How Technology Advances Research and Practice in Autism Spectrum Disorder: A Narrative Review on Early Detection, Subtype Stratification, and Intervention
Abstract
1. Introduction
2. Technology as a Tool
2.1. Early Detection
2.1.1. Neuroimaging Tools
2.1.2. Eye-Tracking Technologies
2.1.3. Touchscreen Devices
2.1.4. Supervised Machine Learning
2.1.5. Large Language Models
2.1.6. Summary
2.2. Subtype Stratification
2.3. Intervention
2.3.1. Telehealth Therapies
2.3.2. Smart Devices and Digital Applications
2.3.3. Virtual Reality
2.3.4. Artificial Intelligence Chatbot
2.3.5. Summary
3. Technology as a Context
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorder |
BERT | Bidirectional Encoder Representations from Transformers |
GPT | Generative Pre-trained Transformers |
LLM | Large language models |
EEG | Electrophysiology |
TOBY | Therapy Outcomes by You |
VR | Virtual Reality |
CAVE | Cave Automatic Virtual Environment |
AI | Artificial Intelligence |
ADOS-2 | Autism Diagnostic Observation Schedule, Second Edition |
SCQ | Social Communication Questionnaire |
ADI-R | Autism Diagnostic Interview-Revised |
FDA | Food and Drug Administration |
References
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Montes, G. Children with autism spectrum disorder and screen time: Results from a large, nationally representative US study. Acad. Pediatr. 2016, 16, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, J.; Dissanayake, C. Autism spectrum disorders in infancy and toddlerhood: A review of the evidence on early signs, early identification tools, and early diagnosis. J. Dev. Behav. Pediatr. 2009, 30, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Robins, D.L.; Fein, D.; Barton, M.L.; Green, J.A. The Modified Checklist for Autism in Toddlers: An initial study investigating the early detection of autism and pervasive developmental disorders. J. Autism Dev. Disord. 2001, 31, 131–144. [Google Scholar] [CrossRef]
- Stone, W.L.; Coonrod, E.E.; Ousley, O.Y. Brief report: Screening tool for autism in two-year-olds (STAT): Development and preliminary data. J. Autism Dev. Disord. 2000, 30, 607. [Google Scholar] [CrossRef]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, E.H.; Leventhal, B.L.; DiLavore, P.C.; Pickles, A.; Rutter, M. The Autism Diagnostic Observation Schedule—Generic: A Standard Measure of Social and Communication Deficits Associated with the Spectrum of Autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef]
- Reiersen, A.M. Early identification of autism spectrum disorder: Is diagnosis by age 3 a reasonable goal? J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 284–285. [Google Scholar] [CrossRef]
- Zwaigenbaum, L.; Bryson, S.; Lord, C.; Rogers, S.; Carter, A.; Carver, L.; Chawarska, K.; Constantino, J.; Dawson, G.; Dobkins, K.; et al. Clinical assessment and management of toddlers with suspected autism spectrum disorder: Insights from studies of high-risk infants. Pediatrics 2009, 123, 1383–1391. [Google Scholar] [CrossRef]
- Begeer, S.; Mandell, D.; Wijnker-Holmes, B.; Venderbosch, S.; Rem, D.; Stekelenburg, F.; Koot, H.M. Sex differences in the timing of identification among children and adults with autism spectrum disorders. J. Autism Dev. Disord. 2013, 43, 1151–1156. [Google Scholar] [CrossRef]
- Moran, J.M.; Zaki, J. Functional neuroimaging and psychology: What have you done for me lately? J. Cogn. Neurosci. 2013, 25, 834–842. [Google Scholar] [CrossRef]
- Ellis, C.T.; Turk-Browne, N.B. Infant fMRI: A model system for cognitive neuroscience. Trends Cogn. Sci. 2018, 22, 375–387. [Google Scholar] [CrossRef]
- Copeland, A.; Silver, E.; Korja, R.; Lehtola, S.J.; Merisaari, H.; Saukko, E.; Sinisalo, S.; Saunavaara, J.; Lähdesmäki, T.; Parkkola, R.; et al. Infant and child MRI: A review of scanning procedures. Front. Neurosci. 2021, 15, 666020. [Google Scholar] [CrossRef]
- Hazlett, H.C.; Gu, H.; Munsell, B.C.; Kim, S.H.; Styner, M.; Wolff, J.J.; Elison, J.T.; Swanson, M.R.; Zhu, H.; Botteron, K.N.; et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 2017, 542, 348–351. [Google Scholar] [CrossRef]
- Wolff, J.J.; Swanson, M.R.; Elison, J.T.; Gerig, G.; Pruett, J.R.; Styner, M.A.; Vachet, C.; Botteron, K.N.; Dager, S.R.; Estes, A.M.; et al. Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Mol. Autism 2017, 8, 8. [Google Scholar] [CrossRef]
- Santana, C.P.; de Carvalho, E.A.; Rodrigues, I.D.; Bastos, G.S.; de Souza, A.D.; de Brito, L.L. rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 6030. [Google Scholar] [CrossRef]
- Boutros, N.N.; Lajiness-O’Neill, R.; Zillgitt, A.; Richard, A.E.; Bowyer, S.M. EEG changes associated with autistic spectrum disorders. Neuropsychiatr. Electrophysiol. 2015, 1, 3. [Google Scholar] [CrossRef]
- Dickinson, A.; Daniel, M.; Marin, A.; Gaonkar, B.; Dapretto, M.; McDonald, N.M.; Jeste, S. Multivariate neural connectivity patterns in early infancy predict later autism symptoms. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, C.S.; Sagar, K.J.V.; Yamini, B.K.; Girimaji, A.S.; Kumar, R.; Sravanti, S.L.; Padmanabha, H.; Raju, K.N.V.; Kishore, M.T.; Jacob, P.; et al. Emerging behavioral and neuroimaging biomarkers for early and accurate characterization of autism spectrum disorders: A systematic review. Transl. Psychiatry 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Hatim, H.A.; Alyasseri, Z.A.A.; Jamil, N. A recent advances on autism spectrum disorders in diagnosing based on machine learning and deep learning. Artif. Intell. Rev. 2025, 58, 313. [Google Scholar] [CrossRef]
- Ahmed, Z.A.T.; Jadhav, M.E. A review of early detection of autism based on eye-tracking and sensing technology. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 160–166. [Google Scholar]
- Mastergeorge, A.M.; Kahathuduwa, C.; Blume, J. Eye-tracking in infants and young children at risk for autism spectrum disorder: A systematic review of visual stimuli in experimental paradigms. J. Autism Dev. Disord. 2021, 51, 2578–2599. [Google Scholar] [CrossRef]
- Król, M.E.; Król, M. A novel machine learning analysis of eye-tracking data reveals suboptimal visual information extraction from facial stimuli in individuals with autism. Neuropsychologia 2019, 129, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Kollias, K.F.; Syriopoulou-Delli, C.K.; Sarigiannidis, P.; Fragulis, G.F. The contribution of machine learning and eye-tracking technology in autism spectrum disorder research: A systematic review. Electronics 2021, 10, 2982. [Google Scholar] [CrossRef]
- Wan, G.; Kong, X.; Sun, B.; Yu, S.; Tu, Y.; Park, J.; Lang, C.; Koh, M.; Wei, Z.; Feng, Z.; et al. Applying eye tracking to identify autism spectrum disorder in children. J. Autism Dev. Disord. 2019, 49, 209–215. [Google Scholar] [CrossRef]
- Murias, M.; Major, S.; Davlantis, K.; Franz, L.; Harris, A.; Rardin, B.; Sabatos-DeVito, M.; Dawson, G. Validation of eye-tracking measures of social attention as a potential biomarker for autism clinical trials. Autism Res. 2018, 11, 166–174. [Google Scholar] [CrossRef]
- Jones, W.; Klaiman, C.; Richardson, S.; Aoki, C.; Smith, C.; Minjarez, M.; Bernier, R.; Pedapati, E.; Bishop, S.; Ence, W.; et al. Eye-tracking–based measurement of social visual engagement compared with expert clinical diagnosis of autism. JAMA 2023, 330, 854–865. [Google Scholar] [CrossRef]
- Bohnsack, C. First Tool to Diagnose Autism in Children as Young as 16 Months Receives FDA Clearance; Southwest Autism Research & Resource Center (SARRC): Phoenix, AZ, USA, 2023; Available online: https://autismcenter.org/first-tool-diagnose-autism-children-young-16-months-receives-fda-clearance/ (accessed on 17 August 2025).
- Lu, S.C.; Rowe, P.; Tachtatzis, C.; Andonovic, I.; Anzulewicz, A.; Sobota, K.; Delafield-Butt, J. Swipe kinematic differences in young children with autism spectrum disorders are task-and age-dependent: A smart tablet game approach. Brain Disord. 2022, 5, 100032. [Google Scholar] [CrossRef]
- Anzulewicz, A.; Sobota, K.; Delafield-Butt, J.T. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism. Sci. Rep. 2016, 6, 31107. [Google Scholar] [CrossRef]
- Simeoli, R.; Milano, N.; Rega, A.; Marocco, D. Using technology to identify children with autism through motor abnormalities. Front. Psychol. 2021, 12, 635696. [Google Scholar] [CrossRef] [PubMed]
- Bondioli, M.; Chessa, S.; Narzisi, A.; Pelagatti, S.; Zoncheddu, M. Towards motor-based early detection of autism red flags: Enabling technology and exploratory study protocol. Sensors 2021, 21, 1971. [Google Scholar] [CrossRef]
- Stephenson, J.; Limbrick, L. A review of the use of touch-screen mobile devices by people with developmental disabilities. J. Autism Dev. Disord. 2015, 45, 3777–3791. [Google Scholar] [CrossRef]
- Rafique, I.; Fatima, K.; Dastagir, A.; Mahmood, S.; Hussain, M. Autism Identification and Learning Through Motor Gesture Patterns. In Proceedings of the 2019 International Conference on Innovative Computing (ICIC), Seoul, Republic of Korea, 26–29 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Thabtah, F. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Inform. Health Soc. Care 2019, 44, 278–297. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hyde, K.K.; Novack, M.N.; LaHaye, N.; Parlett-Pelleriti, C.; Anden, R.; Dixon, D.R.; Linstead, E. Applications of supervised machine learning in autism spectrum disorder research: A review. Rev. J. Autism Dev. Disord. 2019, 6, 128–146. [Google Scholar] [CrossRef]
- Abbas, H.; Garberson, F.; Glover, E.; Wall, D.P. Machine learning approach for early detection of autism by combining questionnaire and home video screening. J. Am. Med. Inform. Assoc. 2018, 25, 1000–1007. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Megerian, J.T.; Dey, S.; Melmed, R.D.; Coury, D.L.; Lerner, M.; Nicholls, C.; Sohl, K.; Rouhbakhsh, R.; Narasimhan, A.; Romain, J.; et al. Performance of Canvas Dx, a Novel Software-based Autism Spectrum Disorder Diagnosis Aid for Use in a Primary Care Setting (P13-5.001). Neurology 2022, 98 (Suppl. S18), 1025. [Google Scholar] [CrossRef]
- Mazumdar, P.; Arru, G.; Battisti, F. Early detection of children with autism spectrum disorder based on visual exploration of images. Signal Process. Image Commun. 2021, 94, 116184. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Senan, E.M.; Rassem, T.H.; Ali, M.A.; Shatnawi, H.S.A.; Alwazer, S.M.; Alshahrani, M. Eye tracking-based diagnosis and early detection of autism spectrum disorder using machine learning and deep learning techniques. Electronics 2022, 11, 530. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Zhang, Q.; Meng, W.; Hao, J.; Tan, H.; Ma, S.; Cai, M.; Liu, D.; Liu, Z.; Yang, J. BERT-BiLSTM-Caps Language Model for Screening of Children’s Severe Mental Retardation. In Proceedings of the 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), London, UK, 20–22 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 296–301. [Google Scholar]
- Mukherjee, P.; Gokul, R.S.; Sadhukhan, S.; Godse, M.; Chakraborty, B. Detection of Autism Spectrum Disorder (ASD) from Natural Language Text using BERT and ChatGPT Models. Int. J. Adv. Comput. Sci. Appl. 2023, 14. [Google Scholar] [CrossRef]
- Themistocleous, C.K.; Andreou, M.; Peristeri, E. Autism detection in children: Integrating machine learning and natural language processing in narrative analysis. Behav. Sci. 2024, 14, 459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, T.; Ma, S.; Zhang, J.; Yang, Y.; Tian, J.; He, H.; Li, A.; He, M.; Liu, Z.; et al. Summary of CHATGPT-related research and perspective towards the future of large language models. Meta-Radiology 2023, 1, 100017. [Google Scholar] [CrossRef]
- Bosl, W.J.; Tager-Flusberg, H.; Nelson, C.A. EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Sci. Rep. 2018, 8, 6828. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; APA: Washington, DC, USA, 2013. [Google Scholar]
- Munson, J.; Dawson, G.; Sterling, L.; Beauchaine, T.; Zhou, A.; Koehler, E.; Lord, C.; Rogers, S.; Sigman, M.; Estes, A.; et al. Evidence for latent classes of IQ in young children with autism spectrum disorder. Am. J. Ment. Retard. 2008, 113, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Ecker, C.; Murphy, D. Neuroimaging in autism—From basic science to translational research. Nat. Rev. Neurol. 2014, 10, 82. [Google Scholar] [CrossRef]
- Lord, C.; Bishop, S.; Anderson, D. Developmental trajectories as autism phenotypes. Am. J. Med. Genet. Part C Semin. Med. Genet. 2015, 169, 198–208. [Google Scholar] [CrossRef]
- Lombardo, M.V.; Lai, M.-C.; Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 2019, 24, 1435–1450. [Google Scholar] [CrossRef]
- Wolfers, T.; Floris, D.L.; Dinga, R.; van Rooij, D.; Isakoglou, C.; Kia, S.M.; Zabihi, M.; Llera, A.; Chowdanayaka, R.; Kumar, V.J.; et al. From pattern classification to stratification: Towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neurosci. Biobehav. Rev. 2019, 104, 240–254. [Google Scholar] [CrossRef]
- Duffy, F.H.; Als, H. Autism, spectrum or clusters? An EEG coherence study. BMC Neurol. 2019, 19, 27. [Google Scholar] [CrossRef]
- Easson, A.K.; Fatima, Z.; McIntosh, A.R. Functional connectivity-based subtypes of individuals with and without autism spectrum disorder. Netw. Neurosci. 2019, 3, 344–362. [Google Scholar] [CrossRef]
- Stevens, E.; Dixon, D.R.; Novack, M.N.; Granpeesheh, D.; Smith, T.; Linstead, E. Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning. Int. J. Med. Inform. 2019, 129, 29–36. [Google Scholar] [CrossRef]
- Gardner-Hoag, J.; Novack, M.; Parlett-Pelleriti, C.; Stevens, E.; Dixon, D.; Linstead, E. Unsupervised machine learning for identifying challenging behavior profiles to explore cluster-based treatment efficacy in children with autism spectrum disorder: Retrospective data analysis study. JMIR Med. Inform. 2021, 9, e27793. [Google Scholar] [CrossRef]
- Litman, A.; Sauerwald, N.; Green Snyder, L.; Foss-Feig, J.; Park, C.Y.; Hao, Y.; Dinstein, I.; Theesfeld, C.L.; Troyanskaya, O.G. Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs. Nat. Genet. 2025, 57, 1611–1619. [Google Scholar] [CrossRef]
- Parlett-Pelleriti, C.M.; Stevens, E.; Dixon, D.; Linstead, E.J. Applications of unsupervised machine learning in autism spectrum disorder research: A review. Rev. J. Autism Dev. Disord. 2023, 10, 406–421. [Google Scholar] [CrossRef]
- Grynszpan, O.; Weiss, P.L.; Perez-Diaz, F.; Gal, E. Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. Autism 2014, 18, 346–361. [Google Scholar] [CrossRef]
- Valencia, K.; Rusu, C.; Quiñones, D.; Jamet, E. The impact of technology on people with autism spectrum disorder: A systematic literature review. Sensors 2019, 19, 4485. [Google Scholar] [CrossRef]
- Kalvin, C.B.; Jordan, R.P.; Rowley, S.N.; Weis, A.; Wood, K.S.; Wood, J.J.; Ibrahim, K.; Sukhodolsky, D.G. Conducting CBT for Anxiety in Children with Autism Spectrum Disorder During COVID-19 Pandemic. J. Autism Dev. Disord. 2021, 51, 4239–4247. [Google Scholar] [CrossRef] [PubMed]
- Conaughton, R.J.; Donovan, C.L.; March, S. Efficacy of an internet-based CBT program for children with comorbid high functioning autism spectrum disorder and anxiety: A randomised controlled trial. J. Affect. Disord. 2017, 218, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, S.; Wacker, D.; Schieltz, K.; Suess, A.; Pelzel, K.; Kopelman, T.; Lee, J.; Romani, P.; O’Brien, M. A randomized controlled trial of functional communication training via telehealth for young children with autism spectrum disorder. J. Autism Dev. Disord. 2020, 50, 4449–4462. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Franco, J.H.; Sundarrajan, M.; Chen, Y. A pilot study comparing tele-therapy and in-person therapy: Perspectives from parent-mediated intervention for children with autism spectrum disorders. J. Autism Dev. Disord. 2021, 51, 129–143. [Google Scholar] [CrossRef]
- Ferguson, J.; Craig, E.A.; Dounavi, K. Telehealth as a model for providing behaviour analytic interventions to individuals with autism spectrum disorder: A systematic review. J. Autism Dev. Disord. 2019, 49, 582–616. [Google Scholar] [CrossRef]
- Ellison, K.S.; Guidry, J.; Picou, P.; Adenuga, P.; Davis, T.E., III. Telehealth and autism prior to and in the age of COVID-19: A systematic and critical review of the last decade. Clin. Child Fam. Psychol. Rev. 2021, 24, 599–630. [Google Scholar] [CrossRef]
- de Nocker, Y.L.; Toolan, C.K. Using telehealth to provide interventions for children with ASD: A systematic review. Rev. J. Autism Dev. Disord. 2023, 10, 82–112. [Google Scholar] [CrossRef]
- Iacono, T.; Trembath, D.; Erickson, S. The role of augmentative and alternative communication for children with autism: Current status and future trends. Neuropsychiatr. Dis. Treat. 2016, 12, 2349–2361. [Google Scholar] [CrossRef]
- Lorah, E.R.; Parnell, A.; Whitby, P.S.; Hantula, D. A Systematic Review of Tablet Computers and Portable Media Players as Speech Generating Devices for Individuals with Autism Spectrum Disorder. J. Autism Dev. Disord. 2015, 45, 3792–3804. [Google Scholar] [CrossRef]
- An, S.; Feng, X.; Dai, Y.; Bo, H.; Wang, X.; Li, M.; Woo, J.Z.; Liang, X.; Guo, C.; Liu, C.X.; et al. Development and evaluation of a speech-generating AAC mobile app for minimally verbal children with autism spectrum disorder in Mainland China. Mol. Autism 2017, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Ball, L.J.; Kent-Walsh, J.; Harrington, N.A. Consideration of communication options in head and neck cancer: Augmentative and alternative. In Cases in Head and Neck Cancer: A Multidisciplinary Approach; Plural Publishing: San Diego, CA, USA, 2016; pp. 207–217. [Google Scholar]
- Riddle, H. Assessing Language and Literacy of Students with Developmental Disabilities and Complex Communication Needs. Ga. J. Lit. 2023, 45, 66–72. [Google Scholar] [CrossRef]
- Lorah, E.R.; Holyfield, C.; Miller, J.; Griffen, B.; Lindbloom, C. A systematic review of research comparing mobile technology speech-generating devices to other AAC modes with individuals with autism spectrum disorder. J. Dev. Phys. Disabil. 2022, 34, 187–210. [Google Scholar] [CrossRef]
- Muharib, R.; Walker, V.; Dunn, W. Effects of interventions involving tablet-based speech-generating devices for individuals with ASD: A meta-analysis. J. Autism Dev. Disord. 2024, 54, 4496–4514. [Google Scholar] [CrossRef]
- Fletcher-Watson, S.; Petrou, A.; Scott-Barrett, J.; Dicks, P.; Graham, C.; O’Hare, A.; Pain, H.; McConachie, H. A trial of an iPadTM intervention targeting social communication skills in children with autism. Autism 2016, 20, 771–782. [Google Scholar] [CrossRef]
- Whitehouse, A.J.; Granich, J.; Alvares, G.; Busacca, M.; Cooper, M.N.; Dass, A.; Duong, T.; Harper, R.; Marshall, W.; Richdale, A.; et al. A randomized controlled trial of an iPad-based application to complement early behavioral intervention in Autism Spectrum Disorder. J. Child Psychol. Psychiatry 2017, 58, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Nguyen, T.-Q.; Gipson, S.Y.-M.T.; Shin, A.L.; Torous, J. Smartphone Apps for Autism Spectrum Disorder—Understanding the Evidence. J. Technol. Behav. Sci. 2018, 3, 1–4. [Google Scholar] [CrossRef]
- Griffith, S.F.; Hagan, M.B.; Heymann, P.; Heflin, B.H.; Bagner, D.M. Apps as learning tools: A systematic review. Pediatrics 2020, 145, e20191579. [Google Scholar] [CrossRef]
- Parsons, S.; Cobb, S. State-of-the-art of virtual reality technologies for children on the autism spectrum. In Technology and Students with Special Educational Needs; Routledge: London, UK, 2016; pp. 77–88. [Google Scholar]
- Zhang, M.; Ding, H.; Naumceska, M.; Zhang, Y. Virtual reality technology as an educational and in-tervention tool for children with autism spectrum disorder: Current perspectives and future directions. Behav. Sci. 2022, 12, 138. [Google Scholar] [CrossRef]
- Cai, Y.; Chia, N.K.; Thalmann, D.; Kee, N.K.; Zheng, J.; Thalmann, N.M. Design and development of a virtual dolphinarium for children with autism. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 208–217. [Google Scholar] [CrossRef]
- Yuan, S.N.V.; Ip, H.H.S. Using virtual reality to train emotional and social skills in children with autism spectrum disorder. Lond. J. Prim. Care 2018, 10, 110–112. [Google Scholar] [CrossRef]
- Frolli, A.; Savarese, G.; Di Carmine, F.; Bosco, A.; Saviano, E.; Rega, A.; Carotenuto, M.; Ricci, M.C. Children on the autism spectrum and the use of virtual reality for supporting social skills. Children 2022, 9, 181. [Google Scholar] [CrossRef]
- Shahmoradi, L.; Rezayi, S. Cognitive rehabilitation in people with autism spectrum disorder: A systematic review of emerging virtual reality-based approaches. J. Neuroeng. Rehabil. 2022, 19, 91. [Google Scholar] [CrossRef]
- Bertacchini, F.; Demarco, F.; Scuro, C.; Pantano, P.; Bilotta, E. A social robot connected with chatGPT to improve cognitive functioning in ASD subjects. Front. Psychol. 2023, 14, 1232177. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, U. ChatGPT-Delivered Physical Activity Intervention for Children With Autism Spectrum Disorder: Pre-Post Feasibility Study. JMIR Hum. Factors 2025, 12, e71119. [Google Scholar] [CrossRef] [PubMed]
- Majebi, N.L.; Hamza, O. Bridging the autism diagnosis gap through digital inclusion in underserved communities. Int. J. Multidiscip. Res. Growth Eval. 2022, 3, 761–770. [Google Scholar] [CrossRef]
- Chelli, M.; Descamps, J.; Lavoué, V.; Trojani, C.; Azar, M.; Deckert, M.; Raynier, J.-L.; Clowez, G.; Boileau, P.; Ruetsch-Chelli, C. Hallucination rates and reference accuracy of ChatGPT and bard for systematic reviews: Comparative analysis. J. Med. Internet Res. 2024, 26, e53164. [Google Scholar] [CrossRef]
- Ramdoss, S.; MacHalicek, W.; Rispoli, M.; Mulloy, A.; Lang, R.; O’Reilly, M. Computer-based interventions to improve social and emotional skills in individuals with autism spectrum disorders: A systematic review. Dev. Neurorehabilit. 2012, 15, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Zhu, Z.; Guo, H.; Yang, H.; Zhang, J.; Zhang, K.; Zhang, X.; Lu, X.; Du, J.; Shi, H.; et al. Screen Time and Autism Spectrum Disorder: A comprehensive systematic review of risk, usage, and addiction. J. Autism Dev. Disord. 2024, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ophir, Y.; Rosenberg, H.; Tikochinski, R.; Dalyot, S.; Lipshits-Braziler, Y. Screen time and autism spectrum disorder: A systematic review and meta-analysis. JAMA Netw. Open 2023, 6, e2346775. [Google Scholar] [CrossRef] [PubMed]
- Marquenie, K.; Rodger, S.; Mangohig, K.; Cronin, A. Dinnertime and bedtime routines and rituals in families with a young child with an autism spectrum disorder. Aust. Occup. Ther. J. 2011, 58, 145–154. [Google Scholar] [CrossRef]
- van Schalkwyk, G.I.; Marin, C.E.; Ortiz, M.; Rolison, M.; Qayyum, Z.; McPartland, J.C.; Lebowitz, E.R.; Volkmar, F.R.; Silverman, W.K. Social Media Use, Friendship Quality, and the Moderating Role of Anxiety in Adolescents with Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 2805–2813. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S.; Gotham, K.; Bishop, S. Autism Diagnostic Observation Schedule, 2nd ed.; Western Psychological Services: Torrence, CA, USA, 2012. [Google Scholar]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef]
- Chandler, S.; Charman, T.; Baird, G.; Simonoff, E.; Loucas, T.O.M.; Meldrum, D.; Scott, M.; Pickles, A. Validation of the social communication questionnaire in a population cohort of children with autism spectrum disorders. J. Am. Acad. Child Adolesc. Psychiatry 2007, 46, 1324–1332. [Google Scholar] [CrossRef]
- Kumm, A.J.; Viljoen, M.; de Vries, P.J. The digital divide in technologies for autism: Feasibility considerations for low-and middle-income countries. J. Autism Dev. Disord. 2022, 52, 2300–2313. [Google Scholar] [CrossRef]
- Curtis, M.E.; Clingan, S.E.; Guo, H.; Zhu, Y.; Mooney, L.J.; Hser, Y.I. Disparities in digital access among American rural and urban households and implications for telemedicine-based services. J. Rural. Health 2022, 38, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.Y.; Wang, B.; Li, H.H.; Yue, X.J.; Jia, F.Y. Correlation between screen time and autistic symptoms as well as development quotients in children with autism spectrum disorder. Front. Psychiatry 2021, 12, 619994. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Yu, C.-L. How Technology Advances Research and Practice in Autism Spectrum Disorder: A Narrative Review on Early Detection, Subtype Stratification, and Intervention. Brain Sci. 2025, 15, 890. https://doi.org/10.3390/brainsci15080890
Shen Z, Yu C-L. How Technology Advances Research and Practice in Autism Spectrum Disorder: A Narrative Review on Early Detection, Subtype Stratification, and Intervention. Brain Sciences. 2025; 15(8):890. https://doi.org/10.3390/brainsci15080890
Chicago/Turabian StyleShen, Ziqian, and Chi-Lin Yu. 2025. "How Technology Advances Research and Practice in Autism Spectrum Disorder: A Narrative Review on Early Detection, Subtype Stratification, and Intervention" Brain Sciences 15, no. 8: 890. https://doi.org/10.3390/brainsci15080890
APA StyleShen, Z., & Yu, C.-L. (2025). How Technology Advances Research and Practice in Autism Spectrum Disorder: A Narrative Review on Early Detection, Subtype Stratification, and Intervention. Brain Sciences, 15(8), 890. https://doi.org/10.3390/brainsci15080890