Dose-Dependent Dual Effect of the Endozepine ODN on Neuronal Spiking Activity
Abstract
1. Introduction
2. Material and Methods
2.1. Study Approval
2.2. Animals
2.3. In Vivo Electrophysiology
2.4. Extracellular Unit (EU) Recording
2.5. Peptide Synthesis
2.6. Astrocytes Culture
2.7. [3H]GABA Uptake Assay
2.8. GABA Release Assay
2.9. Summary of Drugs and Chemicals
2.10. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonon, M.-C.; Vaudry, H.; Chuquet, J.; Guillebaud, F.; Fan, J.; Masmoudi-Kouki, O.; Vaudry, D.; Lanfray, D.; Morin, F.; Prevot, V.; et al. Endozepines and Their Receptors: Structure, Functions and Pathophysiological Significance. Pharmacol. Ther. 2020, 208, 107386. [Google Scholar] [CrossRef]
- Compère, V.; Ouellet, J.; Luu-The, V.; Dureuil, B.; Tonon, M.C.; Vaudry, H.; Labrie, F.; Pelletier, G. Role of Androgens and Glucocorticoids in the Regulation of Diazepam-Binding Inhibitor mRNA Levels in Male Mouse Hypothalamus. Brain Res. 2006, 1119, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Tonon, M.C.; Désy, L.; Nicolas, P.; Vaudry, H.; Pelletier, G. Immunocytochemical Localization of the Endogenous Benzodiazepine Ligand Octadecaneuropeptide (ODN) in the Rat Brain. Neuropeptides 1990, 15, 17–24. [Google Scholar] [CrossRef]
- Vidnyánszky, Z.; Görcs, T.J.; Hámori, J. Diazepam Binding Inhibitor Fragment 33–50 (Octadecaneuropeptide) Immunoreactivity in the Cerebellar Cortex Is Restricted to Glial Cells. Glia 1994, 10, 132–141. [Google Scholar] [CrossRef]
- New, L.E.; Yanagawa, Y.; McConkey, G.A.; Deuchars, J.; Deuchars, S.A. GABAergic Regulation of Cell Proliferation within the Adult Mouse Spinal Cord. Neuropharmacology 2023, 223, 109326. [Google Scholar] [CrossRef]
- Dumitru, I.; Neitz, A.; Alfonso, J.; Monyer, H. Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis. Neuron 2017, 94, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Gallo, V.; Wise, B.C.; Vaccarino, F.; Guidotti, A. Gamma-Aminobutyric Acid- and Benzodiazepine-Induced Modulation of [35S]-t-Butylbicyclophosphorothionate Binding to Cerebellar Granule Cells. J. Neurosci. 1985, 5, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Kardos, J.; Maderspach, K. GABAA Receptor-Controlled 36Cl− Influx in Cultured Rat Cerebellar Granule Cells. Life Sci. 1987, 41, 265–272. [Google Scholar] [CrossRef]
- Guidotti, A.; Alho, H.; Berkovich, A.; Cox, C.; Ferrarese, C.; Slobodyansky, E.; Santi, M.R.; Wambebe, C. DBI Processing: Allosteric Modulation at Different GABA Benzodiazepine Receptor Subtypes. In Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications; Costa, E., Barnard, E., Eds.; Raven Press: New York, NY, USA, 1988; pp. 109–123. [Google Scholar]
- Barmack, N.H.; Bilderback, T.R.; Liu, H.; Qian, Z.; Yakhnitsa, V. Activity-Dependent Expression of Acyl-Coenzyme A-Binding Protein in Retinal Müller Glial Cells Evoked by Optokinetic Stimulation. J. Neurosci. 2004, 24, 1023–1033. [Google Scholar] [CrossRef]
- Bormann, J. Electrophysiological Characterization of Diazepam Binding Inhibitor (DBI) on GABAA Receptors. Neuropharmacology 1991, 30, 1387–1389. [Google Scholar] [CrossRef]
- Möhler, H. Endogenous Benzodiazepine Site Peptide Ligands Operating Bidirectionally in Vivo in Neurogenesis and Thalamic Oscillations. Neurochem. Res. 2014, 39, 1032–1036. [Google Scholar] [CrossRef]
- Qian, Z.; Bilderback, T.R.; Barmack, N.H. Acyl Coenzyme A-Binding Protein (ACBP) Is Phosphorylated and Secreted by Retinal Müller Astrocytes Following Protein Kinase C Activation. J. Neurochem. 2008, 105, 1287–1299. [Google Scholar] [CrossRef]
- Gandolfo, P.; Patte, C.; Leprince, J.; Thoumas, J.L.; Vaudry, H.; Tonon, M.C. The Stimulatory Effect of the Octadecaneuropeptide (ODN) on Cytosolic Ca2+ in Rat Astrocytes Is Not Mediated through Classical Benzodiazepine Receptors. Eur. J. Pharmacol. 1997, 322, 275–281. [Google Scholar] [CrossRef]
- Leprince, J.; Oulyadi, H.; Vaudry, D.; Masmoudi, O.; Gandolfo, P.; Patte, C.; Costentin, J.; Fauchère, J.L.; Davoust, D.; Vaudry, H.; et al. Synthesis, Conformational Analysis and Biological Activity of Cyclic Analogs of the Octadecaneuropeptide ODN: Design of a Potent Endozepine Antagonist. Eur. J. Biochem. 2001, 268, 6045–6057. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, Y.; Masmoudi-Kouki, O.; Kaddour, H.; Belhadj, F.; Gandolfo, P.; Vaudry, D.; Mokni, M.; Leprince, J.; Hachem, R.; Vaudry, H.; et al. Protective Effect of the Octadecaneuropeptide on Hydrogen Peroxide-Induced Oxidative Stressand Cell Death in Cultured Rat Astrocytes. J. Neurochem. 2011, 118, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, Y.; Kaddour, H.; Vaudry, D.; Bahdoudi, S.; Douiri, S.; Leprince, J.; Castel, H.; Vaudry, H.; Tonon, M.-C.; Amri, M.; et al. The Octadecaneuropeptide ODN Protects Astrocytes against Hydrogen Peroxide-Induced Apoptosis via a PKA/MAPK-Dependent Mechanism. PLoS ONE 2012, 7, e42498. [Google Scholar] [CrossRef]
- Bouyakdan, K.; Martin, H.; Liénard, F.; Budry, L.; Taib, B.; Rodaros, D.; Chrétien, C.; Biron, E.; Husson, Z.; Cota, D.; et al. The Gliotransmitter ACBP Controls Feeding and Energy Homeostasis via the Melanocortin System. J. Clin. Investig. 2019, 129, 2417–2430. [Google Scholar] [CrossRef] [PubMed]
- Guidotti, A.; Forchetti, C.M.; Corda, M.G.; Konkel, D.; Bennett, C.D.; Costa, E. Isolation, Characterization, and Purification to Homogeneity of an Endogenous Polypeptide with Agonistic Action on Benzodiazepine Receptors. Proc. Natl. Acad. Sci. USA 1983, 80, 3531–3535. [Google Scholar] [CrossRef]
- Ferrero, P.; Santi, M.R.; Conti-Tronconi, B.; Costa, E.; Guidotti, A. Study of an Octadecaneuropeptide Derived from Diazepam Binding Inhibitor (DBI): Biological Activity and Presence in Rat Brain. Proc. Natl. Acad. Sci. USA 1986, 83, 827–831. [Google Scholar] [CrossRef]
- Alfonso, J.; Le Magueresse, C.; Zuccotti, A.; Khodosevich, K.; Monyer, H. Diazepam Binding Inhibitor Promotes Progenitor Proliferation in the Postnatal SVZ by Reducing GABA Signaling. Cell Stem Cell 2012, 10, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Everlien, I.; Yen, T.-Y.; Liu, Y.-C.; Di Marco, B.; Vázquez-Marín, J.; Centanin, L.; Alfonso, J.; Monyer, H. Diazepam Binding Inhibitor Governs Neurogenesis of Excitatory and Inhibitory Neurons during Embryonic Development via GABA Signaling. Neuron 2022, 110, 3139–3153. [Google Scholar] [CrossRef] [PubMed]
- Christian, C.A.; Herbert, A.G.; Holt, R.L.; Peng, K.; Sherwood, K.D.; Pangratz-Fuehrer, S.; Rudolph, U.; Huguenard, J.R. Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam Binding Inhibitor. Neuron 2013, 78, 1063–1074. [Google Scholar] [CrossRef]
- Courtney, C.D.; Christian, C.A. Subregion-Specific Impacts of Genetic Loss of Diazepam Binding Inhibitor on Synaptic Inhibition in the Murine Hippocampus. Neuroscience 2018, 388, 128–138. [Google Scholar] [CrossRef]
- Siiskonen, H.; Oikari, S.; Korhonen, V.P.; Pitkänen, A.; Voikar, V.; Kettunen, M.; Hakumäki, J.; Wahlfors, T.; Pussinen, R.; Penttonen, M.; et al. Diazepam Binding Inhibitor Overexpression in Mice Causes Hydrocephalus, Decreases Plasticity in Excitatory Synapses and Impairs Hippocampus-Dependent Learning. Mol. Cell. Neurosci. 2007, 34, 199–208. [Google Scholar] [CrossRef]
- Rossant, C.; Kadir, S.N.; Goodman, D.F.M.; Schulman, J.; Hunter, M.L.D.; Saleem, A.B.; Grosmark, A.; Belluscio, M.; Denfield, G.H.; Ecker, A.S.; et al. Spike Sorting for Large, Dense Electrode Arrays. Nat. Neurosci. 2016, 19, 634–641. [Google Scholar] [CrossRef]
- Masmoudi, O.; Gandolfo, P.; Tokay, T.; Leprince, J.; Ravni, A.; Vaudry, H.; Tonon, M.-C. Somatostatin Down-Regulates the Expression and Release of Endozepines from Cultured Rat Astrocytes via Distinct Receptor Subtypes. J. Neurochem. 2005, 94, 561–571. [Google Scholar] [CrossRef]
- Gach, K.; Belkacemi, O.; Lefranc, B.; Perlikowski, P.; Masson, J.; Walet-Balieu, M.-L.; Do-Rego, J.-C.; Galas, L.; Schapman, D.; Lamtahri, R.; et al. Detection, Characterization and Biological Activities of [bisphospho-thr3,9]ODN, an Endogenous Molecular Form of ODN Released by Astrocytes. Neuroscience 2015, 290, 472–484. [Google Scholar] [CrossRef]
- Fattorini, G.; Melone, M.; Sánchez-Gómez, M.V.; Arellano, R.O.; Bassi, S.; Matute, C.; Conti, F. GAT-1 Mediated GABA Uptake in Rat Oligodendrocytes. Glia 2017, 65, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Lamacz, M.; Tonon, M.C.; Smih-Rouet, F.; Patte, C.; Gasque, P.; Fontaine, M.; Vaudry, H. The Endogenous Benzodiazepine Receptor Ligand ODN Increases Cytosolic Calcium in Cultured Rat Astrocytes. Mol. Brain Res. 1996, 37, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Lamtahri, R.; Hazime, M.; Gowing, E.K.; Nagaraja, R.Y.; Maucotel, J.; Alasoadura, M.; Quilichini, P.P.; Lehongre, K.; Lefranc, B.; Gach-Janczak, K.; et al. The Gliopeptide ODN, a Ligand for the Benzodiazepine Site of GABAA Receptors, Boosts Functional Recovery after Stroke. J. Neurosci. 2021, 41, 7148–7159. [Google Scholar] [CrossRef] [PubMed]
- Lia, A.; Zonta, M.; Requie, L.M.; Carmignoto, G. Dynamic Interactions between GABAergic and Astrocytic Networks. Neurosci. Lett. 2019, 689, 14–20. [Google Scholar] [CrossRef]
- Bormann, J.; Ferrero, P.; Guidotti, A.; Costa, E. Neuropeptide Modulation of GABA Receptor Cl− Channels. Regul. Pept. Suppl. 1985, 4, 33–38. [Google Scholar] [CrossRef]
- Kaddour, H.; Hamdi, Y.; Amri, F.; Bahdoudi, S.; Bouannee, I.; Leprince, J.; Zekri, S.; Vaudry, H.; Tonon, M.-C.; Vaudry, D.; et al. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide against 6-OHDA Toxicity in Cultured Rat Astrocytes. J. Mol. Neurosci. 2019, 69, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hrabetova, S.; Cognet, L.; Rusakov, D.A.; Nägerl, U.V. Unveiling the Extracellular Space of the Brain: From Super-Resolved Microstructure to In Vivo Function. J. Neurosci. 2018, 38, 9355–9363. [Google Scholar] [CrossRef]
- Overstreet, L.S.; Westbrook, G.L. Synapse Density Regulates Independence at Unitary Inhibitory Synapses. J. Neurosci. 2003, 23, 2618–2626. [Google Scholar] [CrossRef] [PubMed]
- Guillebaud, F.; Girardet, C.; Abysique, A.; Gaigé, S.; Barbouche, R.; Verneuil, J.; Jean, A.; Leprince, J.; Tonon, M.-C.; Dallaporta, M.; et al. Glial Endozepines Inhibit Feeding-Related Autonomic Functions by Acting at the Brainstem Level. Front. Neurosci. 2017, 11, 308. [Google Scholar] [CrossRef]
- Woo, J.; Min, J.O.; Kang, D.-S.; Kim, Y.S.; Jung, G.H.; Park, H.J.; Kim, S.; An, H.; Kwon, J.; Kim, J.; et al. Control of Motor Coordination by Astrocytic Tonic GABA Release through Modulation of Excitation/Inhibition Balance in Cerebellum. Proc. Natl. Acad. Sci. USA 2018, 115, 5004–5009. [Google Scholar] [CrossRef]
- Kilb, W.; Kirischuk, S. GABA Release from Astrocytes in Health and Disease. Int. J. Mol. Sci. 2022, 23, 15859. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Kwak, H.; Cheong, E.; Lee, C.J. GABA Tone Regulation and Its Cognitive Functions in the Brain. Nat. Rev. Neurosci. 2023, 24, 523–539. [Google Scholar] [CrossRef]
- Farzampour, Z.; Reimer, R.J.; Huguenard, J. Endozepines. Adv. Pharmacol. 2015, 72, 147–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazime, M.; Gasselin, M.; Alasoadura, M.; Leclerc, J.; Lefranc, B.; Basille-Dugay, M.; Duparc, C.; Vaudry, D.; Leprince, J.; Chuquet, J. Dose-Dependent Dual Effect of the Endozepine ODN on Neuronal Spiking Activity. Brain Sci. 2025, 15, 885. https://doi.org/10.3390/brainsci15080885
Hazime M, Gasselin M, Alasoadura M, Leclerc J, Lefranc B, Basille-Dugay M, Duparc C, Vaudry D, Leprince J, Chuquet J. Dose-Dependent Dual Effect of the Endozepine ODN on Neuronal Spiking Activity. Brain Sciences. 2025; 15(8):885. https://doi.org/10.3390/brainsci15080885
Chicago/Turabian StyleHazime, Mahmoud, Marion Gasselin, Michael Alasoadura, Juliette Leclerc, Benjamin Lefranc, Magali Basille-Dugay, Celine Duparc, David Vaudry, Jérôme Leprince, and Julien Chuquet. 2025. "Dose-Dependent Dual Effect of the Endozepine ODN on Neuronal Spiking Activity" Brain Sciences 15, no. 8: 885. https://doi.org/10.3390/brainsci15080885
APA StyleHazime, M., Gasselin, M., Alasoadura, M., Leclerc, J., Lefranc, B., Basille-Dugay, M., Duparc, C., Vaudry, D., Leprince, J., & Chuquet, J. (2025). Dose-Dependent Dual Effect of the Endozepine ODN on Neuronal Spiking Activity. Brain Sciences, 15(8), 885. https://doi.org/10.3390/brainsci15080885