Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals
Abstract
1. Introduction
- •
- This study employs MVMD to decompose multi-channel epileptic EEG signals, thereby generating mode-aligned IMF components across channels. This approach effectively mitigates mode mixing and mode mismatch issues, thereby facilitating enhanced feature extraction by deep learning networks.
- •
- A deep learning framework is implemented to jointly capture local spatial and temporal features from epileptic EEG signals, achieving effective epileptic signal classification. Gradient vanishing and explosion phenomena are mitigated through the integration of residual networks, which optimize model stability and enable the learning of complex mapping relationships.
- •
- The proposed framework is validated using two public databases for two distinct classification tasks: focal epileptic signal classification and multi-class seizure type classification. The superior classification performance substantiates the framework’s strong generalization capability. For multi-class seizure type classification, the model’s performance is comprehensively evaluated under both subject-dependent and subject-independent experiments. The superior performance achieved on unseen patients highlights its strong generalization ability and significant potential for clinical application.
2. Related Work
2.1. Related Works in Classifying Focal Epileptic Signals
2.2. Related Works in Classifying Multi-Class Seizure Types
3. Materials and Methods
3.1. Epileptic EEG Databases
3.2. The Proposed Approach
3.2.1. Multivariate Variational Mode Decomposition
3.2.2. CNN
3.2.3. BiGRU
3.2.4. Transformer
4. Results
4.1. Experimental Setup
4.2. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asadi-Pooya, A.A.; Brigo, F.; Lattanzi, S.; Blumcke, I. Adult epilepsy. Lancet 2023, 402, 412–424. [Google Scholar] [CrossRef]
- Shu, Y.; Wu, Z.; Yang, X.; Song, M.; Ye, Y.; Zhang, C.; Yuan, Q.; Wang, L. The burden of epilepsy in the People’s Republic of China from 1990 to 2019: Epidemiological trends and comparison with the global burden of epilepsy. Front. Neurol. 2023, 14, 1303531. [Google Scholar] [CrossRef]
- Ding, D.; Zhou, D.; Sander, J.W.; Wang, W.; Li, S.; Hong, Z. Epilepsy in China: Major progress in the past two decades. Lancet Neurol. 2021, 20, 316–326. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Epilepsy. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/epilepsy (accessed on 20 June 2025).
- Bartolomei, F.; Lagarde, S.; Wendling, F.; McGonigal, A.; Jirsa, V.; Guye, M.; Bénar, C. Defining epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia 2017, 58, 1131–1147. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D. Diagnostic techniques to detect the epileptogenic zone: Pathophysiological and presurgical analysis of epilepsy in dogs and cats. Vet. J. 2016, 215, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Q.; Tanaka, T.; Solé-Casals, J.; Zhou, G.; Mitsuhashi, T.; Sugano, H.; Yoshida, N.; Cao, J. Classification of the Epileptic Seizure Onset Zone Based on Partial Annotation. Cogn. Neurodynamics 2023, 17, 703–713. [Google Scholar] [CrossRef]
- Ryvlin, P.; Rheims, S.; Hirsch, L.J.; Sokolov, A.; Jehi, L. Neuromodulation in epilepsy: State-of-the-art approved therapies. Lancet Neurol. 2021, 20, 1038–1047. [Google Scholar] [CrossRef]
- Falco-Walter, J.J.; Scheffer, I.E.; Fisher, R.S. The new definition and classification of seizures and epilepsy. Epilepsy Res. 2018, 139, 73–79. [Google Scholar] [CrossRef]
- Klein, P.; Kaminski, R.M.; Koepp, M.; Löscher, W. New epilepsy therapies in development. Nat. Rev. Drug Discov. 2024, 23, 682–708. [Google Scholar] [CrossRef]
- Wirrell, E.C.; Nabbout, R.; Scheffer, I.E.; Alsaadi, T.; Bogacz, A.; French, J.A.; Hirsch, E.; Jain, S.; Kaneko, S.; Riney, K.; et al. Methodology for classification and definition of epilepsy syndromes with list of syndromes: Report of the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1333–1348. [Google Scholar] [CrossRef]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef]
- McCallan, N.; Davidson, S.; Ng, K.Y.; Biglarbeigi, P.; Finlay, D.; Lan, B.L.; McLaughlin, J. Epileptic multi-seizure type classification using electroencephalogram signals from the Temple University Hospital Seizure Corpus: A review. Expert Syst. Appl. 2023, 234, 121040. [Google Scholar] [CrossRef]
- Cao, M.; Galvis, D.; Vogrin, S.J.; Woods, W.P.; Vogrin, S.; Wang, F.; Woldman, W.; Terry, J.R.; Peterson, A.; Plummer, C.; et al. Virtual intracranial EEG signals reconstructed from MEG with potential for epilepsy surgery. Nat. Commun. 2022, 13, 994. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Rehman, N.u.; Aftab, H. Multivariate Variational Mode Decomposition. IEEE Trans. Signal Process. 2019, 67, 6039–6052. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybern. Biomed. Eng. 2020, 40, 649–690. [Google Scholar] [CrossRef]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef]
- Sharma, R.; Sircar, P.; Pachori, R.B. Automated focal EEG signal detection based on third order cumulant function. Biomed. Signal Process. Control 2020, 58, 101856. [Google Scholar] [CrossRef]
- Mariam Bee, M.K.; Vidhya, K. An automated methodology for the classification of focal and nonfocal EEG signals using a hybrid classification approach. Int. J. Imaging Syst. Technol. 2020, 30, 147–153. [Google Scholar] [CrossRef]
- Anuragi, A.; Sisodia, D.S.; Pachori, R.B. Classification of focal and non-focal EEG signals using optimal geometrical features derived from a second-order difference plot of FBSE-EWT rhythms. Artif. Intell. Med. 2023, 139, 102542. [Google Scholar] [CrossRef]
- Babu, S.; Wadhwani, A.K. Epilepsy Diagnosis Using Directed Acyclic Graph SVM Technique in EEG Signals. Trait. Signal 2024, 41, 3163–3172. [Google Scholar] [CrossRef]
- Murariu, M.-G.; Dorobanțu, F.-R.; Tărniceriu, D. A Novel Automated Empirical Mode Decomposition (EMD) Based Method and Spectral Feature Extraction for Epilepsy EEG Signals Classification. Electronics 2023, 12, 1958. [Google Scholar] [CrossRef]
- Akbari, H.; Sadiq, M.T. Detection of focal and non-focal EEG signals using non-linear features derived from empirical wavelet transform rhythms. Phys. Eng. Sci. Med. 2021, 44, 157–171. [Google Scholar] [CrossRef]
- Abhishek, S.; Sachin Kumar, S.; Neethu, M.; Soman, K.P. EEG based automated detection of seizure using machine learning approach and traditional features. Expert Syst. Appl. 2024, 251, 123991. [Google Scholar] [CrossRef]
- Srinath, R.; Gayathri, R. Epilepsy disorder detection and diagnosis using empirical mode decomposition and deep learning architecture. Concurr. Comput. Pract. Exp. 2022, 34, e6903. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, Y.; Liu, Z.; Guo, J.; Cao, G.; Ouyang, M.; Liu, D.; Shan, Y.; Kang, G.; Zhao, G. Computer-Aided Intracranial EEG Signal Identification Method Based on a Multi-Branch Deep Learning Fusion Model and Clinical Validation. Brain Sci. 2021, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Modak, S.; Roy, S.S.; Bose, R.; Chatterjee, S. Focal Epileptic Area Recognition Employing Cross EEG Rhythm Spectrum Images and Convolutional Neural Network. IEEE Sens. J. 2021, 21, 23335–23343. [Google Scholar] [CrossRef]
- Khosla, A.; Khandnor, P.; Chand, T. EEG-based automatic multi-class classification of epileptic seizure types using recurrence plots. Expert Syst. 2022, 39, e12923. [Google Scholar] [CrossRef]
- Albaqami, H.; Hassan, G.M.; Datta, A. Wavelet-Based Multi-Class Seizure Type Classification System. Appl. Sci. 2022, 12, 5702. [Google Scholar] [CrossRef]
- Wong, S.; Simmons, A.; Rivera-Villicana, J.; Barnett, S.; Sivathamboo, S.; Perucca, P.; Ge, Z.; Kwan, P.; Kuhlmann, L.; O’Brien, T.J. Channel-annotated deep learning for enhanced interpretability in EEG-based seizure detection. Biomed. Signal Process. Control 2025, 103, 107484. [Google Scholar] [CrossRef]
- Rivera, M.J.; Sanchis, J.; Corcho, O.; Teruel, M.A.; Trujillo, J. Evaluating CNN Methods for Epileptic Seizure Type Classification Using EEG Data. IEEE Access 2024, 12, 75483–75495. [Google Scholar] [CrossRef]
- Sánchez-Hernández, S.E.; Torres-Ramos, S.; Román-Godínez, I.; Salido-Ruiz, R.A. Evaluation of the Relation between Ictal EEG Features and XAI Explanations. Brain Sci. 2024, 14, 306. [Google Scholar] [CrossRef]
- Priyasad, D.; Fernando, T.; Denman, S.; Sridharan, S.; Fookes, C. Interpretable Seizure Classification Using Unprocessed EEG With Multi-Channel Attentive Feature Fusion. IEEE Sens. J. 2021, 21, 19186–19197. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [Google Scholar] [CrossRef]
- Tuncer, E.; Bolat, E.D. Channel based epilepsy seizure type detection from electroencephalography (EEG) signals with machine learning techniques. Biocybern. Biomed. Eng. 2022, 42, 575–595. [Google Scholar] [CrossRef]
- Shankar, A.; Dandapat, S.; Barma, S. Seizure Types Classification by Generating Input Images with In-Depth Features from Decomposed EEG Signals for Deep Learning Pipeline. IEEE J. Biomed. Health Inform. 2022, 26, 4903–4912. [Google Scholar] [CrossRef]
- Sarić, R.; Jokić, D.; Beganović, N.; Pokvić, L.G.; Badnjević, A. FPGA-based real-time epileptic seizure classification using Artificial Neural Network. Biomed. Signal Process. Control 2020, 62, 102106. [Google Scholar] [CrossRef]
- Andrzejak, R.G.; Schindler, K.; Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 2012, 86, 046206. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; von Weltin, E.; Lopez, S.; McHugh, J.R.; Veloso, L.; Golmohammadi, M.; Obeid, I.; Picone, J. The Temple University Hospital Seizure Detection Corpus. Front. Neuroinform. 2018, 12, 83. [Google Scholar] [CrossRef]
- Jia, G.; Lam, H.-K.; Althoefer, K. Variable weight algorithm for convolutional neural networks and its applications to classification of seizure phases and types. Pattern Recognit. 2022, 121, 108226. [Google Scholar] [CrossRef]
- Albaqami, H.; Hassan, G.M.; Datta, A. MP-SeizNet: A multi-path CNN Bi-LSTM Network for seizure-type classification using EEG. Biomed. Signal Process. Control 2023, 84, 104780. [Google Scholar] [CrossRef]
- Sui, L.; Zhao, X.; Zhao, Q.; Tanaka, T.; Cao, J. Hybrid Convolutional Neural Network for Localization of Epileptic Focus Based on iEEG. Neural. Plast. 2021, 2021, 6644365. [Google Scholar] [CrossRef]
- Krishnan, P.T.; Erramchetty, S.K.; Balusa, B.C. Advanced framework for epilepsy detection through image-based EEG signal analysis. Front. Hum. Neurosci. 2024, 18, 1336157. [Google Scholar] [CrossRef]
- You, Y.; Chen, W.; Li, M.; Zhang, T.; Jiang, Y.; Zheng, X. Automatic focal and non-focal EEG detection using entropy-based features from flexible analytic wavelet transform. Biomed. Signal Process. Control 2020, 57, 101761. [Google Scholar] [CrossRef]
- Sairamya, N.J.; Subathra, M.S.P.; Suviseshamuthu, E.S.; Thomas George, S. A new approach for automatic detection of focal EEG signals using wavelet packet decomposition and quad binary pattern method. Biomed. Signal Process. Control 2021, 63, 102096. [Google Scholar] [CrossRef]
- Narin, A. Detection of Focal and Non-focal Epileptic Seizure Using Continuous Wavelet Transform-Based Scalogram Images and Pre-trained Deep Neural Networks. IRBM 2022, 43, 22–31. [Google Scholar] [CrossRef]
- Huang, H.; Chen, P.; Wen, J.; Lu, X.; Zhang, N. Multiband seizure type classification based on 3D convolution with attention mechanisms. Comput. Biol. Med. 2023, 166, 107517. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, W.-F.; Patnaik, L.M.; Zhang, B.-C.; Weng, S.-J.; Xiao, S.-X.; Wei, D.-Z.; Zhou, H.-F. Residual and bidirectional LSTM for epileptic seizure detection. Front. Comput. Neurosci. 2024, 18, 1415967. [Google Scholar] [CrossRef]
- Li, Z.; Hwang, K.; Li, K.; Wu, J.; Ji, T. Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity. Sci. Rep. 2022, 12, 18998. [Google Scholar] [CrossRef]
- Wu, G.; Yu, K.; Zhou, H.; Wu, X.; Su, S. Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis. Bioengineering 2024, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Luo, X.; Ye, L.; Geng, W.; He, J.; Mu, J.; Hou, X.; Zan, X.; Ma, J.; Li, F.; et al. Automated seizure detection in epilepsy using a novel dynamic temporal-spatial graph attention network. Sci. Rep. 2025, 15, 16392. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, J.; Sun, R.; Yu, Y.; Sui, Y. Classification of epileptic seizures in EEG data based on iterative gated graph convolution network. Front. Comput. Neurosci. 2024, 18, 1454529. [Google Scholar] [CrossRef] [PubMed]
Seizure Type | Patient | Patient Used | Seizure | Seizure Used |
---|---|---|---|---|
GNSZ | 81 | 36 | 583 | 337 |
FNSZ | 150 | 63 | 1836 | 1078 |
ABSZ | 12 | - | 99 | - |
SPSZ | 3 | 1 | 52 | 8 |
CPSZ | 41 | 11 | 367 | 114 |
TNSZ | 3 | 2 | 62 | 61 |
TCSZ | 14 | 3 | 48 | 10 |
MYSZ | 2 | - | 3 | - |
Total | 306 | 116 | 3050 | 1608 |
Decomposition Method | Bern–Barcelona | TUSZ | |||
---|---|---|---|---|---|
ACC (%) | SEN (%) | SPE (%) | ACC (%) | F1-Score | |
EWT | 94.47 | 96.15 | 92.80 | 90.38 | 0.904 |
VMD | 96.95 | 97.90 | 96.00 | 93.25 | 0.933 |
MVMD | 98.85 | 98.75 | 98.95 | 96.17 | 0.962 |
Model | Bern–Barcelona | TUSZ | |||
---|---|---|---|---|---|
ACC (%) | SEN (%) | SPE (%) | ACC (%) | F1-Score | |
Without CNN | 93.90 | 95.55 | 92.25 | 92.17 | 0.922 |
Without BiGRU | 94.80 | 95.00 | 94.60 | 92.38 | 0.924 |
Without Transformer | 95.80 | 95.50 | 96.10 | 93.75 | 0.938 |
Without Residual Connection | 97.72 | 97.65 | 97.80 | 94.13 | 0.942 |
Proposed Framework | 98.85 | 98.75 | 98.95 | 96.17 | 0.962 |
Author(s) | Method | ACC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|
Narin et al. [47] | CWT + Pre-trained CNN | 92.27 | 92.40 | 92.93 |
Sui et al. [43] | TFHybridNet | 94.30 | 94.30 | - |
You et al. [45] | FAWT + Entropies + LS-SVM | 94.80 | 92.27 | 96.10 |
Sairamya et al. [46] | WPD + ANN | 95.74 | 95.73 | 95.74 |
Krishnan et al. [44] | GASF + RF | 96.00 | 97.00 | 95.00 |
Proposed | MVMD + Deep learning framework | 98.85 | 98.75 | 98.95 |
Author(s) | Method | ACC (%) | F1-Score |
---|---|---|---|
Wu et al. [51] | DTGCN | - | 0.759 |
Yan et al. [52] | Dynamic temporal–spatial graph attention network | 89.20 | 0.893 |
Li et al. [50] | GGN with brain functional connectivity graphs | 91.00 | 0.910 |
Hu et al. [53] | Iterative gated graph convolutional network | 91.80 | 0.915 |
Jia et al. [41] | VWCNNs | - | 0.940 |
Huang et al. [48] | Three-dimensional convolutional multiband model with attention mechanisms | 94.47 | 0.944 |
Zhao et al. [49] | ResNet + BiLSTM | 95.03 | 0.950 |
Proposed | MVMD + Deep learning framework | 96.17 | 0.962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, G.; Sun, S.; Cai, J. Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals. Brain Sci. 2025, 15, 933. https://doi.org/10.3390/brainsci15090933
Zhang S, Liu G, Sun S, Cai J. Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals. Brain Sciences. 2025; 15(9):933. https://doi.org/10.3390/brainsci15090933
Chicago/Turabian StyleZhang, Shang, Guangda Liu, Shiqing Sun, and Jing Cai. 2025. "Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals" Brain Sciences 15, no. 9: 933. https://doi.org/10.3390/brainsci15090933
APA StyleZhang, S., Liu, G., Sun, S., & Cai, J. (2025). Deep Learning Method Based on Multivariate Variational Mode Decomposition for Classification of Epileptic Signals. Brain Sciences, 15(9), 933. https://doi.org/10.3390/brainsci15090933