Accelerated Optimized Protocol of Intermittent Theta-Burst Stimulation for Negative Symptoms in Schizophrenia (ACTh-NS): A Randomized, Double-Blind, Sham-Controlled Study Design
Abstract
1. Introduction
2. Materials and Methods
- Participants:
- Procedures:
2.1. iTBS Protocol
2.2. Clinical Assessment
2.3. Heart Rate Variability
2.4. Neuropsychological Assessment
2.5. Statistical Analysis
3. Discussion
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
iTBS | Intermittent theta burst stimulation |
NS | negative symptoms |
BNSS | Negative Symptom Scale |
NIBS | Non-invasive brain stimulation |
TMS | Transcranial Magnetic Stimulation |
DLPFC | Dorsolateral prefrontal cortex |
HRV | Heart rate variability |
PANSS | Positive and Negative Syndrome Scale |
PSQI | Pittsburgh Sleep Quality Index |
ESE | Epworth Sleepiness Scale |
GAD-7 | Generalized Anxiety Disorder-7 |
MCCB | MATRICS Consensus Cognitive Battery |
CDSS | Calgary Depression Severity Scale |
SAS | Simpson–Angus Scale |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders |
SCID-5 | Structured Clinical Interview for DSM-5 |
ECG | Electrocardiogram |
AIC | Akaike information criterion |
CGI-S | Clinical Global Impression-Severity scale |
LF | Low frequency |
HF | High frequency |
RMSSD | Root mean square of consecutive differences |
EMG | Electromyography |
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Haguiara, B.; Koga, G.; Diniz, E.; Fonseca, L.; Higuchi, C.H.; Kagan, S.; Lacerda, A.; Correll, C.U.; Gadelha, A. What is the Best Latent Structure of Negative Symptoms in Schizophrenia? A Systematic Review. Schizophr. Bull. Open 2021, 2, sgab013. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Sampaio-Junior, B.; Moffa, A.H.; Aparício, L.V.; Gordon, P.; Klein, I.; Rios, R.M.; Razza, L.B.; Loo, C.; Padberg, F.; et al. Noninvasive brain stimulation in psychiatric disorders: A primer. Rev. Bras. Psiquiatr. 2019, 41, 70–81. [Google Scholar] [CrossRef]
- Padberg, F.; Bulubas, L.; Mizutani-Tiebel, Y.; Burkhardt, G.; Kranz, G.S.; Koutsouleris, N.; Kambeitz, J.; Hasan, A.; Takahashi, S.; Keeser, D.; et al. The intervention, the patient and the illness—Personalizing non-invasive brain stimulation in psychiatry. Exp. Neurol. 2021, 341, 113713. [Google Scholar] [CrossRef]
- George, M.S.; Nahas, Z.; Kozel, F.A.; Li, X.; Denslow, S.; Yamanaka, K.; Mishory, A.; Foust, M.J.; Bohning, D.E. Mechanisms and state of the art of transcranial magnetic stimulation. J. ECT 2002, 18, 170–181. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial Magnetic Stimulation: A Primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Rothwell, J.C. The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clin. Neurophysiol. 2004, 115, 1069–1075. [Google Scholar] [CrossRef]
- Suppa, A.; Huang, Y.-Z.; Funke, K.; Ridding, M.C.; Cheeran, B.; Di Lazzaro, V.; Ziemann, U.; Rothwell, J.C. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul. 2016, 9, 323–335. [Google Scholar] [CrossRef]
- Tan, X.; Goh, S.E.; Lee, J.J.; Vanniasingham, S.D.; Brunelin, J.; Lee, J.; Tor, P.C. Efficacy of Using Intermittent Theta Burst Stimulation to Treat Negative Symptoms in Patients with Schizophrenia—A Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 18. [Google Scholar] [CrossRef]
- Caulfield, K.A.; Fleischmann, H.H.; George, M.S.; McTeague, L.M. A transdiagnostic review of safety, efficacy, and parameter space in accelerated transcranial magnetic stimulation. J. Psychiatr. Res. 2022, 152, 384–396. [Google Scholar] [CrossRef]
- Cole, E.J.; Stimpson, K.H.; Bentzley, B.S.; Gulser, M.; Cherian, K.; Tischler, C.; Nejad, R.; Pankow, H.; Choi, E.; Aaronet, H. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry 2020, 177, 716–726. [Google Scholar] [CrossRef]
- Luehr, J.G.; Fritz, E.; Turner, M.; Schupp, C.; Sackeim, H.A. Accelerated transcranial magnetic stimulation: A pilot study of safety and efficacy using a pragmatic protocol. Brain Stimul. 2024, 17, 860–863. [Google Scholar] [CrossRef]
- Basavaraju, R.; Ithal, D.; Thanki, M.V.; Ramalingaiah, A.H.; Thirthalli, J.; Reddy, R.P.; Brady, R.O.; Halko, M.A.; Bolo, N.R.; Keshavan, M.S.; et al. Intermittent theta burst stimulation of cerebellar vermis enhances fronto-cerebellar resting state functional connectivity in schizophrenia with predominant negative symptoms: A randomized controlled trial. Schizophr. Res. 2021, 238, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Bation, R.; Magnin, C.; Poulet, E.; Mondino, M.; Brunelin, J. Intermittent theta burst stimulation for negative symptoms of schizophrenia—A double-blind, sham-controlled pilot study. NPJ Schizophr. 2021, 7, 10. [Google Scholar] [CrossRef]
- Bodén, R.; Bengtsson, J.; Thörnblom, E.; Struckmann, W.; Persson, J. Dorsomedial prefrontal theta burst stimulation to treat anhedonia, avolition, and blunted affect in schizophrenia or depression—A randomized controlled trial. J Affect Disord. 2021, 290, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Tong, J.; Huang, Y.; Shi, D.; Zhu, N.; Zhu, M.; Liu, M.; Liu, H.; Sun, X. Effectiveness of accelerated intermittent theta burst stimulation for social cognition and negative symptoms among individuals with schizophrenia: A randomized con-trolled trial. Psychiatry Res. 2023, 320, 115033. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, W.; Zhu, Y.; Mu, X.; Zhang, Q.; Wang, Y.; Cai, J.; Xie, B. Cerebellar theta burst stimulation for the treatment of negative symptoms of schizophrenia: A multicenter, double-blind, randomized controlled trial. Psychiatry Res. 2021, 305, 114204. [Google Scholar] [CrossRef]
- Chauhan, P.; Garg, S.; Tikka, S.K.; Khattri, S. Efficacy of Intensive Cerebellar Intermittent Theta Burst Stimulation (iCiTBS) in Treatment-Resistant Schizophrenia: A Randomized Placebo-Controlled Study. Cerebellum 2021, 20, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Demirtas-Tatlidede, A.; Freitas, C.; Cromer, J.R.; Safar, L.; Ongur, D.; Stone, W.S.; Seidman, L.J.; Schmahmann, J.D.; Pascual-Leone, A. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010, 124, 91–100. [Google Scholar] [CrossRef]
- Thomas, B.L.; Claassen, N.; Becker, P.; Viljoen, M. Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology 2019, 78, 14–26. [Google Scholar] [CrossRef]
- Hofmann, W.; Schmeichel, B.J.; Baddeley, A.D. Executive functions and self-regulation. Trends Cogn. Sci. 2012, 16, 174–180. [Google Scholar] [CrossRef]
- Ramesh, A.; Nayak, T.; Beestrum, M.; Quer, G.; Pandit, J.A. Heart Rate Variability in Psychiatric Disorders: A Systematic Review. Neuropsychiatr Dis. Treat. 2023, 19, 2217–2239. [Google Scholar] [CrossRef]
- Clamor, A.; Koenig, J.; Thayer, J.F.; Lincoln, T.M. A randomized-controlled trial of heart rate variability biofeedback for psychotic symptoms. Behav. Res. Ther. 2016, 87, 207–215. [Google Scholar] [CrossRef]
- Hempel, R.J.; Tulen, J.H.M.; Beveren, N.J.M.V.a.n.; Röder, C.H.; Hengeveld, M.W. Cardiovascular variability during treatment with haloperidol, olanzapine or risperidone in recent-onset schizophrenia. J. Psychopharmacol. 2008, 23, 697–707. [Google Scholar] [CrossRef]
- Bär, K.J.; Letzsch, A.; Jochum, T.; Wagner, G.; Greiner, W.; Sauer, H. Loss of efferent vagal activity in acute schizophrenia. J. Psychiatr Res. 2005, 39, 519–527. [Google Scholar] [CrossRef]
- Mujica-Parodi, L.R.; Yeragani, V.; Malaspina, D. Nonlinear complexity and spectral analyses of heart rate variability in medicated and unmedicated patients with schizophrenia. Neuropsychobiology 2005, 51, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Valkonen-Korhonen, M.; Tarvainen, M.P.; Ranta-Aho, P.; Karjalainen, P.A.; Partanen, J.; Karhu, J.; Lehtonen, J. Heart rate variability in acute psychosis. Psychophysiology 2003, 40, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Bär, K.-J.; Wernich, K.; Boettger, S.; Cordes, J.; Boettger, M.K.; Löffler, S.; Kornischka, J.; Agelink, M.-W. Relationship between cardiovagal modulation and psychotic state in patients with paranoid schizophrenia. Psychiatry Res. 2008, 157, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Campana, M.; Wagner, E.; Wobrock, T.; Langguth, B.; Landgrebe, M.; Eichhammer, P.; Frank, E.; Cordes, J.; Wölwer, W.; Winterer, G.; et al. Effects of high-frequency prefrontal rTMS on heart frequency rates and blood pressure in schizophrenia. J. Psychiatr. Res. 2021, 140, 243–249. [Google Scholar] [CrossRef]
- Prikryl, R.; Kasparek, T.; Skotakova, S.; Ustohal, L.; Kucerova, H.; Ceskova, E. Treatment of negative symptoms of schizophrenia using repetitive transcranial magnetic stimulation in a double-blind, randomized controlled study. Schizophr Res. 2007, 95, 151–157. [Google Scholar] [CrossRef]
- Correia, A.T.L.; Lipinska, G.; Rauch, H.G.L.; Forshaw, P.E.; Roden, L.C.; Rae, D.E. Associations between sleep-related heart rate variability and both sleep and symptoms of depression and anxiety: A systematic review. Sleep Med. 2023, 101, 106–117. [Google Scholar] [CrossRef]
- Miglis, M.G. Autonomic Dysfunction in the Central Nervous System Hypersomnias. Curr. Sleep Med. Rep. 2023, 9, 1–9. [Google Scholar] [CrossRef]
- Lorentzen, R.; Nguyen, T.D.; McGirr, A.; Hieronymus, F.; Østergaard, S.D. The efficacy of transcranial magnetic stimulation (TMS) for negative symptoms in schizophrenia- a systematic review and meta-analysis. Schizophrenia 2022, 8, 35. [Google Scholar] [CrossRef]
- Trapp, N.T.; Bruss, J.; Johnson, M.K.; Uitermarkt, B.D.; Garrett, L.; Heinzerling, A.; Wu, C.; Koscik, T.R.; Eyck, P.T.; Boes, A.D. Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm. Brain Stimul. 2020, 13, 578–581. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Ruohonen, J.; Ollikainen, M.; Nikouline, V.; Virtanen, J.; Ilmoniemi, R.J. Coil Design for Real and Sham Transcranial Mag-netic Stimulation. IEEE Trans. Biomed. Eng. 2000, 47, 145–148. [Google Scholar] [CrossRef] [PubMed]
- DE Medeiros, H.L.V.; DA Silva, A.M.P.; Rodig, R.M.E.; DE Souza, S.L.; Sougey, E.B.; Vasconcelos, S.C.; Lima, M.D.D.C. Cross-cultural adaptation, reliability, and content validity of the brief negative symptom scale (BNSS) for use in Brazil. Rev. Psiquiatr. Clín. 2019, 46, 132–136. [Google Scholar] [CrossRef]
- Higuchi, C.H.; Ortiz, B.; Berberian, A.A.; Noto, C.; Cordeiro, Q.; Belangero, S.I.; Pitta, J.C.; Gadelha, A.; Bressan, R.A. Factor structure of the positive and negative syndrome scale (PANSS) in Brazil: Convergent validation of the brazilian version. Rev. Bras. Psiquiatr. 2014, 36, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Bertolazi, A.N.; Fagondes, S.C.; Hoff, L.S.; Dartora, E.G.; da Silva Miozzo, I.C.; de Barba, M.E.F. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. 2011, 12, 70–75. [Google Scholar] [CrossRef]
- Naimaier Bertolazi, A.; Chaves Fagondes, S.; Santos Hoff, L.; Dallagasperina Pedro, V.; Saldanha Menna Barreto, S.; Johns, M.W. Validação da escala de sonolência de Epworth em português para uso no Brasil* Portuguese-language version of the Epworth sleepiness scale: Validation for use in Brazil. J. Bras. Pneumol. 2009, 35, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.P.; Nascimento, B.S.; Monteiro, T.M.C.; da Silva, P.D.G.; Ferreira, A.J.C. Psychometric Evidence of the 7-Item Generalized Anxiety Disorder Questionnaire in Brazil. Int. J. Ment. Health Addict. 2022, 20, 1023–1034. [Google Scholar] [CrossRef]
- Silva De Lima, M.; Garcia, B.; Soares, O.; Paoliello, G.; Vieira, R.M.; Martins, C.M. The Portuguese version of the Clinical Global Impression-Schizophrenia Scale: Validation study Versão em português da Impressão Clínica Global-Escala de Es-quizofrenia: Estudo de validação. Braz. J. Psychiatry 2007, 29, 246–249. [Google Scholar] [CrossRef]
- Bressan, R.A.; Chaves, A.C.; Shirakawa, I.; de Mari, J. Validity study of the Brazilian version of the Calgary Depression Scale for Schizophrenia. Schizophr. Res. 1998, 32, 31–39. [Google Scholar] [CrossRef]
- Janno, S.; Holi, M.M.; Tuisku, K.; Wahlbeck, K. Validity of Simpson-Angus Scale (SAS) in a naturalistic schizophrenia popu-lation. BMC Neurol. 2005, 5, 5. [Google Scholar] [CrossRef]
- Fonseca, A.O.; Berberian, A.A.; de Meneses-Gaya, C.; Gadelha, A.; Vicente Mde, O.; Nuechterlein, K.H. The Brazilian stand-ardization of the MATRICS consensus cognitive battery (MCCB): Psychometric study. Schizophr. Res. 2017, 185, 148–153. [Google Scholar] [CrossRef]
- Tseng, P.T.; Zeng, B.S.; Hung, C.M.; Liang, C.S.; Stubbs, B.; Carvalho, A.F. Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia: A Systematic Review and Network Meta-analysis. JAMA Psychiatry 2022, 79, 770–779. [Google Scholar] [CrossRef]
- Kan, R.L.D.; Padberg, F.; Giron, C.G.; Lin, T.T.Z.; Zhang, B.B.B.; Brunoni, A.R.; Kranz, G.S. Effects of repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex on symptom domains in neuropsychiatric disorders: A sys-tematic review and cross-diagnostic meta-analysis. Lancet Psychiatry 2023, 10, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Wobrock, T.; Guse, B.; Cordes, J.; Wölwer, W.; Winterer, G.; Gaebel, W.; Langguth, B.; Landgrebe, M.; Eichhammer, P.; Frank, E.; et al. Left prefrontal high-frequency repetitive transcranial magnetic stimulation for the treatment of schizophrenia with predominant negative symptoms: A sham-controlled, randomized multicenter trial. Biol. Psychiatry 2015, 77, 979–988. [Google Scholar] [CrossRef]
- Gutiérrez-Muto, A.M.; Castilla, J.; Freire, M.; Oliviero, A.; Tornero, J. Theta burst stimulation: Technical aspects about TMS devices. Brain Stimul. 2020, 13, 562–564. [Google Scholar] [CrossRef]
- Thomson, A.C.; Sack, A.T. How to Design Optimal Accelerated rTMS Protocols Capable of Promoting Therapeutically Ben-eficial Metaplasticity. Front. Neurol. 2020, 11, 599918. [Google Scholar] [CrossRef]
- Moffa, A.H.; Boonstra, T.W.; Wang, A.; Martin, D.; Loo, C.; Nikolin, S. Neuromodulatory effects of theta burst stimulation to the prefrontal cortex. Sci. Data 2022, 9, 717. [Google Scholar] [CrossRef] [PubMed]
- Michel, N.M.; Goldberg, J.O.; Heinrichs, R.W.; Miles, A.A.; Ammari, N.; McDermid Vaz, S. WAIS-IV Profile of Cognition in Schizophrenia. Assessment 2013, 20, 462–473. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.H.; Wu, T.H.; Chiu, Y.H.; Lu, M.L. Efficacy and safety of intermittent theta-burst stimulation in patients with schizophrenia: A meta-analysis of randomized sham-controlled trials. Front. Pharmacol. 2022, 13, 944437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Kong, J.; Li, S.; Tong, Z.; Yang, C.; Zhong, H. Randomized controlled trial of four protocols of repetitive transcranial magnetic stimulation for treating the negative symptoms of schizophrenia. Orig. Artic. 2014, 26, 15–21. [Google Scholar] [CrossRef]
- Pabst, A.; Proksch, S.; Médé, B.; Comstock, D.C.; Ross, J.M.; Balasubramaniam, R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci. Biobehav. Rev. 2022, 135, 104587. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, X.; Wu, Y.; He, K.; Xu, F.; Xiao, G.; Hu, P.; Qiu, B.; Ji, G.-J.; Wang, K. Intermittent theta burst stimulation (iTBS) adjustment effects of schizophrenia: Results from an exploratory outcome of a randomized double-blind controlled study. Schizophr. Res. 2020, 216, 550–553. [Google Scholar] [CrossRef]
- Kaskie, R.E.; Graziano, B.; Ferrarelli, F. Schizophrenia and sleep disorders: Links, risks, and management challenges. Nat. Sci. Sleep 2017, 9, 227–239. [Google Scholar] [CrossRef]
- Datta, A.; Choudhary, S.; Soni, S.; Misra, R.; Singh, K. Altered Heart Rate Variability During Rest in Schizophrenia: A State Marker. Cureus 2024, 15, e44145. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Zhou, J.; Li, G.; Chen, J.; Xiang, Z.; Wu, F.; Wu, K. Altered Heart Rate Variability in Patients With Schiz-ophrenia During an Autonomic Nervous Test. Front. Psychiatry 2021, 12, 626991. [Google Scholar]
- Ma, C.C.; Kao, Y.C.; Tzeng, N.S.; Chao, C.Y.; Chang, C.C.; Chang, H.A. A higher degree of insight impairment in stabilized schizophrenia patients is associated with reduced cardiac vagal tone as indexed by resting-state high-frequency heart rate variability. Asian J. Psychiatr. 2020, 53, 102171. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hensley, M.K.; Tasman, A.; Sears, L.; Casanova, M.F.; Sokhadze, E.M. Heart Rate Variability and Skin Conduct-ance During Repetitive TMS Course in Children with Autism. Appl. Psychophysiol. Biofeedback 2016, 41, 47–60. [Google Scholar] [CrossRef]
- Iseger, T.A.; van Bueren, N.E.R.; Kenemans, J.L.; Gevirtz, R.; Arns, M. A frontal-vagal network theory for Major Depressive Disorder: Implications for optimizing neuromodulation techniques. Brain Stimul. 2020, 13, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiar, I.; Gomes, J.S.; Jorge, L.; Ziebold, C.; Fernandes, A.; Biokino, R.; Lorencetti, P.; Brunoni, A.; Gadelha, A. Accelerated Optimized Protocol of Intermittent Theta-Burst Stimulation for Negative Symptoms in Schizophrenia (ACTh-NS): A Randomized, Double-Blind, Sham-Controlled Study Design. Brain Sci. 2025, 15, 1021. https://doi.org/10.3390/brainsci15091021
Taiar I, Gomes JS, Jorge L, Ziebold C, Fernandes A, Biokino R, Lorencetti P, Brunoni A, Gadelha A. Accelerated Optimized Protocol of Intermittent Theta-Burst Stimulation for Negative Symptoms in Schizophrenia (ACTh-NS): A Randomized, Double-Blind, Sham-Controlled Study Design. Brain Sciences. 2025; 15(9):1021. https://doi.org/10.3390/brainsci15091021
Chicago/Turabian StyleTaiar, Ivan, July Silveira Gomes, Lucas Jorge, Carolina Ziebold, André Fernandes, Renan Biokino, Pedro Lorencetti, André Brunoni, and Ary Gadelha. 2025. "Accelerated Optimized Protocol of Intermittent Theta-Burst Stimulation for Negative Symptoms in Schizophrenia (ACTh-NS): A Randomized, Double-Blind, Sham-Controlled Study Design" Brain Sciences 15, no. 9: 1021. https://doi.org/10.3390/brainsci15091021
APA StyleTaiar, I., Gomes, J. S., Jorge, L., Ziebold, C., Fernandes, A., Biokino, R., Lorencetti, P., Brunoni, A., & Gadelha, A. (2025). Accelerated Optimized Protocol of Intermittent Theta-Burst Stimulation for Negative Symptoms in Schizophrenia (ACTh-NS): A Randomized, Double-Blind, Sham-Controlled Study Design. Brain Sciences, 15(9), 1021. https://doi.org/10.3390/brainsci15091021