Disease Diagnosis Using Retinal Vasculature: Insights from Flammer Syndrome and AI
Abstract
1. Retinal Vasculature Reflects Cardiac Health
2. Flammer Syndrome: A Diagnostic Window into Vascular Health
Symptom | Clinical Implication |
---|---|
Cold extremities | Indicator of vascular dysregulation [15] |
Low blood pressure | Systemic vascular instability [15] |
Stiff/irregular retinal vessels | Marker for disturbed ocular blood flow regulation [15,16] |
Reduced flicker response | Evidence of retinal endothelial dysfunction [16] |
Increased retinal venous pressure | Associated with risk for glaucoma and vascular events [1,16] |
3. Retina and Vascular Disease
4. Novel Therapeutic Approaches in AMD and Glaucoma
5. Mechanism of Action
5.1. Vascular Modulation
5.2. Mitochondrial Protection
Mechanism | Clinical Benefit | Reference |
---|---|---|
Vascular modulation | Reduced leakage, improved perfusion, less ischemia | [14,17,32] |
Anti-inflammatory action | Lower cytokine/adhesion molecule levels, stabilized vessel barrier | [14,17,32,33] |
RVP/homocysteine lowering | Decreased risk of edema, occlusion, and neural injury | [14,27,33] |
Mitochondrial protection | Enhanced RPE/photoreceptor survival; delayed atrophy | [35] |
Reduced oxidative stress | Attenuated disease progression | [35,36] |
6. Endothelial Cell Health and B Vitamins
7. AI and Retinal Fundoscopy: Detecting Glaucoma and Autism
8. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMD | Age-related Macular Degeneration |
RVP | Retinal Venous Pressure |
FS | Flammer Syndrome |
ASD | Autism Spectrum Disorder |
OCT | Optical Coherence Tomography |
CAD | Coronary Artery Disease |
VEGF | Vascular Endothelial Growth Factor |
AI | Artificial Intelligence |
References
- Flammer, J.; Konieczka, K. The Discovery of the Flammer Syndrome: A Historical and Personal Perspective. EPMA J. 2017, 8, 75–97. [Google Scholar] [CrossRef]
- Fang, L.; Baertschi, M.; Mozaffarieh, M. The Effect of Flammer-Syndrome on Retinal Venous Pressure. BMC Ophthalmol. 2014, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Klein, R.; Sharrett, A.R.; Duncan, B.B.; Couper, D.J.; Tielsch, J.M.; Klein, B.E.K.; Hubbard, L.D. Retinal Arteriolar Narrowing and Risk of Coronary Heart Disease in Men and Women: The Atherosclerosis Risk in Communities Study. JAMA 2002, 287, 1153–1159. [Google Scholar] [CrossRef]
- Rusu, A.C.; Horvath, K.U.; Tinica, G.; Chistol, R.O.; Bulgaru-Iliescu, A.-I.; Todosia, E.T.; Brînzaniuc, K. Retinal Structural and Vascular Changes in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Life 2024, 14, 448. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Ikram, M.K.; Sabanayagam, C.; Wong, T.Y. Retinal Microvasculature as a Model to Study the Manifestations of Hypertension. Hypertension 2012, 60, 1094–1103. [Google Scholar] [CrossRef]
- McClintic, B.R.; McClintic, J.I.; Bisognano, J.D.; Block, R.C. The Relationship between Retinal Microvascular Abnormalities and Coronary Heart Disease: A Review. Am. J. Med. 2010, 123, 374.e1–374.e7. [Google Scholar] [CrossRef]
- McGeechan, K.; Liew, G.; Macaskill, P.; Irwig, L.; Klein, R.; Klein, B.E.; Wang, J.J.; Mitchell, P.; Vingerling, J.R.; deJong, P.T.; et al. Retinal Vessel Caliber and Risk for Coronary Heart Disease: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2009, 151, 404–413. [Google Scholar] [CrossRef]
- Hanssen, H.; Streese, L.; Vilser, W. Retinal Vessel Diameters and Function in Cardiovascular Risk and Disease. Prog. Retin. Eye Res. 2022, 91, 101095. [Google Scholar] [CrossRef]
- Iorga, R.E.; Costin, D.; Munteanu-Dănulescu, R.S.; Rezuș, E.; Moraru, A.D. Non-Invasive Retinal Vessel Analysis as a Predictor for Cardiovascular Disease. J. Pers. Med. 2024, 14, 501. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Ni, A.; Li, K.; Su, W.; Xie, W.; Zheng, H.; Wang, M.; Xiao, Z.; Wu, W.; Shi, K.; et al. Retinal Vascular Alterations in Cognitive Impairment: A Multicenter Study in China. Alzheimers Dement. 2025, 21, e14593. [Google Scholar] [CrossRef] [PubMed]
- Flammer, J.; Konieczka, K.; Bruno, R.M.; Virdis, A.; Flammer, A.J.; Taddei, S. The Eye and the Heart. Eur. Heart J. 2013, 34, 1270–1278. [Google Scholar] [CrossRef]
- Flammer, J.; Konieczka, K. Retinal Venous Pressure: The Role of Endothelin. EPMA J. 2015, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Konieczka, K.; Liu, X.; Chen, M.; Yao, K.; Wang, K.; Flammer, J. Role of Ocular Blood Flow in Normal Tension Glaucoma. Adv. Ophthalmol. Pract. Res. 2022, 2, 100036. [Google Scholar] [CrossRef] [PubMed]
- Devogelaere, T.; Schötzau, A. The Effects of Vitamin Supplementation Containing L-Methylfolate (Ocufolin® Forte) on Retinal Venous Pressure and Homocysteine Plasma Levels in Patients with Glaucoma. Heal. TIMES Das Schweiz. Ärztejournal J. Des Médecins Suisses 2021, 3, 54–59. [Google Scholar] [CrossRef]
- Konieczka, K.; Ritch, R.; Traverso, C.E.; Kim, D.M.; Kook, M.S.; Gallino, A.; Golubnitschaja, O.; Erb, C.; Reitsamer, H.A.; Kida, T.; et al. Flammer Syndrome. EPMA J. 2014, 5, 11. [Google Scholar] [CrossRef]
- Konieczka, K.; Erb, C. Diseases Potentially Related to Flammer Syndrome. EPMA J. 2017, 8, 327–332. [Google Scholar] [CrossRef]
- Josifova, T.; Konieczka, K.; Schötzau, A.; Flammer, J. The Effect of a Specific Vitamin Supplement Containing L-Methylfolate (Ocufolin Forte) in Patients with Neovascular Age-Related Macular Degeneration. Adv. Ophthalmol. Pract. Res. 2025, 5, 135–141. [Google Scholar] [CrossRef]
- Konieczka, K.; Flammer, J. Treatment of Glaucoma Patients with Flammer Syndrome. J. Clin. Med. 2021, 10, 4227. [Google Scholar] [CrossRef]
- Konieczka, K. Glaucoma Patient with Suspected Flammer Syndrome: Diagnostic Procedures and Therapeutic Implications. Klin. Monatsbl. Augenheilkd. 2024, 241, 355–360. [Google Scholar] [CrossRef]
- Flammer, J. What Is Oxidative Stress? Available online: https://glaucomaresearch.ch/movies/4.2.E_E.mp4 (accessed on 12 April 2025).
- Konieczka, K.; Choi, H.J.; Koch, S.; Fankhauser, F.; Schoetzau, A.; Kim, D.M. Relationship between Normal Tension Glaucoma and Flammer Syndrome. EPMA J. 2017, 8, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, V.; Rezania, F.; Trounce, I.A.; Crowston, J.G. Oxidative Stress and Mitochondrial Dysfunction in Glaucoma. Curr. Opin. Pharmacol. 2013, 13, 12–15. [Google Scholar] [CrossRef]
- Shaw, P.X.; Stiles, T.; Douglas, C.; Ho, D.; Fan, W.; Du, H.; Xiao, X. Oxidative Stress, Innate Immunity, and Age-Related Macular Degeneration. AIMS Mol. Sci. 2016, 3, 196–221. [Google Scholar] [CrossRef]
- Liang, C.; Liu, L.; Yu, W.; Shi, Q.; Zheng, J.; Lyu, J.; Zhong, J. Construction and Validation of Risk Prediction Models for Different Subtypes of Retinal Vein Occlusion. Adv. Ophthalmol. Pract. Res. 2025, 5, 107–116. [Google Scholar] [CrossRef]
- Wong, T.; Mitchell, P. The Eye in Hypertension. Lancet 2007, 369, 425–435. [Google Scholar] [CrossRef]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic Retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Ayoub, G.; Luo, Y. Ischemia from Retinal Vascular Hypertension in Normal Tension Glaucoma: Neuroprotective Role of Folate. Am. J. Biomed. Sci. Res. 2023, 20, 861. [Google Scholar] [CrossRef]
- Van Eijgen, J.; Van Winckel, L.; Hanssen, H.; Kotliar, K.; Vanassche, T.; Van Craenenbroeck, E.M.; Cornelissen, V.; Van Craenenbroeck, A.H.; Jones, E.; Stalmans, I. Retinal Vessel Analysis to Assess Microvascular Function in the Healthy Eye: A Systematic Review on the Response to Acute Physiological and Pathological Stressors. Surv. Ophthalmol. 2025, 70, 200–214. [Google Scholar] [CrossRef]
- Morgan, W.H.; Hazelton, M.L.; Yu, D.-Y. Retinal Venous Pulsation: Expanding Our Understanding and Use of This Enigmatic Phenomenon. Prog. Retin. Eye Res. 2016, 55, 82–107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiang, H.; Townsend, J.H.; Wang, J. Improved Retinal Microcirculation in Mild Diabetic Retinopathy Patients Carrying MTHFR Polymorphisms Who Received the Medical Food, Ocufolin®. Clin. Ophthalmol. 2022, 16, 1497–1504. [Google Scholar] [CrossRef]
- Ayoub, G.; Luo, Y.; Lam, D.M.K. Normal Tension Glaucoma: Prevalence, Etiology and Treatment. J. Clin. Res. Ophthalmol. 2021, 8, 023–028. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, H.; Townsend, J.H.; Wang, J. Effects of Ocufolin on Retinal Microvasculature in Patients with Mild Non-Proliferative Diabetic Retinopathy Carrying Polymorphisms of the MTHFR Gene. BMJ Open Diabetes Res. Care 2021, 9, e002327. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Baker, D.; Baker, R.; Brown, C.J. Case Series of Retinal Vein Occlusions Showing Early Recovery Using Oral L-Methylfolate. Ther. Adv. Ophthalmol. 2024, 16, 25158414241240687. [Google Scholar] [CrossRef]
- Maguire, G.; Ayoub, G. Integrating “Fast” and “Slow” Systems Therapeutics for Physiological Renormalization in Neurodegenerative Disorders. Cell Signal. 2024, 2, 137–143. [Google Scholar] [CrossRef]
- Eells, J.T. Mitochondrial Dysfunction in the Aging Retina. Biology 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Pameijer, E.M.; Heus, P.; Damen, J.A.A.; Spijker, R.; Hooft, L.; Ringens, P.J.; Imhof, S.M.; van Leeuwen, R. What Did We Learn in 35 Years of Research on Nutrition and Supplements for Age-Related Macular Degeneration: A Systematic Review. Acta Ophthalmol. 2022, 100, e1541–e1552. [Google Scholar] [CrossRef]
- Bharadwaj, A.S.; Appukuttan, B.; Wilmarth, P.A.; Pan, Y.; Stempel, A.J.; Chipps, T.J.; Benedetti, E.E.; Zamora, D.O.; Choi, D.; David, L.L.; et al. Role of the Retinal Vascular Endothelial Cell in Ocular Disease. Prog. Retin. Eye Res. 2013, 32, 102–180. [Google Scholar] [CrossRef]
- Mrugacz, M.; Bryl, A.; Zorena, K. Retinal Vascular Endothelial Cell Dysfunction and Neuroretinal Degeneration in Diabetic Patients. J. Clin. Med. 2021, 10, 458. [Google Scholar] [CrossRef]
- Gui, F.; You, Z.; Fu, S.; Wu, H.; Zhang, Y. Endothelial Dysfunction in Diabetic Retinopathy. Front. Endocrinol. 2020, 11, 591. [Google Scholar] [CrossRef]
- Mohamed, R.; Sharma, I.; Ibrahim, A.S.; Saleh, H.; Elsherbiny, N.M.; Fulzele, S.; Elmasry, K.; Smith, S.B.; Al-Shabrawey, M.; Tawfik, A. Hyperhomocysteinemia Alters Retinal Endothelial Cells Barrier Function and Angiogenic Potential via Activation of Oxidative Stress. Sci. Rep. 2017, 7, 11952. [Google Scholar] [CrossRef]
- Ayoub, G. Nutritional Aspects in the Neurodevelopment of Autism: Folate, Stress, and Critical Periods. J. Med. Food 2024, 28, 12–17. [Google Scholar] [CrossRef]
- Ayoub, G. Treatment of Primary Lymphedema Following Lessons from Endothelin-Driven Retinal Edema, a Case Report. Heal. TIMES Das Schweiz. Ärztejournal J. Des Médecins Suisses 2024, 14, 10–13. [Google Scholar]
- Pereira, A.; Adekunle, R.D.; Zaman, M.; Wan, M.J. Association Between Vitamin Deficiencies and Ophthalmological Conditions. Clin. Ophthalmol. 2023, 17, 2045–2062. [Google Scholar] [CrossRef]
- Ledowsky, C.J.; Schloss, J.; Steel, A. Variations in Folate Prescriptions for Patients with the MTHFR Genetic Polymorphisms: A Case Series Study. Explor. Res. Clin. Soc. Pharm. 2023, 10, 100277. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial Intelligence and Deep Learning in Ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef]
- Huang, X.; Islam, M.R.; Akter, S.; Ahmed, F.; Kazami, E.; Serhan, H.A.; Abd-Alrazaq, A.; Yousefi, S. Artificial Intelligence in Glaucoma: Opportunities, Challenges, and Future Directions. Biomed. Eng. Online 2023, 22, 126. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, D.; Yang, Z.; Zhang, Y.; Jiang, J.; Liu, X.; Kong, K.; Zhou, F.; Tham, C.C.; Medeiros, F.; et al. The AI Revolution in Glaucoma: Bridging Challenges with Opportunities. Prog. Retin. Eye Res. 2024, 103, 101291. [Google Scholar] [CrossRef]
- Popescu Patoni, S.I.; Muşat, A.A.M.; Patoni, C.; Popescu, M.-N.; Munteanu, M.; Costache, I.B.; Pîrvulescu, R.A.; Mușat, O. Artificial Intelligence in Ophthalmology. Rom. J. Ophthalmol. 2023, 67, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.W.; Jaccard, N.; Carbonaro, F.; Lemij, H.G.; Vermeer, K.A.; Reus, N.J.; Trikha, S. Evaluation of an AI System for the Automated Detection of Glaucoma from Stereoscopic Optic Disc Photographs: The European Optic Disc Assessment Study. Eye 2019, 33, 1791–1797. [Google Scholar] [CrossRef]
- Haja, S.A.; Mahadevappa, V. Advancing Glaucoma Detection with Convolutional Neural Networks: A Paradigm Shift in Ophthalmology. Rom. J. Ophthalmol. 2023, 67, 222–237. [Google Scholar] [CrossRef]
- Zeppieri, M.; Gardini, L.; Culiersi, C.; Fontana, L.; Musa, M.; D’Esposito, F.; Surico, P.L.; Gagliano, C.; Sorrentino, F.S. Novel Approaches for the Early Detection of Glaucoma Using Artificial Intelligence. Life 2024, 14, 1386. [Google Scholar] [CrossRef]
- Mirzania, D.; Thompson, A.C.; Muir, K.W. Applications of Deep Learning in Detection of Glaucoma: A Systematic Review. Eur. J. Ophthalmol. 2021, 31, 1618–1642. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Su, Y.; Lin, F.; Li, Z.; Song, Y.; Nie, S.; Xu, J.; Chen, L.; Chen, S.; Li, H.; et al. A Deep-Learning System Predicts Glaucoma Incidence and Progression Using Retinal Photographs. J. Clin. Investig. 2022, 132, e157968. [Google Scholar] [CrossRef]
- Song, W.; Lai, I.-C. Automated Early-Stage Glaucoma Detection Using a Robust Concatenated AI Model. Bioengineering 2025, 12, 516. [Google Scholar] [CrossRef]
- Shi, C.; Lee, J.; Shi, D.; Wang, G.; Yuan, F.; Zee, B.C.-Y. Automatic Retinal Image Analysis Methods Using Colour Fundus Images for Screening Glaucomatous Optic Neuropathy. BMJ Open Ophthalmol. 2024, 9, e001594. [Google Scholar] [CrossRef]
- Lai, M.; Lee, J.; Chiu, S.; Charm, J.; So, W.Y.; Yuen, F.P.; Kwok, C.; Tsoi, J.; Lin, Y.; Zee, B. A Machine Learning Approach for Retinal Images Analysis as an Objective Screening Method for Children with Autism Spectrum Disorder. EClinicalMedicine 2020, 28, 100588. [Google Scholar] [CrossRef]
- Zee, B.; Wong, Y.; Lee, J.; Fan, Y.; Zeng, J.; Lam, B.; Wong, A.; Shi, L.; Lee, A.; Kwok, C.; et al. Machine-Learning Method for Localization of Cerebral White Matter Hyperintensities in Healthy Adults Based on Retinal Images. Brain Commun. 2021, 3, fcab124. [Google Scholar] [CrossRef]
- Barrett-Young, A.; Reuben, A.; Caspi, A.; Cheyne, K.; Ireland, D.; Kokaua, J.; Ramrakha, S.; Tham, Y.-C.; Theodore, R.; Wilson, G.; et al. Measures of Retinal Health Successfully Capture Risk for Alzheimer’s Disease and Related Dementias at Midlife. J. Alzheimer’s Dis. 2025, 13872877251321114. [Google Scholar] [CrossRef]
- Doctor, K.P.; McKeever, C.; Wu, D.; Phadnis, A.; Plawecki, M.H.; Nurnberger, J.I.; José, J.V. Deep Learning Diagnosis plus Kinematic Severity Assessments of Neurodivergent Disorders. Sci. Rep. 2025, 15, 20269. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, A.E.; Olvera-Barrios, A.; Warwick, A.N.; Wu, Y.; Stuart, K.V.; Biradar, M.; Ung, C.Y.; Khawaja, A.P.; Luben, R.; Foster, P.J.; et al. Ethnicity Is Not Biology: Retinal Pigment Score to Evaluate Biological Variability from Ophthalmic Imaging Using Machine Learning. medRxiv 2023, preprint. [Google Scholar] [CrossRef] [PubMed]
- Bouthillier, A.; Berthiaume, L.-F.; Nguyen, A.X.-L.; Zhai, S.Y.; Lalla, S.; Bédard, O.; Gauvin, M.; Little, J.M.; Lachapelle, P. Distinguishing Familial from Acquired Traits in the Retinal Blood Vessel Arborization. Transl. Vis. Sci. Technol. 2020, 9, 27. [Google Scholar] [CrossRef]
- Burlina, P.; Joshi, N.; Paul, W.; Pacheco, K.D.; Bressler, N.M. Addressing Artificial Intelligence Bias in Retinal Diagnostics. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Lee, J.; Li, X.; Kwok, C.; Chong, M.; Zee, B. Lifestyle Changes Reduced Estimated White Matter Hyperintensities Based on Retinal Image Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3530. [Google Scholar] [CrossRef] [PubMed]
Retinal Change | Associated Diseases | Clinical Implication |
---|---|---|
Arteriolar narrowing | Hypertension, stroke, CAD * | Increased cardiovascular risk, indicative of systemic microvascular damage [5,6,7,8] |
Venular widening | Stroke, heart failure, CAD * | Higher risk of incident stroke and heart disease [5,6,7] |
Vessel tortuosity, rigidity | Flammer Syndrome, glaucoma | Impaired autoregulation, increased risk for vascular events [1,2,9] |
Reduced capillary density | CAD *, peripheral artery disease | Lower vascular reserve, early marker of systemic atherosclerosis [1,4,10] |
Abnormal arterial reflex/nicking | Hypertension, arteriosclerosis | Indicator of chronic vascular stress, predicts cerebrovascular events [5,7] |
Disorder | Retinal Indications |
---|---|
Hypertension | Arteriolar narrowing, arteriovenous nicking (compressed vein), retinal hemorrhages and exudates |
Diabetes mellitus | Microaneurysms, dot-blot hemorrhages, cotton wool spots, venous beading, neovascularization |
Atherosclerosis | Increased vessel wall thickness, altered vessel caliber |
Disease Consequences | Epithelial Dysfunction Manifestation | Clinical Consequences |
---|---|---|
Diabetic Retinopathy | Barrier loss, neovascularization, inflammation | [14,17,32] |
Retinopathy of Prematurity | Disrupted vessel growth, permeability changes | Retinal detachment, blindness |
Hypertensive Retinopathy | Vessel wall thickening, leakage | Ischemia, microaneurysms, vision threat |
Age-Related Macular Degeneration | Impaired perfusion, inflammatory activation | Drusen formation, atrophy, neovascular AMD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoub, G. Disease Diagnosis Using Retinal Vasculature: Insights from Flammer Syndrome and AI. Brain Sci. 2025, 15, 919. https://doi.org/10.3390/brainsci15090919
Ayoub G. Disease Diagnosis Using Retinal Vasculature: Insights from Flammer Syndrome and AI. Brain Sciences. 2025; 15(9):919. https://doi.org/10.3390/brainsci15090919
Chicago/Turabian StyleAyoub, George. 2025. "Disease Diagnosis Using Retinal Vasculature: Insights from Flammer Syndrome and AI" Brain Sciences 15, no. 9: 919. https://doi.org/10.3390/brainsci15090919
APA StyleAyoub, G. (2025). Disease Diagnosis Using Retinal Vasculature: Insights from Flammer Syndrome and AI. Brain Sciences, 15(9), 919. https://doi.org/10.3390/brainsci15090919