The Association Between Indoor Air Pollutants and Brain Structure Indicators Using eTIV-Adjusted and Unadjusted Models: A Study in Seoul and Incheon
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurement of Concentrations of Indoor Air Pollutants
2.3. Selection of Brain MRI Indicators
2.4. Covariates
2.5. Multiple Regression Model
- Model 1 assessed the association between each brain MRI feature and a single continuous environmental variable, adjusting for personal characteristics.
- Model 2 extended Model 1 by additionally adjusting for total intracranial volume.
- Model 3 was identical to Model 1, except that the continuous environmental variable was replaced with a dichotomous variable derived using its median as a cut-off.
- Model 4 extended Model 3 by also adjusting for total intracranial volume.
2.6. Hierarchical Clustering
3. Results
3.1. Characteristics of Study Participants
3.2. Indoor Air Pollutants and MRI Results
3.3. Multiple Regression Analysis Results
3.4. Hierarchical Clustering Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
BBB | Blood–Brain Barrier |
CO2 | Carbon Dioxide |
EPINEF | Environmental Pollution-Induced Neurological Effects |
IAQ | Indoor Air Quality |
IoT | Internet of Things |
MRI | Magnetic Resonance Imaging |
PM10 | Particulate Matter With Aerodynamic Diameter ≤ 10 µm |
PM2.5 | Fine Particulate Matter With Aerodynamic Diameter ≤ 2.5 µm |
VOCs | Volatile Organic Compounds |
WHO | World Health Organization |
References
- IQAir. World Air Quality Report. 2024. Available online: https://www.iqair.com/world-air-quality-report (accessed on 16 January 2025).
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 20 February 2025).
- World Health Organization (WHO). WHO Guidelines for Indoor Air Quality: Selected Pollutants. 2021. Available online: https://www.who.int/publications/i/item/9789289002134 (accessed on 17 February 2025).
- Yang, J.; Nam, I.; Yun, H.; Kim, J.; Oh, H.J.; Lee, D.; Jeon, S.M.; Yoo, S.H.; Sohn, J.R. Characteristics of indoor air quality at urban elementary schools in Seoul, Korea: Assessment of effect of surrounding environments. Atmos. Pollut. Res. 2015, 6, 1113–1122. [Google Scholar] [CrossRef]
- Putri, A.N.A.R.; Salam, R.A.; Rachmawati, L.M.; Ramadhan, A.; Adiwidya, A.S.; Jalasena, A.; Chandra, I. Spatial modelling of indoor air pollution distribution at home. J. Phys. Conf. Ser. 2022, 2243, 012072. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Indoor Air Quality. 2021. Available online: https://www.epa.gov/report-environment/indoor-air-quality (accessed on 8 July 2024).
- Yasmin, A.; Ahmed, I.; Haider, M.; Md Hossain, K.; Motalib, M.A.; Md Hossain, S. Characterizing indoor air quality and identifying factors influencing air quality at home microenvironment in Dhaka city. Indoor Environ. 2024, 1, 100056. [Google Scholar] [CrossRef]
- Rosario Filho, N.A.; Urrutia-Pereira, M.; D’Amato, G.; Cecchi, L.; Ansotegui, I.J.; Galán, C.; Pomés, A.; Murrieta-Aguttes, M.; Caraballo, L.; Rouadi, P.; et al. Air pollution and indoor settings. World Allergy Organ. J. 2021, 14, 100499. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. The Inside Story: A Guide to Indoor Air Quality. 1988. Available online: https://www.epa.gov/indoor-air-quality-iaq/inside-story-guide-indoor-air-quality (accessed on 6 February 2025).
- Calderón-Garcidueñas, L.; Ayala, A. Air pollution, ultrafine particles, and your brain: Are combustion nanoparticle emissions and engineered nanoparticles causing preventable fatal neurodegenerative diseases and common neuropsychiatric outcomes? Environ. Sci. Technol. 2022, 56, 6847–6856. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Jang, H.; Park, H.; Noh, Y.; Sohn, J.; Koh, S.B.; Lee, S.K.; Kim, S.Y.; Kim, C. Alzheimer’s disease-like cortical atrophy mediates the effect of air pollution on global cognitive function. Environ. Int. 2023, 171, 107703. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C.; Liu, Y.; Wang, J.; Wang, Y.; Yan, B. Neurotoxicity of the air-borne particles: From molecular events to human diseases. J. Hazard. Mater. 2023, 457, 131827. [Google Scholar] [CrossRef]
- Jung, C.R.; Lin, Y.T.; Hwang, B.F. Ozone, particulate matter, and newly-diagnosed Alzheimer’s disease: A population-based cohort study in Taiwan. J. Alzheimers Dis. 2015, 44, 573–584. [Google Scholar] [CrossRef]
- Wilker, E.H.; Preis, S.R.; Beiser, A.S.; Wolf, P.A.; Au, R.; Kloog, I.; Li, W.; Schwartz, J.; Koutrakis, P.; DeCarli, C.; et al. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke 2015, 46, 1161–1166. [Google Scholar] [CrossRef]
- Li, W.; Lin, G.; Xiao, Z.; Zhang, Y.; Li, B.; Zhou, Y.; Ma, Y.; Chai, E. A review of respirable fine particulate matter (PM2.5)-induced brain damage. Front. Mol. Neurosci. 2022, 15, 967174. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, J.; Yang, M.; Wang, Y.; Liu, Y.; Liu, J.; Kalvakolanu, D.V.; Cong, X.; Zhang, J.; Gui, B.; et al. Utilization of nanotechnology to surmount the blood–brain barrier in disorders of the central nervous system. Mater. Today Bio. 2025, 31, 101457. [Google Scholar] [CrossRef] [PubMed]
- Health Chosun Editorial Team. Why Do Older Adults Stay Indoors? 2012. Available online: https://m.health.chosun.com/svc/news_view.html?contid=2012092801498 (accessed on 13 January 2025). (In Korean).
- Julie, C. Elevated Indoor Carbon Dioxide Impairs Decision-Making Performance; Berkeley Laboratory: Berkeley, CA, USA, 2012. Available online: https://newscenter.lbl.gov/2012/10/17/elevated-indoor-carbon-dioxide-impairs-decision-making-performance (accessed on 17 October 2012).
- Li, A.; Tan, T.; Tang, Y.; Yang, J.; Cui, D.; Wang, R.; Wang, A.; Fei, X.; Di, Y.; Wang, X.; et al. Endogenous formaldehyde is a memory-related molecule in mice and humans. Commun. Biol. 2019, 2, 449. [Google Scholar] [CrossRef]
- Sarsilmaz, M.; Kaplan, S.; Songur, A.; Coş̧akoğlu, S.; Aslan, H.; Tunc, A.T.; Ozen, O.A.; Turgut, M.; Baş, O. Effects of postnatal formaldehyde exposure on pyramidal cell number, volume of cell layer in hippocampus and hemisphere in the rat: A stereological study. Brain Res. 2007, 1145, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Pang, Y.; Zhang, Y.; Hu, W.; Yang, P.; Liu, Q.; Ning, J.; Du, Z.; Jin, X.; Tang, J.; et al. Indoor VOCs exposure induced Parkinson-like behaviors through autophagy dysfunction and NLRP3 inflammasome-mediated neuroinflammation. J. Hazard. Mater. 2022, 440, 129818. [Google Scholar] [CrossRef]
- Khan, A.; Kanwal, H.; Bibi, S.; Mushtaq, S.; Khan, A.; Khan, Y.H.; Mallhi, H. Volatile organic compounds and neurological disorders: From exposure to preventive interventions. In Environmental Contaminants and Neurological Disorders; Akash, M.S.H., Rehman, K., Eds.; Springer: Cham, Switzerland, 2021; pp. 201–230. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, P.Y.; Pan, Y.Y.; Li, Y.X.; Waili, N.; Li, Y. Association between housing environment and depressive symptoms among older people: A multidimensional assessment. BMC Geriatr. 2021, 21, 259. [Google Scholar] [CrossRef]
- Obodunrin, O.P. Location-based approach to determining the effective dose from radon concentrations in residential environments. J. Appl. Sci. Environ. Manag. 2022, 26, 537–541. [Google Scholar] [CrossRef]
- National Institute of Environmental Research. Korean Exposure Factor Handbook. 2019. Available online: https://ecolibrary.me.go.kr/nier/#/search/detail/5686028 (accessed on 5 February 2025).
- Wang, J.; Hill-Jarrett, T.; Buto, P.; Pederson, A.; Sims, K.D.; Zimmerman, S.C.; DeVost, M.A.; Ferguson, E.; Lacar, B.; Yang, Y.; et al. Comparison of approaches to control for intracranial volume in research on the association of brain volumes with cognitive outcomes. Hum. Brain Mapp. 2024, 45, e26633. [Google Scholar] [CrossRef]
- Hu, M.; Lou, Y.; Zhu, C.; Chen, J.; Liu, S.; Liang, Y.; Liu, S.; Tang, Y. Evaluating the Impact of Intracranial Volume Correction Approaches on the Quantification of Intracranial Structures in MRI: A Systematic Analysis. J. Magn. Reson. Imaging 2024, 59, 2164–2177. [Google Scholar] [CrossRef]
- Kijonka, M.; Borys, D.; Psiuk-Maksymowicz, K.; Gorczewski, K.; Wojcieszek, P.; Kossowski, B.; Marchewka, A.; Swierniak, A.; Sokol, M.; Bobek-Billewicz, B. Whole Brain and Cranial Size Adjustments in Volumetric Brain Analyses of Sex- and Age-Related Trends. Front. Neurosci. 2020, 14, 278. [Google Scholar] [CrossRef]
- Canning, T.; la Torre, J.A.-D.; Fisher, H.L.; Gulliver, J.; Hansell, A.L.; Hardy, R.; Hatch, S.L.; Mudway, I.S.; Ronaldson, A.; Cartlidge, M.; et al. Associations between life course exposure to ambient air pollution with cognition and later-life brain structure: A population-based study of the 1946 British Birth Cohort. Am. J. Med Sci. 2025, 100724. [Google Scholar] [CrossRef]
- Thompson, R.; Tong, X.; Shen, X.; Ran, J.; Sun, S.; Yao, X.I.; Shen, C. Longitudinal associations between air pollution and incident dementia as mediated by MRI-measured brain volumes in the UK Biobank. Environ. Int. 2025, 195, 109219. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Head, D.; Parker, J.; Fotenos, A.F.; Marcus, D.; Morris, J.C.; Snyder, A.Z. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. NeuroImage 2009, 23, 724–738. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Sohn, J.; Noh, J.; Jang, H.; Kim, W.; Cho, S.K.; Seo, H.; Seo, G.; Lee, S.K.; Noh, Y.; et al. Association between exposure to polycyclic aromatic hydrocarbons and brain cortical thinning: The Environmental Pollution-Induced Neurological EFfects (EPINEF) study. Sci. Total Environ. 2020, 737, 140097. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Noh, Y.; Kim, S.Y.; Sohn, J.; Noh, J.; Kim, W.; Cho, S.K.; Seo, H.; Seo, G.; Lee, S.K.; et al. Long-term ambient air pollution exposures and brain imaging markers in Korean adults: The Environmental Pollution-Induced Neurological Effects (EPINEF) study. Environ. Health Perspect. 2020, 128, 117006. [Google Scholar] [CrossRef]
- Lee, T.J.; Kim, D.Y.; Lee, S.M.; Kim, S.C.; Jo, Y.M. Analysis of Indoor Air Quality Characteristics of Multi-use Facilities in Gyeonggi-do Using IoT-based Monitoring Data. J. Korean Soc. Atmos. Environ. 2021, 37, 777–789. (In Korean) [Google Scholar] [CrossRef]
- Kim, H.H. Exposure Characteristics of Indoor Air Pollutants in Some Local Public Buses. J. Environ. Health Sci. 2022, 48, 44–53. [Google Scholar] [CrossRef]
- Ministry of Environment, Republic of Korea. Official Test Method for Indoor Air Quality; Notification No. 2023-28; Ministry of Environment: Sejong, Republic of Korea, 2023. (In Korean) [Google Scholar]
- National Institute of Environmental Research. Performance Certification of Simplified Measurement Devices; Notification No. 2023-28; Ministry of Environment: Sejong, Republic of Korea, 2023. (In Korean) [Google Scholar]
- Tang, R.; Sahu, R.; Su, Y.; Milsom, A.; Mishra, A.; Berkemeier, T.; Pfrang, C. Impact of Cooking Methods on Indoor Air Quality: A Comparative Study of Particulate Matter (PM) and Volatile Organic Compound (VOC) Emissions. Indoor Air 2024, 2024, 6355613. [Google Scholar] [CrossRef]
- Tormey, D.; Huntley, S. The Effects of Cooking on Residential Indoor Air Quality: A Critical Review of the Literature with an Emphasis on the Use of Natural Gas Appliances. In Catalyst Environmental Solutions Report; Catalyst Environmental Solutions: Santa Monica, CA, USA, 2023. [Google Scholar]
- Alhajeri, N.S.; Alrashidi, A.M.; Yassin, M.F.; Al-Awadi, L. Optimizing Indoor Air Quality: Investigating Particulate Matter Exposure in Household Kitchens and Source Identification. Environ. Qual. Manag. 2024, 34, 22198. [Google Scholar] [CrossRef]
- Crouse, D.L.; Peters, P.A.; van Donkelaar, A.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A.; et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A Canadian national-level cohort study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef]
- Ha, K.H.; Suh, M.; Kang, D.R.; Kim, H.C.; Shin, D.C.; Kim, C. Ambient particulate matter and the risk of deaths from cardiovascular and cerebrovascular disease. J. Korean Soc. Hypertens. 2011, 17, 74–83. [Google Scholar] [CrossRef]
- Liao, N.S.; Sidney, S.; Deosaransingh, K.; van den Eeden, S.K.; Schwartz, J.; Alexeeff, S.E. Particulate air pollution and risk of cardiovascular events among adults with a history of stroke or acute myocardial infarction. J. Am. Heart Assoc. 2021, 10, e019758. [Google Scholar] [CrossRef]
- Weichenthal, S.; Villeneuve, P.J.; Burnett, R.T.; Van Donkelaar, A.; Martin, R.V.; Jones, R.R.; DellaValle, C.T.; Sandler, D.P.; Ward, M.H.; Hoppin, J.A. Long-term exposure to fine particulate matter: Association with nonaccidental and cardiovascular mortality in the agricultural health study cohort. Environ. Health Perspect. 2014, 122, 609–615. [Google Scholar] [CrossRef]
- Ruan, Y. Exploring multiple regression models: Key concepts and applications. Sci. Technol. Eng. Chem. Environ. Prot. 2024, 1, 1–4. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 27 August 2024).
- Ministry Ministry of Environment, Republic of Korea. Indoor Air Quality Control Act (Act No. 19663), Enacted 16 August 2023; Effective 17 February 2024. Statutes of the Republic of Korea. Available online: https://elaw.klri.re.kr (accessed on 31 July 2025).
- Mendell, M.J.; Chen, W.; Ranasinghe, D.R.; Castorina, R.; Kumagai, K. Carbon dioxide guidelines for indoor air quality: A review. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Balboni, E.; Filippini, T.; Crous-Bou, M.; Guxens, M.; Erickson, L.D.; Vinceti, M. The association between air pollutants and hippocampal volume from magnetic resonance imaging: A systematic review and meta-analysis. Environ. Res. 2022, 204, 111976. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Neurological Disorders and Stroke. Dementias. 2024. Available online: https://www.ninds.nih.gov/health-information/disorders/dementias (accessed on 27 August 2024).
- Schuff, N.; Woerner, N.; Boreta, L.; Kornfield, T.; Shaw, L.M.; Trojanowski, J.Q.; Thompson, P.M.; Jack, C.R., Jr.; Weiner, M.W. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009, 132, 1067–1077. [Google Scholar] [CrossRef]
- Rostrup, E.; Law, I.; Blinkenberg, M.; Larsson, H.; Born, A.; Holm, S.; Paulson, O. Regional Differences in the CBF and BOLD Responses to Hypercapnia: A Combined PET and fMRI Study. NeuroImage 2000, 11, 87–97. [Google Scholar] [CrossRef]
- Sicard, K.M.; Duong, T.Q. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage 2005, 25, 850–858. [Google Scholar] [CrossRef]
- Xu, F.; Uh, J.; Brier, M.R.; Hart, J., Jr.; Yezhuvath, U.S.; Gu, H.; Yang, Y.; Lu, H. The influence of carbon dioxide on brain activity and metabolism in conscious humans. J. Cereb. Blood Flow Metab. 2011, 31, 58–67. [Google Scholar] [CrossRef]
- Ziemann, A.E.; Allen, J.E.; Dahdaleh, N.S.; Drebot, I.I.; Coryell, M.W.; Wunsch, A.M.; Lynch, C.M.; Faraci, F.M.; Howard, M.A.; Welsh, M.J.; et al. The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior. Cell 2009, 139, 1012–1021. [Google Scholar] [CrossRef]
- Kiray, M.; Sisman, A.; Camsari, U.; Evren, M.; Dayi, A.; Baykara, B.; Aksu, I.; Ates, M.; Uysal, N. Effects of carbon dioxide exposure on early brain development in rats. Biotech. Histochem. 2013, 89, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Cao, X.; Zhang, J.; Lai, D.; Pang, L. Short-term exposure to indoor carbon dioxide and cognitive task performance: A systematic review and meta-analysis. Build. Environ. 2023, 237. [Google Scholar] [CrossRef]
- Ives, J. Atmospheric CO2 Levels Can Cause Cognitive Impairment. News-Medical. 2020. Available online: https://www.news-medical.net/news/20200421/Atmospheric-CO2-levels-can-cause-cognitive-impairment.aspx (accessed on 21 April 2020).
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environments. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.; Ridgway, G.R.; Bartlett, J.; Henley, S.M.; Lehmann, M.; Hobbs, N.; Clarkson, M.J.; MacManus, D.G.; Ourselin, S.; Fox, N.C. Head size, age and gender adjustment in MRI studies: A necessary nuisance? NeuroImage 2010, 53, 1244–1255. [Google Scholar] [CrossRef]
- Im, K.; Lee, J.M.; Lyttelton, O.; Kim, S.H.; Evans, A.C.; Kim, S.I. Brain size and cortical structure in the adult human brain. Cereb. Cortex. 2008, 18, 2181–2191. [Google Scholar] [CrossRef]
- Park, Y.; Kim, S. The effects of age, gender, and head size on the cortical thickness of brain. Korean J. Biol. Psychiatry 2015, 22, 118–127. [Google Scholar]
- Tae, W.S.; Lee, E.K.; Joo, E.Y.; Seo, D.W.; Hong, S.B. Volume changes of frontal lobe and hippocampus in juvenile myoclonic epilepsy. J. Korean Neurol. Assoc. 2003, 21, 54–61. [Google Scholar]
- Im, S.; Lee, J.; Kim, S.; Shin, C.-J.; Son, J.-W.; Ju, G.; Lee, S.-I. Surface-Based Parameters of Brain Imaging in Male Patients with Alcohol Use Disorder. Psychiatry Investig. 2016, 13, 511–517. [Google Scholar] [CrossRef]
- Joo, E.Y.; Lee, E.K.; Tae, W.S.; Hong, S.B. Hippocampal Volumetry in Normal Volunteers. Ewha Med J. 2007, 30. [Google Scholar] [CrossRef]
- Hong, S.-J.; Song, J.-A.; Jung, S.-J.; Jung, Y.-J.; Kim, E.-Y.; Noh, H.-J.; Joo, Y.-S. A comparison and application of the clustering methods. Ann. Stat. Res. 2009, 5, 1–17. [Google Scholar]
- Gellhorn, E. On the physiological action of carbon dioxide on cortex and hypothalamus. Electroencephalogr. Clin. Neurophysiol. 1953, 5, 401–413. [Google Scholar] [CrossRef]
- Shi, L.; Steenland, K.; Li, H.; Liu, P.; Zhang, Y.; Lyles, R.H.; Requia, W.J.; Ilango, S.D.; Chang, H.H.; Wingo, T.; et al. A national cohort study (2000–2018) of long-term air pollution exposure and incident dementia in older adults in the United States. Nat. Commun. 2021, 12, 6754. [Google Scholar] [CrossRef]
- Kawada, T. Air pollution and the risk of stroke by meta-analysis. Int. J. Cardiol. 2014, 176, 1247–1248. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-H.; Baek, S.-H.; Park, S.-Y.; Lee, C.-M.; Lee, J.-I. Regional differences in PM2.5 chemical composition and inhalation risk assessment: A case study of Seoul, Incheon, and Wonju. Toxics 2025, 13, 240. [Google Scholar] [CrossRef]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2024 Report; European Environment Agency: Copenhagen, Denmark, 2024; Available online: https://www.eea.europa.eu (accessed on 31 July 2025).
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016, 139 (Suppl. S2), 136–153. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.; Oyster, E.; Luo, Y.; Wang, H. The Effects of Air Pollution on Neurological Diseases: A Narrative Review on Causes and Mechanisms. Toxics 2025, 13, 207. [Google Scholar] [CrossRef]
- Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef]
- Hahad, O.; Lelieveld, J.; Birklein, F.; Lieb, K.; Daiber, A.; Münzel, T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. Int. J. Mol. Sci. 2020, 21, 4306. [Google Scholar] [CrossRef]
- Chung, T.D.; Linville, R.M.; Guo, Z.; Ye, R.; Jha, R.; Grifno, G.N.; Searson, P.C. Effects of acute and chronic oxidative stress on the blood–brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS 2022, 19, 1–17. [Google Scholar] [CrossRef]
- Han, H.-E.; Park, J.-H.; Park, J.-R.; Lee, D.-P. A Study on the Status and Satisfaction of the Elderly’s Participation in Leisure Activities. J. Green Ind. Res. 2021, 27, 47–55. (In Korean) [Google Scholar]
- National Institute of Environmental Research. A Pilot Study on the Time-Activity Pattern for Exposure Pathway of Hazardous Pollutants (II). 2014. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201500013892 (accessed on 31 July 2025).
- Statistics Korea. 2019 Time Use Survey. Available online: https://kostat.go.kr/board.es?mid=a20111060000&bid=11762&act=view&list_no=385431 (accessed on 3 January 2025).
- Klasson, N.; Olsson, E.; Eckerström, C.; Malmgren, H.; Wallin, A. Estimated intracranial volume from FreeSurfer is biased by total brain volume. Eur. Radiol. Exp. 2018, 2, 24. [Google Scholar] [CrossRef]
- Sanchis-Segura, C.; Ibañez-Gual, M.V.; Aguirre, N.; Cruz-Gómez, Á.J.; Forn, C. Effects of different intracranial volume correction methods on univariate sex differences in grey matter volume and multivariate sex prediction. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Environment and Health Risks: A Review of the Influence and Effects of Social Inequalities; WHO Regional Office for Europe: Copenhagen, Denmark, 2010; Available online: https://digitalscholarship.tsu.edu/mlcejs_info/6 (accessed on 31 July 2025).
- Spengler, J.D.; Sexton, K. Indoor air pollution: A public health perspective. Science 1983, 221, 9–17. [Google Scholar] [CrossRef]
- Mata, T.M.; Felgueiras, F.; Martins, A.A.; Monteiro, H.; Ferraz, M.P.; Oliveira, G.M.; Gabriel, M.F.; Silva, G.V. Indoor air quality in elderly centers: Pollutants emission and health effects. Environments 2022, 9, 86. [Google Scholar] [CrossRef]
- Reddy, M.; Heidarinejad, M.; Stephens, B.; Rubinstein, I. Adequate indoor air quality in nursing homes: An unmet medical need. Sci. Total Environ. 2021, 765, 142711. [Google Scholar] [CrossRef]
- Rodríguez, M.; Seseña, S.; Valiente, N.; Palop, M.L.; Rodríguez, A. Indoor air quality in elderly care centers: A multidisciplinary approach. Build. Environ. 2024, 262, 111832. [Google Scholar] [CrossRef]
- A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants. Build. Environ. 2023, 244, 110998. [CrossRef]
- Karottki, D.G.; Spilak, M.; Frederiksen, M.; Gunnarsen, L.; Brauner, E.V.; Kolarik, B.; Andersen, Z.J.; Sigsgaard, T.; Barregard, L.; Strandberg, B.; et al. An indoor air filtration study in homes of elderly: Cardiovascular and respiratory effects of exposure to particulate matter. Environ. Health 2012, 12, 116. [Google Scholar] [CrossRef]
Variables | Total (Seoul + Incheon) | Seoul | Incheon |
---|---|---|---|
N = 23 | N = 14 | N = 9 | |
Age, mean ± SD (years) | |||
<75 | 11 (47.8) | 8 (57.1) | 3 (33.3) |
≥75 | 12 (52.2) | 6 (42.9) | 6 (66.7) |
Height, mean ± SD (cm) | 156.2 (7.7) | 159.5 (7.6) | 151.2 (4.8) |
Weight, mean ± SD (kg) | 61.2 (7.4) | 62.9 (7.7) | 58.6 (6.4) |
Gender, N (%) | |||
Male | 7 (30.4) | 7 (50) | 0 (0) |
Female | 16 (69.6) | 7 (50) | 9 (100) |
Education, N (%) | |||
High school graduate or below | 5 (21.7) | 3 (21.4) | 2 (22.2) |
High school graduate or above | 18 (78.3) | 11 (78.6) | 7 (77.8) |
Body mass index (BMI), mean ± SD (kg/m2) | |||
<25 | 13 (56.5) | 8 (57.1) | 5 (55.6) |
≥25 | 10 (43.5) | 6 (42.9) | 4 (44.4) |
Angina pectoris, N (%) | |||
Without diabetes | 19 (82.6) | 11 (78.6) | 8 (88.9) |
With diabetes | 4 (17.4) | 3 (21.4) | 1 (11.1) |
Hypertension, N (%) | |||
Without diabetes | 6 (26.1) | 4 (28.6) | 2 (22.2) |
With diabetes | 17 (73.9) | 10 (71.4) | 7 (77.8) |
Hyperlipidemia, N (%) | |||
Without diabetes | 9 (39.1) | 3 (21.4) | 6 (66.7) |
With diabetes | 14 (60.9) | 11 (78.6) | 3 (33.3) |
Diabetes, N (%) | |||
Without diabetes | 18 (78.3) | 9 (64.3) | 9 (100) |
With diabetes | 5 (21.7) | 5 (35.7) | 0 (0.00) |
Variable | Mean | Min | Max | Median | IQR |
---|---|---|---|---|---|
PM2.5 (µg/m3) | 17.99 | 1.00 | 196.80 | 13.48 | 13.52 |
PM10 (µg/m3) | 24.07 | 1.07 | 324.15 | 18.88 | 18.40 |
CO2 (ppm) | 791.59 | 295.29 | 2554.54 | 688.44 | 427.42 |
Variables | Model l | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hippocampal Volume by Hemisphere | |||||||||||||
Left | Right | Left | Right | ||||||||||
Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | ||
CO2 | min | −2.83 | (−5.73, 0.06) | 0.05 | −3.29 | (−5.55, −1.03) | 0.01 | −2.29 | (−4.85, 0.26) | 0.07 | −2.88 | (−4.90, −0.86) | 0.01 |
mean | −0.88 | (−1.74, −0.02) | 0.05 | −0.86 | (−1.62, −0.10) | 0.03 | −0.77 | (−1.49, −0.04) | 0.04 | −0.77 | (−1.43, −0.10) | 0.03 | |
max | −0.32 | (−0.76, 0.13) | 0.15 | −0.33 | (−0.72, 0.05) | 0.08 | −0.25 | (−0.64, 0.14) | 0.19 | −0.28 | (−0.63, 0.07) | 0.11 | |
gmean | −1.02 | (−1.94, −0.10) | 0.03 | −0.99 | (−1.80, −0.19) | 0.02 | −0.88 | (−1.66, −0.11) | 0.03 | −0.88 | (−1.59, −0.17) | 0.02 |
Variables | Model 3 | Model 4 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hippocampal Volume by Amygdaloid | Hippocampal Volume by Hippocampus | Hippocampal Volume by Amygdaloid | Hippocampal Volume by Hippocampus | ||||||||||||||||
Left | Right | Right | Left | Right | Right | ||||||||||||||
Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | Estimate | 95%CI | p-Value | ||
PM2.5 | mean | −283.24 | (−496.78, −69.71) | 0.01 | −292.37 | (−549.47, −35.27) | 0.03 | −544.55 | (−1088.22, −0.88) | 0.05 | −272.09 | (−449.34, −94.85) | 0.01 | −276.69 | (−463.52, −89.86) | 0.01 | −516.53 | (−971.50, −61.56) | 0.03 |
gmean | −79.35 | (−345.08, 186.39) | 0.52 | −67.80 | (−371.21, 235.60) | 0.63 | −21.78 | (−643.27, 599.71) | 0.94 | −57.85 | (−304.20, 188.50) | 0.61 | −37.67 | (−294.54, 219.20) | 0.75 | 33.36 | (−523.34, 590.07) | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.-M.; Kim, H.-H. The Association Between Indoor Air Pollutants and Brain Structure Indicators Using eTIV-Adjusted and Unadjusted Models: A Study in Seoul and Incheon. Brain Sci. 2025, 15, 868. https://doi.org/10.3390/brainsci15080868
An S-M, Kim H-H. The Association Between Indoor Air Pollutants and Brain Structure Indicators Using eTIV-Adjusted and Unadjusted Models: A Study in Seoul and Incheon. Brain Sciences. 2025; 15(8):868. https://doi.org/10.3390/brainsci15080868
Chicago/Turabian StyleAn, Sun-Min, and Ho-Hyun Kim. 2025. "The Association Between Indoor Air Pollutants and Brain Structure Indicators Using eTIV-Adjusted and Unadjusted Models: A Study in Seoul and Incheon" Brain Sciences 15, no. 8: 868. https://doi.org/10.3390/brainsci15080868
APA StyleAn, S.-M., & Kim, H.-H. (2025). The Association Between Indoor Air Pollutants and Brain Structure Indicators Using eTIV-Adjusted and Unadjusted Models: A Study in Seoul and Incheon. Brain Sciences, 15(8), 868. https://doi.org/10.3390/brainsci15080868