Dopamine D2 Receptors and Its Downstream Signaling in Compulsive Eating
Abstract
1. Introduction
1.1. Literature Search and Key Words
1.2. Homeostatic Regulation of Food Intake
1.3. Hedonic Regulation of Food Intake
1.4. D2R-Mediated Regulation of Food Intake Under a Physiological State
1.5. D2R-Mediated Regulation of Food Intake Under a Downregulated/Desensitized State
1.6. D2R/cAMP/PKA/pCREB Signaling Pathway in Compulsive Eating
2. Conclusions
Limitations and Future Direction
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Adenylyl cyclase |
AgRP | Agouti-related peptide |
ATP | Adenosine triphosphate |
cAMP | Cyclic adenosine monophosphate |
CART | Cocaine-and-amphetamine-regulated transcript |
CREB | cAMP-response element binding protein |
D2R | Dopamine D2 receptor |
NAc | Nucleus Accumbens |
NPY | Neuropeptide Y |
pCREB | Phosphorylated cAMP-response element binding protein |
PKA | Protein kinase A |
POMC | Pro-opiomelanocortin |
VTA | Ventral tegmental area |
References
- Johnson, P.M.; Kenny, P.J. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 2010, 13, 635–641. [Google Scholar] [CrossRef]
- Vohra, M.S.; Benchoula, K.; Serpell, C.J.; Hwa, W.E. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur. J. Pharmacol. 2022, 915, 174611. [Google Scholar] [CrossRef]
- Hill, J.W.; Elias, C.F.; Fukuda, M.; Williams, K.W.; Berglund, E.D.; Holland, W.L.; Cho, Y.R.; Chuang, J.C.; Xu, Y.; Choi, M.; et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010, 11, 286–297. [Google Scholar] [CrossRef]
- Rada, P.; Avena, N.M.; Hoebel, B.G. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005, 134, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Berthoud, H.R. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obes. Silver Spring Md. 2006, 14 (Suppl. S5), 197s–200s. [Google Scholar] [CrossRef]
- Bouthenet, M.L.; Souil, E.; Martres, M.P.; Sokoloff, P.; Giros, B.; Schwartz, J.C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: Comparison with dopamine D2 receptor mRNA. Brain Res. 1991, 564, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.M.; Westlind-Danielsson, A. Dopamine receptors: Molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther. 1994, 64, 291–370. [Google Scholar] [CrossRef] [PubMed]
- Meador-Woodruff, J.H.; Mansour, A.; Bunzow, J.R.; Van Tol, H.H.; Watson, S.J., Jr.; Civelli, O. Distribution of D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA 1989, 86, 7625–7628. [Google Scholar] [CrossRef]
- Weiner, D.M.; Levey, A.I.; Sunahara, R.K.; Niznik, H.B.; O’Dowd, B.F.; Seeman, P.; Brann, M.R. D1 and D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA 1991, 88, 1859–1863. [Google Scholar] [CrossRef]
- Koyama, S.; Mori, M.; Kanamaru, S.; Sazawa, T.; Miyazaki, A.; Terai, H.; Hirose, S. Obesity attenuates D2 autoreceptor-mediated inhibition of putative ventral tegmental area dopaminergic neurons. Physiol. Rep. 2014, 2, e12004. [Google Scholar] [CrossRef]
- Bibb, J.A. Decoding dopamine signaling. Cell 2005, 122, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, L.; Xue, P.; Hu, X.; Wong, S.W.; Deng, M.; Tseng, H.C.; Huang, B.W.; Ko, C.C. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell. Signal. 2021, 78, 109847. [Google Scholar] [CrossRef] [PubMed]
- Belgardt, B.F.; Okamura, T.; Brüning, J.C. Hormone and glucose signalling in POMC and AgRP neurons. J. Physiol. 2009, 587, 5305–5314. [Google Scholar] [CrossRef]
- Blanco Martínez de Morentin, P.; González, C.R.; Saha, A.K.; Martins, L.; Diéguez, C.; Vidal-Puig, A.; Tena-Sempere, M.; López, M. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev. Endocr. Metab. Disord. 2011, 12, 127–140. [Google Scholar] [CrossRef]
- Lage, R.; Vázquez, M.J.; Varela, L.; Saha, A.K.; Vidal-Puig, A.; Nogueiras, R.; Diéguez, C.; López, M. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. Faseb J. 2010, 24, 2670–2679. [Google Scholar] [CrossRef]
- Varela, L.; Vázquez, M.J.; Cordido, F.; Nogueiras, R.; Vidal-Puig, A.; Diéguez, C.; López, M. Ghrelin and lipid metabolism: Key partners in energy balance. J. Mol. Endocrinol. 2011, 46, R43–R63. [Google Scholar] [CrossRef]
- Vivot, K.; Meszaros, G.; Pangou, E.; Zhang, Z.; Qu, M.; Erbs, E.; Yeghiazaryan, G.; Quiñones, M.; Grandgirard, E.; Schneider, A.; et al. CaMK1D signalling in AgRP neurons promotes ghrelin-mediated food intake. Nat. Metab. 2023, 5, 1045–1058. [Google Scholar] [CrossRef]
- Fukushima, A.; Hagiwara, H.; Fujioka, H.; Kimura, F.; Akema, T.; Funabashi, T. Sex differences in feeding behavior in rats: The relationship with neuronal activation in the hypothalamus. Front. Neurosci. 2015, 9, 88. [Google Scholar] [CrossRef]
- Kwon, O.; Kim, K.W.; Kim, M.S. Leptin signalling pathways in hypothalamic neurons. Cell Mol. Life Sci. 2016, 73, 1457–1477. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 1996, 384, 641–643. [Google Scholar] [CrossRef]
- Barrett, R.M.; Malvaez, M.; Kramar, E.; Matheos, D.P.; Arrizon, A.; Cabrera, S.M.; Lynch, G.; Greene, R.W.; Wood, M.A. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 2011, 36, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Verdone, L.; Caserta, M.; Di Mauro, E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 2005, 83, 344–353. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusil, N.; Fowler, J.S. Brain dopamine and obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef]
- Kim, K.M.; Valenzano, K.J.; Robinson, S.R.; Yao, W.D.; Barak, L.S.; Caron, M.G. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem. 2001, 276, 37409–37414. [Google Scholar] [CrossRef]
- Shenoy, S.K.; Lefkowitz, R.J. β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol. Sci. 2011, 32, 521–533. [Google Scholar] [CrossRef]
- Dallvechia-Adams, S.; Kuhar, M.J.; Smith, Y. Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: Colocalization with gamma-aminobutyric acid, melanin-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons. J. Comp. Neurol. 2002, 448, 360–372. [Google Scholar] [CrossRef]
- Dietrich, M.O.; Bober, J.; Ferreira, J.G.; Tellez, L.A.; Mineur, Y.S.; Souza, D.O.; Gao, X.B.; Picciotto, M.R.; Araújo, I.; Liu, Z.W.; et al. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat. Neurosci. 2012, 15, 1108–1110. [Google Scholar] [CrossRef]
- Gumbs, M.C.R.; Vuuregge, A.H.; Eggels, L.; Unmehopa, U.A.; Lamuadni, K.; Mul, J.D.; la Fleur, S.E. Afferent neuropeptide Y projections to the ventral tegmental area in normal-weight male Wistar rats. J. Comp. Neurol. 2019, 527, 2659–2674. [Google Scholar] [CrossRef]
- Kimmel, H.L.; Gong, W.; Vechia, S.D.; Hunter, R.G.; Kuhar, M.J. Intra-ventral tegmental area injection of rat cocaine and amphetamine-regulated transcript peptide 55-102 induces locomotor activity and promotes conditioned place preference. J. Pharmacol. Exp. Ther. 2000, 294, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Pandit, R.; Omrani, A.; Luijendijk, M.C.; de Vrind, V.A.; Van Rozen, A.J.; Ophuis, R.J.; Garner, K.; Kallo, I.; Ghanem, A.; Liposits, Z.; et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology 2016, 41, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Shieh, K.R. Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons. Neuropharmacology 2003, 44, 940–948. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, C.; Lutfy, K. Dopamine D2 Receptors and Its Downstream Signaling in Compulsive Eating. Brain Sci. 2025, 15, 923. https://doi.org/10.3390/brainsci15090923
Leung C, Lutfy K. Dopamine D2 Receptors and Its Downstream Signaling in Compulsive Eating. Brain Sciences. 2025; 15(9):923. https://doi.org/10.3390/brainsci15090923
Chicago/Turabian StyleLeung, Caden, and Kabirullah Lutfy. 2025. "Dopamine D2 Receptors and Its Downstream Signaling in Compulsive Eating" Brain Sciences 15, no. 9: 923. https://doi.org/10.3390/brainsci15090923
APA StyleLeung, C., & Lutfy, K. (2025). Dopamine D2 Receptors and Its Downstream Signaling in Compulsive Eating. Brain Sciences, 15(9), 923. https://doi.org/10.3390/brainsci15090923