, K.; Leutmezer, F.; Monschein, T.; Ponleitner, M.; Stattmann, M. Sexuality and multiple sclerosis: Patient and doctor perspectives. J. Sex. Med. 2021, 18, 743–749. [Google Scholar] [CrossRef]
- Derouesné, C.; Guigot, J.; Chermat, V.; Winchester, N.; Lacomblez, L. Sexual behavioral changes in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1996, 10, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Swaab, D. Sexual differentiation of the human brain: Relevance for gender identity, transsexualism and sexual orientation. Gynecol. Endocrinol. 2004, 19, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Baird, A.D.; Wilson, S.J.; Bladin, P.F.; Saling, M.; Reutens, D.C. Neurological control of human sexual behaviour: Insights from lesion studies. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Shen, H.; Zhu, Y.; Zhang, J.; Shen, Z.; Jiang, J. Causal effects of genetically predicted testosterone on Alzheimer’s disease: A two-sample Mendelian randomization study. Acta Neurol. Belg. 2024, 124, 591–601. [Google Scholar] [CrossRef]
- Bianchi, V.E. Impact of testosterone on Alzheimer’s disease. World J. Men’s Health 2022, 40, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Lou, Q. Alzheimer’s disease increases the risk of erectile dysfunction independent of cardiovascular diseases: A Mendelian randomization study. PLoS ONE 2024, 19, 338. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, W.J.; Ou, G.Y.; Xue, W.K. An overview of experimental and clinical spinal cord findings in Alzheimer’s disease. Brain Sci. 2019, 9, 168. [Google Scholar] [CrossRef]
- Hogervorst, E.; Bandelow, S.; Combrinck, M.; Smith, A.D. Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp. Gerontol. 2004, 39, 1633–1639. [Google Scholar] [CrossRef]
- Rosario, E.R.; Chang, L.; Head, E.H.; Stanczyk, F.Z.; Pike, C.J. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Virant-Klun, I.; Imamovic-Kumalic, S.; Pinter, B. From oxidative stress to male infertility: Review of the associations of endocrine-disrupting chemicals (bisphenols, phthalates, and parabens) with human semen quality. Antioxidants 2022, 11, 1617. [Google Scholar] [CrossRef] [PubMed]
- Tavares, R.S.; Martins, S.; Almeida-Santos, T.; Sousa, A.P.; Ramalho-Santos, J.; da Cruz e Silva, O.A. Alzheimer’s disease-related amyloid-β1–42 peptide induces the loss of human sperm function. Cell Tissue Res. 2017, 369, 647–651. [Google Scholar] [CrossRef] [PubMed]
- McCabe, M.P.; McDonald, E.; Deeks, A.A.; Vowels, L.M.; Cobain, M.J. The impact of multiple sclerosis on sexuality and relationships. J. Sex Res. 1996, 33, 241–248. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016, 188, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Anglade, P. Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol. Histopathol. 1997, 12, 603–610. [Google Scholar]
- Kuhlman, G.D.; Flanigan, J.L.; Sperling, S.A.; Barrett, M.J. Predictors of health-related quality of life in Parkinson’s disease. Park. Relat. Disord. 2019, 65, 86–90. [Google Scholar] [CrossRef]
- Weintraub, D.; Koester, J.; Potenza, M.N.; Siderowf, A.D.; Stacy, M.; Voon, V.; Whetteckey, J.; Wunderlich, G.R.; Lang, A.E. Impulse control disorders in Parkinson disease: A cross-sectional study of 3090 patients. Arch. Neurol. 2010, 67, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Santa Rosa Malcher, C.M.; Roberto da Silva Gonçalves Oliveira, K.; Fernandes Caldato, M.C.; Lopes dos Santos Lobato, B.; da Silva Pedroso, J.; de Tubino Scanavino, M. Sexual disorders and quality of life in Parkinson’s disease. Sex Med. 2021, 9, 100369. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-López, V.; Rueda-Extremera, M.; Cantero-García, M. The relationship between Parkinson’s disease and sexual hyperactivity secondary to drug treatment: A systematic review. J. Psychopharmacol. 2025, 39, 316–327. [Google Scholar] [CrossRef]
- Meco, G.; Rubino, A.; Caravona, N.; Valente, M. Sexual dysfunction in Parkinson’s disease. Park. Relat. Disord. 2008, 14, 451–456. [Google Scholar] [CrossRef]
- Munhoz, R.P.; Fabiani, G.; Becker, N.; Teive, H.A.G. Increased frequency and range of sexual behavior in a patient with Parkinson’s disease after use of pramipexole: A case report. J. Sex. Med. 2009, 6, 1177–1180. [Google Scholar] [CrossRef]
- Dewing, P.; Chiang, C.W.K.; Sinchak, K.; Sim, H.; Fernagut, P.O.; Kelly, S.; Chesselet, M.F.; Albrecht, K.H.; Harley, V.R.; Vilain, E. Direct regulation of adult brain function by the male-specific factor SRY. Curr. Biol. 2006, 16, 415–420. [Google Scholar] [CrossRef]
- Awogbindin, I.O.; Adedara, I.A.; Adeniyi, P.A.; Agedah, A.E.; Oyetunde, B.F.; Olorunkalu, P.D.; Olopade, F.E.; Farombi, E.O. Nigral and ventral tegmental area lesioning induces testicular and sperm morphological abnormalities in a rotenone model of Parkinson’s disease. Environ. Toxicol. Pharmacol. 2020, 78, 103412. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lian, H.; Cai, Q.Q.; Song, H.Y.; Zhang, X.L.; Zhou, L.; Sun, Z.H.; Wang, H.X. No direct projection is observed from the substantia nigra to the dorsal vagus complex in the rat. J. Park. Dis. 2014, 4, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Gerendai, I.; Banczerowski, P.; Halász, B. Functional significance of the innervation of the gonads. Endocrine 2005, 28, 309–318. [Google Scholar] [CrossRef]
- Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306, 2001–2010. [Google Scholar] [CrossRef]
- Anderson, J.S.; Nielsen, J.A.; Froehlich, A.L.; Dubray, M.B.; Druzgal, T.J.; Cariello, A.N.; Cooperrider, J.R.; Zielinski, B.A.; Ravichandran, C.; Fletcher, P.T.; et al. Functional connectivity magnetic resonance imaging classification of autism. Brain 2011, 134, 3739–3751. [Google Scholar] [CrossRef]
- Hardan, A.Y.; Muddasani, S.; Vemulapalli, M.; Keshavan, M.S.; Minshew, N.J. An MRI study of increased cortical thickness in autism. Am. J. Psychiatry 2006, 163, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Ross, K.; Uddin, L.Q.; Sklar, A.B.; Castellanos, F.X.; Milham, M.P. Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biol. Psychiatry 2009, 65, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Wójciak, P.; Remlinger-Molenda, A.; Klinika Psychiatrii Dorosłych, R.; Rybakowski, J. The role of oxytocin and vasopressin in central nervous system activity and mental disorders. Psychiatr. Pol. 2012, 46, 1043–1052. [Google Scholar] [PubMed]
- Modi, M.E.; Young, L.J. The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies. Horm. Behav. 2012, 61, 340–350. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Ring, H.A.; Bullmore, E.T.; Wheelwright, S.; Ashwin, C.; Williams, S.C.R. The amygdala theory of autism. Neurosci. Biobehav. Rev. 2000, 24, 355–364. [Google Scholar] [CrossRef]
- Schumann, C.M.; Amaral, D.G. Stereological analysis of amygdala neuron number in autism. J. Neurosci. 2006, 26, 7674–7679. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Aldinger, K.A.; Ashwood, P.; Bauman, M.L.; Blaha, C.D.; Blatt, G.J.; Chauhan, A.; Chauhan, V.; Dager, S.R.; Dickson, P.E.; et al. Consensus paper: Pathological role of the cerebellum in autism. Cerebellum 2012, 11, 777–807. [Google Scholar] [CrossRef]
- Byers, E.S.; Nichols, S.; Voyer, S.D. Challenging stereotypes: Sexual functioning of single adults with high functioning autism spectrum disorder. J. Autism Dev. Disord. 2013, 43, 2617–2627. [Google Scholar] [CrossRef]
- Dewinter, J.; Vermeiren, R.; Vanwesenbeeck, I.; Van Nieuwenhuizen, C. Adolescent boys with autism spectrum disorder growing up: Follow-up of self-reported sexual experience. Eur. Child Adolesc. Psychiatry 2016, 25, 969–978. [Google Scholar] [CrossRef]
- George, R.; Stokes, M.A. Gender identity and sexual orientation in autism spectrum disorder. Autism 2018, 22, 970–982. [Google Scholar] [CrossRef]
- Pecora, L.A.; Hancock, G.I.; Hooley, M.; Demmer, D.H.; Attwood, T.; Mesibov, G.B.; Keenan, C.; Stokes, M.A. Gender identity, sexual orientation and adverse sexual experiences in autistic females. Mol. Autism 2020, 11, 74. [Google Scholar] [CrossRef]
- Strang, J.F.; Kenworthy, L.; Dominska, A.; Sokoloff, J.; Kenealy, L.E.; Berl, M.; Walsh, K.; Menvielle, E.; Luong-Tran, C.; Joseph, R.M.; et al. Increased gender variance in autism spectrum disorders and attention deficit hyperactivity disorder. Arch. Sex. Behav. 2014, 43, 1525–1533. [Google Scholar] [CrossRef]
- Massarotti, C.; Sbragia, E.; Gazzo, I.; Stigliani, S.; Inglese, M.; Anserini, P. Effect of multiple sclerosis and its treatments on male fertility: Cues for future research. J. Clin. Med. 2021, 10, 5401. [Google Scholar] [CrossRef] [PubMed]
- Gaviria-Carrillo, M.; Bueno-Florez, S.J.; Ortiz-Salas, P.A. Assessment of sexual dysfunction in patients with multiple sclerosis: A perspective from neurologist. BMC Neurol. 2022, 22, 372. [Google Scholar] [CrossRef]
- Yazdan Panah, M.; Oraee, S.; Fekri, M.; Saberian, P.; Afshin, S.; Vaheb, S.; Foroughipour, M.; Ashtari, F. Sexual function in people with multiple sclerosis: A systematic review and meta-analysis. J. Sex. Med. 2025, 22, 1122–1138. [Google Scholar] [CrossRef] [PubMed]
- Lew-Starowicz, M.; Rola, R. Sexual dysfunctions and sexual quality of life in men with multiple sclerosis. J. Sex. Med. 2014, 11, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Toljan, K.; Briggs, F.B.S. Male sexual and reproductive health in multiple sclerosis: A scoping review. J. Neurol. 2024, 271, 2169–2181. [Google Scholar] [CrossRef]
- Çınar, B.P.; Açıkgöz, M.; Çinar, Ö.; Çelebi, U.; Çekiç, S.; Demirel, E.A.; Çamurcu, Y.; Ertaş, N.K. A pilot study on sex hormones and cognition in men with multiple sclerosis. J. Urol. Surg. 2023, 10, 307–314. [Google Scholar] [CrossRef]
- Grech, L.B.; Allan, M.; de Courten, B. Sexual dysfunction in men with multiple sclerosis. Syst. Rev. 2021, 10, 1–2. [Google Scholar] [CrossRef]
- Torkildsen, Ø.; Myhr, K.M.; Bø, L. Disease-modifying treatments for multiple sclerosis a review of approved medications. Eur. J. Neurol. 2015, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Wasner, M.; Bold, U.; Vollmer, T.C.; Borasio, G.D. Sexuality in patients with amyotrophic lateral sclerosis and their partners. J. Neurol. 2004, 251, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.A.M.; Rush, A.; Loeb, C.A.; Banton, J.; Chawareb, E.A.; Khanmammadova, N.; Gevorkyan, R.R.; Barham, D.W.; Yafi, F.A.; Jenkins, L.C. Multiple sclerosis (MS) and hypogonadism (HG): Is there a relationship? J. Sex. Med. Rev. 2024, 26, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Ysrraelit, M.C.; Correale, J. Impact of andropause on multiple sclerosis. Front. Neurol. 2021, 12, 766308. [Google Scholar] [CrossRef]
- Dorikhani, A.; Omidi, A.; Movahedin, M.; Halvaei, I. Chronic demyelination interferes with normal spermatogenesis in cuprizone-intoxicant C57/BL6 mice: An experimental study. Int. J. Reprod. Biomed. 2024, 22, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, A.; Bjelobaba, I.; Bozic, I.D.; Lavrnja, I.; Savic, D.; Tesovic, K.; Petrovic, I.D.; Stojiljkovic, M.; Pekovic, S.; Stojanovic, I. Testicular steroidogenesis is suppressed during experimental autoimmune encephalomyelitis in rats. Sci. Rep. 2021, 11, 8996. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Li, Q.; Zhang, J.; Wang, W.; Quan, J. Multiple sclerosis and abnormal spermatozoa: A bidirectional two-sample Mendelian randomization study. PLoS ONE 2024, 19, 8815. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios-Arellano, M.d.l.P.; Landa-García, J.N.; García-Martínez, E.D.; Manzo-Denes, J.; Aranda-Abreu, G.E.; Rojas-Durán, F.; Herrera-Covarrubias, D.; Toledo-Cárdenas, M.R.; Coria-Ávila, G.A.; Suárez-Medellín, J.M.; et al. Brain Nuclei in the Regulation of Sexual Behavior, Peripheral Nerves Related to Reproduction, and Their Alterations in Neurodegenerative Diseases: A Brief Review. Brain Sci. 2025, 15, 942. https://doi.org/10.3390/brainsci15090942
Palacios-Arellano MdlP, Landa-García JN, García-Martínez ED, Manzo-Denes J, Aranda-Abreu GE, Rojas-Durán F, Herrera-Covarrubias D, Toledo-Cárdenas MR, Coria-Ávila GA, Suárez-Medellín JM, et al. Brain Nuclei in the Regulation of Sexual Behavior, Peripheral Nerves Related to Reproduction, and Their Alterations in Neurodegenerative Diseases: A Brief Review. Brain Sciences. 2025; 15(9):942. https://doi.org/10.3390/brainsci15090942
Chicago/Turabian StylePalacios-Arellano, María de la Paz, Jessica Natalia Landa-García, Edson David García-Martínez, Jorge Manzo-Denes, Gonzalo Emiliano Aranda-Abreu, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María Rebeca Toledo-Cárdenas, Genaro Alfonso Coria-Ávila, Jorge Manuel Suárez-Medellín, and et al. 2025. "Brain Nuclei in the Regulation of Sexual Behavior, Peripheral Nerves Related to Reproduction, and Their Alterations in Neurodegenerative Diseases: A Brief Review" Brain Sciences 15, no. 9: 942. https://doi.org/10.3390/brainsci15090942
APA StylePalacios-Arellano, M. d. l. P., Landa-García, J. N., García-Martínez, E. D., Manzo-Denes, J., Aranda-Abreu, G. E., Rojas-Durán, F., Herrera-Covarrubias, D., Toledo-Cárdenas, M. R., Coria-Ávila, G. A., Suárez-Medellín, J. M., Pérez-Estudillo, C. A., & Hernández-Aguilar, M. E. (2025). Brain Nuclei in the Regulation of Sexual Behavior, Peripheral Nerves Related to Reproduction, and Their Alterations in Neurodegenerative Diseases: A Brief Review. Brain Sciences, 15(9), 942. https://doi.org/10.3390/brainsci15090942