Downbeat Nystagmus: Case Report, Updated Review, Therapeutics, and Neurorehabilitation
Abstract
1. Introduction
2. Case Presentation
3. Clinical Neuroanatomy and Assessment of Downbeat Nystagmus
3.1. Gravity-Independent Spontaneous Downbeat Nystagmus
3.2. Gravity-Dependent Spontaneous Downbeat Nystagmus
3.3. Gaze-Evoked Downbeat Nystagmus
4. Pharmacologic Therapy for Downbeat Nystagmus
4.1. Aminopyridines
4.2. Clonazepam
4.3. Baclofen
4.4. Gabapentin
4.5. Tanganil
5. Non-Pharmacologic Interventions for Downbeat Nystagmus
5.1. Vestibular Rehabilitation Therapy
5.2. Neurovisual Training and Biofeedback
5.3. Prism Compensation
5.4. Surgical Interventions
5.5. Integrated Treatment Paradigms
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagner, J.N.; Glaser, M.; Brandt, T.; Strupp, M. Downbeat nystagmus: Aetiology and comorbidity in 117 patients. J. Neurol. Neurosurg. Psychiatry 2008, 79, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lang, Y.; Wang, W.; Wu, Y.; Yan, S.; Zhang, T.; Li, D.; Liu, S.; Hao, Y.; Yang, X.; et al. Analysis of etiology and clinical features of spontaneous downbeat nystagmus: A retrospective study. Front. Neurol. 2024, 15, 1326879. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, V.; Giannoni, B.; Volpe, G.; Faralli, M.; Fetoni, A.R.; Pettorossi, V.E. Downbeat nystagmus: A clinical and pathophysiological review. Front. Neurol. 2024, 15, 1394859. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-U.; Kim, H.-J.; Choi, J.-Y.; Kim, J.-S. Ictal downbeat nystagmus in Ménière disease: A cross-sectional study. Neurology 2020, 95, e2409–e2417. [Google Scholar] [CrossRef]
- Misale, P.; Hassannia, F.; Dabiri, S.; Brandstaetter, T.; Rutka, J. Post-traumatic peripheral vestibular disorders (excluding positional vertigo) in workers following head injury. Sci. Rep. 2021, 11, 23436. [Google Scholar] [CrossRef]
- Califano, L.; Salafia, F.; Mazzone, S.; Melillo, M.G.; Califano, M. Anterior canal BPPV and apogeotropic posterior canal BPPV: Two rare forms of vertical canalolithiasis. Acta Otorhinolaryngol. Ital. 2014, 34, 189–197. [Google Scholar]
- Leigh, R.J.; Zee, D.S. The Neurology of Eye Movements, 5th ed.; Contemporary Neurology Series, No. 90; Oxford University Press: Oxford, UK; New York, NY, USA, 2015. [Google Scholar]
- Matsuo, V.; Cohen, B. Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: Up-down asymmetry and effects of gravity. Exp. Brain Res. 1984, 53, 197–216. [Google Scholar] [CrossRef]
- Collewijn, H. An analog model of the rabbit’s optokinetic system. Brain Res. 1972, 36, 71–88. [Google Scholar] [CrossRef]
- Fernández, C.; Goldberg, J.M. Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J. Neurophysiol. 1976, 39, 970–984. [Google Scholar] [CrossRef]
- Merfeld, D.M. Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp. Brain Res. 1995, 106, 123–134. [Google Scholar] [CrossRef]
- Laurens, J.; Angelaki, D.E. The functional significance of velocity storage and its dependence on gravity. Exp. Brain Res. 2011, 210, 407–422. [Google Scholar] [CrossRef]
- Cohen, B.; John, P.; Yakushin, S.B.; Buettner-Ennever, J.; Raphan, T. The nodulus and uvula: Source of cerebellar control of spatial orientation of the angular vestibulo-ocular reflex. Ann. N. Y. Acad. Sci. 2002, 978, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Helmchen, C.; Gottschalk, S.; Sander, T.; Trillenberg, P.; Rambold, H.; Sprenger, A. Beneficial effects of 3,4-diaminopyridine on positioning downbeat nystagmus in a circumscribed uvulo-nodular lesion. J. Neurol. 2007, 254, 1126–1128. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.F.; Tian, J.; Shan, X.; Tamargo, R.J.; Ying, H.; Zee, D.S. Lesions of the cerebellar nodulus and uvula impair downward pursuit. J. Neurophysiol. 2008, 100, 1813–1823. [Google Scholar] [CrossRef]
- Crawford, J.D.; Cadera, W.; Vilis, T. Generation of Torsional and Vertical Eye Position Signals by the Interstitial Nucleus of Cajal. Science 1991, 252, 1551–1553. [Google Scholar] [CrossRef]
- Robinson, D.A. Neurophysiology, pathology and models of rapid eye movements. Prog. Brain Res. 2022, 267, 287–317. [Google Scholar] [CrossRef]
- Strupp, M.; Kremmyda, O.; Adamczyk, C.; Böttcher, N.; Muth, C.; Yip, C.W.; Bremova, T. Central ocular motor disorders, including gaze palsy and nystagmus. J. Neurol. 2014, 261 (Suppl. S2), S542–S558. [Google Scholar] [CrossRef]
- Nakamagoe, K.; Shimizu, K.; Koganezawa, T.; Tamaoka, A. Downbeat nystagmus due to a paramedian medullary lesion. J. Clin. Neurosci. 2012, 19, 1597–1599. [Google Scholar] [CrossRef]
- Helmchen, C.; Rambold, H.; Fuhry, L.; Büttner, U. Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey. Exp. Brain Res. 1998, 119, 436–452. [Google Scholar] [CrossRef]
- Claassen, J.; Feil, K.; Bardins, S.; Teufel, J.; Spiegel, R.; Kalla, R.; Schneider, E.; Jahn, K.; Schniepp, R.; Strupp, M. Dalfampridine in patients with downbeat nystagmus--an observational study. J. Neurol. 2013, 260, 1992–1996. [Google Scholar] [CrossRef]
- Alviña, K.; Khodakhah, K. The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J. Neurosci. 2010, 30, 7258–7268. [Google Scholar] [CrossRef]
- Shaikh, A.G. Does 4-aminopyridine ‘beat’ downbeat nystagmus? J. Neurol. Neurosurg. Psychiatry 2013, 84, 1298–1299. [Google Scholar] [CrossRef]
- Kalla, R.; Spiegel, R.; Claassen, J.; Bardins, S.; Hahn, A.; Schneider, E.; Rettinger, N.; Glasauer, S.; Brandt, T.; Strupp, M. Comparison of 10-mg doses of 4-aminopyridine and 3,4-diaminopyridine for the treatment of downbeat nystagmus. J. Neuro-Ophthalmol. 2011, 31, 320–325. [Google Scholar] [CrossRef]
- Kalla, R.; Glasauer, S.; Büttner, U.; Brandt, T.; Strupp, M. 4-aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus. Brain J. Neurol. 2007, 130 Pt 9, 2441–2451. [Google Scholar] [CrossRef]
- Kalla, R.; Glasauer, S.; Schautzer, F.; Lehnen, N.; Büttner, U.; Strupp, M.; Brandt, T. 4-aminopyridine improves downbeat nystagmus, smooth pursuit, and VOR gain. Neurology 2004, 62, 1228–1229. [Google Scholar] [CrossRef] [PubMed]
- Kremmyda, O.; Zwergal, A.; la Fougère, C.; Brandt, T.; Jahn, K.; Strupp, M. 4-Aminopyridine suppresses positional nystagmus caused by cerebellar vermis lesion. J. Neurol. 2013, 260, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Strupp, M.; Teufel, J.; Zwergal, A.; Schniepp, R.; Khodakhah, K.; Feil, K. Aminopyridines for the treatment of neurologic disorders. Neurol. Clin. Pract. 2017, 7, 65–76. [Google Scholar] [CrossRef]
- Inc. Acorda Therapeutics. Ampyra (Package Insert); Acorda Therapeutics, Inc.: New York, NY, USA, 2010; Available online: https://ampyra.com/prescribing-information.pdf (accessed on 29 July 2025).
- Strupp, M.; SchülEr, O.; Krafczyk, S.; Jahn, K.; Schautzer, F.; BütTner, U.; Brandt, T. Treatment of downbeat nystagmus with 3,4-diaminopyridine: A placebo-controlled study. Neurology 2003, 61, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Tsunemi, T.; Ishikawa, K.; Tsukui, K.; Sumi, T.; Kitamura, K.; Mizusawa, H. The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J. Neurol. Sci. 2010, 292, 81–84. [Google Scholar] [CrossRef]
- Lemeignan, M.; Millart, H.; Lamiable, D.; Molgo, J.; Lechat, P. Evaluation of 4-aminopyridine and 3,4-diaminopyridine penetrability into cerebrospinal fluid in anesthetized rats. Brain Res. 1984, 304, 166–169. [Google Scholar] [CrossRef]
- Catalyst Pharmaceuticals. Firdapse (Package Insert). 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208078s012lbl.pdf (accessed on 29 July 2025).
- Wirtz, P.W.; Titulaer, M.J.; van Gerven, J.M.; Verschuuren, J.J. 3,4-diaminopyridine for the treatment of Lambert-Eaton myasthenic syndrome. Expert Rev. Clin. Immunol. 2010, 6, 867–874. [Google Scholar] [CrossRef]
- Sanders, D.B. 3,4-Diaminopyridine (DAP) in the treatment of Lambert-Eaton myasthenic syndrome (LEMS). Ann. N. Y. Acad. Sci. 1998, 841, 811–816. [Google Scholar] [CrossRef]
- McEvoy, K.M.; Windebank, A.J.; Daube, J.R.; Low, P.A. 3,4-Diaminopyridine in the treatment of Lambert-Eaton myasthenic syndrome. N. Engl. J. Med. 1989, 321, 1567–1571. [Google Scholar] [CrossRef] [PubMed]
- Young, Y.H.; Huang, T.W. Role of clonazepam in the treatment of idiopathic downbeat nystagmus. Laryngoscope 2001, 111, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Currie, J.N.; Matsuo, V. The use of clonazepam in the treatment of nystagmus-induced oscillopsia. Ophthalmology 1986, 93, 924–932. [Google Scholar] [CrossRef]
- Yun, S.-Y.; Lee, J.-H.; Kim, H.-J.; Choi, J.-Y.; Kim, J.-S. Effects of Baclofen on Central Paroxysmal Positional Downbeat Nystagmus. Cerebellum 2024, 23, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, M.; Straube, A.; Brandt, T.; Paulus, W.; Büttner, U. The effects of baclofen and cholinergic drugs on upbeat and downbeat nystagmus. J. Neurol. Neurosurg. Psychiatry 1991, 54, 627–632. [Google Scholar] [CrossRef]
- Averbuch-Heller, L.; Tusa, R.J.; Fuhry, L.; Rottach, K.G.; Ganser, G.L.; Heide, W.; Büttner, U.; Leigh, R.J. A double-blind controlled study of gabapentin and baclofen as treatment for acquired nystagmus. Ann. Neurol. 1997, 41, 818–825. [Google Scholar] [CrossRef]
- Choudhuri, I.; Sarvananthan, N.; Gottlob, I. Survey of management of acquired nystagmus in the United Kingdom. Eye 2007, 21, 1194–1197. [Google Scholar] [CrossRef]
- Vlček, P.; Horáček, J.; Grünerová-Lippertová, M.; Brunovský, M. Therapeutic potential of acetyl-DL-leucine and its L-enantiomer in posterior fossa syndrome: Mechanistic insights. Drug Discov. Today 2025, 30, 104389. [Google Scholar] [CrossRef]
- Vibert, N.; Vidal, P.P. In vitro effects of acetyl-DL-leucine (tanganil) on central vestibular neurons and vestibulo-ocular networks of the guinea-pig. Eur. J. Neurosci. 2001, 13, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Günther, L.; Beck, R.; Xiong, G.; Potschka, H.; Jahn, K.; Bartenstein, P.; Brandt, T.; Dutia, M.; Dieterich, M.; Strupp, M.; et al. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus. PLoS ONE 2015, 10, e012089. [Google Scholar] [CrossRef] [PubMed]
- Brueggemann, A.; Bicvic, A.; Goeldlin, M.; Kalla, R.; Kerkeni, H.; Mantokoudis, G.; Abegg, M.; Kolníková, M.; Mohaupt, M.; Bremova-Ertl, T. Effects of Acetyl-DL-Leucine on Ataxia and Downbeat-Nystagmus in Six Patients With Ataxia Telangiectasia. J. Child Neurol. 2022, 37, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Strupp, M.; Teufel, J.; Habs, M.; Feuerecker, R.; Muth, C.; van de Warrenburg, B.P.; Klopstock, T.; Feil, K. Effects of acetyl-DL-leucine in patients with cerebellar ataxia: A case series. J. Neurol. 2013, 260, 2556–2561. [Google Scholar] [CrossRef]
- Kremmyda, O.; Feil, K.; Bardins, S.; Strupp, M. Acetyl-DL-leucine in combination with memantine improves acquired pendular nystagmus caused by multiple sclerosis: A case report. J. Neurol. 2023, 270, 4107–4109. [Google Scholar] [CrossRef]
- Bremova-Ertl, T.; Ramaswami, U.; Brands, M.; Foltan, T.; Gautschi, M.; Gissen, P.; Gowing, F.; Hahn, A.; Jones, S.; Kay, R.; et al. Trial of N -Acetyl-l-Leucine in Niemann–Pick Disease Type C. N. Engl. J. Med. 2024, 390, 421–431. [Google Scholar] [CrossRef]
- Feil, K.; Adrion, C.; Boesch, S.; Doss, S.; Giordano, I.; Hengel, H.; Jacobi, H.; Klockgether, T.; Nachbauer, W.; Schöls, L.; et al. Safety and Efficacy of Acetyl-DL-Leucine in Certain Types of Cerebellar Ataxia: The ALCAT Randomized Clinical Crossover Trial. JAMA Netw. Open. 2021, 4, e2135841. [Google Scholar] [CrossRef]
- Shepard, N.T.; Telian, S.A.; Smith-Wheelock, M. Habituation and balance retraining therapy. A retrospective review. Neurol. Clin. 1990, 8, 459–475. [Google Scholar] [CrossRef]
- Han, B.I.; Song, H.S.; Kim, J.S. Vestibular rehabilitation therapy: Review of indications, mechanisms, and key exercises. J. Clin. Neurol. Seoul Korea 2011, 7, 184–196. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Hillier, S.L. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst. Rev. 2015, 1, CD005397. [Google Scholar] [CrossRef]
- Tramontano, M.; Russo, V.; Spitoni, G.F.; Ciancarelli, I.; Paolucci, S.; Manzari, L.; Morone, G. Efficacy of Vestibular Rehabilitation in Patients With Neurologic Disorders: A Systematic Review. Arch. Phys. Med. Rehabil. 2021, 102, 1379–1389. [Google Scholar] [CrossRef]
- Synofzik, M.; Ilg, W. Motor training in degenerative spinocerebellar disease: Ataxia-specific improvements by intensive physiotherapy and exergames. BioMed Res. Int. 2014, 2014, 583507. [Google Scholar] [CrossRef] [PubMed]
- Cornforth, E.; Schmahmann, J.D. Physical Therapy and Aminopyridine for Downbeat Nystagmus Syndrome: A Case Report. J. Neurol. Phys. Ther. JNPT 2025, 49, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Schniepp, R.; Wuehr, M.; Huth, S.; Pradhan, C.; Schlick, C.; Brandt, T.; Jahn, K.; Thurtell, M. The gait disorder in downbeat nystagmus syndrome. PLoS ONE 2014, 9, e105463. [Google Scholar] [CrossRef]
- Geisinger, D.; Elyoseph, Z.; Zaltzman, R.; Mintz, M.; Gordon, C.R. Functional impact of bilateral vestibular loss and the unexplained complaint of oscillopsia. Front. Neurol. 2024, 15, 1365369. [Google Scholar] [CrossRef]
- Sparrer, I.; Dinh, T.A.D.; Ilgner, J.; Westhofen, M. Vestibular rehabilitation using the Nintendo® Wii Balance Board—A user-friendly alternative for central nervous compensation. Acta Otolaryngol. 2013, 133, 239–245. [Google Scholar] [CrossRef]
- Hall, C.D.; Herdman, S.J.P.; Whitney, S.L.D.; Anson, E.R.; Carender, W.J.P.; Hoppes, C.W.P.; Cass, S.P.; Christy, J.B.; Cohen, H.S.O.; Fife, T.D.M.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Updated Clinical Practice Guideline From the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J. Neurol. Phys. Ther. JNPT 2022, 46, 118–177. [Google Scholar] [CrossRef]
- Abadi, R.V.; Carden, D.; Simpson, J. A new treatment for congenital nystagmus. Br. J. Ophthalmol. 1980, 64, 2–6. [Google Scholar] [CrossRef]
- Ciuffreda, K.J.; Goldrich, S.G.; Neary, C. Use of eye movement auditory biofeedback in the control of nystagmus. Am. J. Optom. Physiol. Opt. 1982, 59, 396–409. [Google Scholar] [CrossRef]
- Teufel, J.; Bardins, S.; Spiegel, R.; Kremmyda, O.; Schneider, E.; Strupp, M.; Kalla, R. Real-time computer-based visual feedback improves visual acuity in downbeat nystagmus—A pilot study. J. Neuroeng. Rehabil. 2016, 13, 1. [Google Scholar] [CrossRef]
- Antognetti, D.; Maggiani, L.; Gabbrielli, E.; Allegrini, L.; Dalise, S.; Chisari, C. Neurovisual Training With Acoustic Feedback: An Innovative Approach for Nystagmus Rehabilitation. Arch. Rehabil. Res. Clin. Transl. 2024, 6, 100371. [Google Scholar] [CrossRef]
- Smith, R.M.; Oommen, B.S.; Stahl, J.S. Image-shifting optics for a nystagmus treatment device. J. Rehabil. Res. Dev. 2004, 41, 325–336. [Google Scholar] [CrossRef]
- Lavin, P.J.; Traccis, S.; Dell’Osso, L.F.; Abel, L.A.; Ellenberger, C. Downbeat nystagmus with a pseudocycloid waveform: Improvement with base-out prisms. Ann. Neurol. 1983, 13, 621–624. [Google Scholar] [CrossRef]
- Hertle, R.W. Examination and refractive management of patients with nystagmus. Surv. Ophthalmol. 2000, 45, 215–222. [Google Scholar] [CrossRef]
- Wang, Z.I.; Dell’Osso, L.F.; Tomsak, R.L.; Jacobs, J.B. Combining recessions (nystagmus and strabismus) with tenotomy improved visual function and decreased oscillopsia and diplopia in acquired downbeat nystagmus and in horizontal infantile nystagmus syndrome. J. AAPOS 2007, 11, 135–141. [Google Scholar] [CrossRef]
- Depalo, C.; Hertle, R.W.; Yang, D. Eight eye muscle surgical treatment in a patient with acquired nystagmus and strabismus: A case report. Binocul. Vis. Strabismus Q. 2003, 18, 151–158. [Google Scholar] [PubMed]
- Hertle, R.W.; Ahmad, A. Clinical and electrophysiological results of eye muscle surgery in 17 patients with downbeat nystagmus. Indian J. Ophthalmol. 2019, 67, 109–115. [Google Scholar] [CrossRef]
- Spooner, J.W.; Baloh, R.W. Arnold-Chiari malformation: Improvement in eye movements after surgical treatment. Brain J. Neurol. 1981, 104 Pt 1, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Denion, E.; Defoort-Dhellemmes, S.; Arndt, C.-F.; Bouvet-Drumare, I.; Beaussart, K.; Hache, J.-C.; Dhellemmes, P. Improvement of downbeat nystagmus after suboccipital decompression for Chiari I malformation. Neuro-Ophthalmology 2001, 26, 253–257. [Google Scholar] [CrossRef]
Comparative Summary of Pharmacologic Agents for Downbeat Nystagmus | |||
---|---|---|---|
Agent | Mechanism of Action | Efficacy | Contraindications |
4-Aminopyridine (4-AP) Dalfampridine AMPYRA® | • Voltage-gated potassium channel blocker • Restores pacemaker potential of inhibitory cerebellar Purkinje cells • Prolongs action-potential length •Increases hyperpolarization amplitudes | • Reduces slow phase velocities • Improves visual acuity • Improves postural sway • Improves gait and stability • Multiple RCTs demonstrate efficacy • Dosage: 10 mg twice daily | • History of seizures • Creatinine clearance ≤50 mL/min |
3,4-Diaminopyridine (3,4-DAP) Amifampridine FIRDAPSE® | • Similar to 4-AP but methylated at third carbon • Less lipid soluble • Decreased CNS penetration compared to 4-AP | • Significant decrease in SPV and symptoms • Inferior efficacy compared to 4-AP in head-to-head RCT • Still clinically meaningful improvement | • May cause seizures (2% rate) • Caution with conditions/medications that lower seizure threshold (e.g., intracerebral neoplasms, theophylline) |
Clonazepam | • Benzodiazepine • Mechanism not explicitly stated in document | • 12/17 patients showed robust response in case series • Dosing: 0.5 mg BID, up-titrated to 1 mg BID as tolerated | • Sedation • Potential for dependence • Controlled substance regulation |
Baclofen | • Generalized restoration of GABAergic inhibition by flocculo-nodular structures onto anterior semicircular canal projections to vestibular nuclei | • Improved slow phase velocities • Improved subjective vertiginous symptoms • Not all patients respond • Starting dose: 5 mg TID | • Caution in patients already taking other sedating medications given sedating properties |
Gabapentin | • Mechanism not specified for DBN | • Minimal effects in RCT (6 patients) • Robust response for pendular nystagmus • UK survey reports effectiveness (nystagmus type not detailed) | • Consider dose-adjustment in patients with renal disease • Caution in patients already taking other sedating medications given sedating properties |
Tanganil Acetyl-DL-leucine | • Stabilizes errant membrane potentials in cerebellar neurons • Increases metabolic activity in the flocculus | • Reduction in SPV after 1 month • Success in degenerative cerebellar ataxias with DBN • Mixed results (negative RCT suggests need for patient-selection refinement) • Safe and tolerable side effect profile | • Not available in the United States currently |
Non-Pharmacological Interventions for Downbeat Nystagmus: Summary of Review Findings | |||
---|---|---|---|
Intervention | Mechanism/Approach | Evidence/Results | Limitations/Considerations |
Vestibular Rehabilitation Therapy (VRT) | • Exercise-based program promoting adaptation, substitution, and habituation • Modified gaze stabilization exercises • Balance training targeting anteroposterior instability • Proprioceptive training on compliant surfaces | • Robust data for peripheral disorders • Limited evidence for central disorders • Only one case report specifically for DBN • Schniepp et al. documented gait disorder patterns | • Cerebellar dysfunction impairs adaptive mechanisms VRT exploits • Must account for gravity-dependent worsening • Outcomes less systematically studied for central origins |
Neurovisual Training and Biofeedback | • Real-time visual/auditory feedback • EyeSeeCam system for computer-based feedback • Visual targets synchronized with auditory cues • Electro-motor devices with ocular quantification | • Theil et al. pilot study (n = 10): improved visual acuity under dynamic conditions • Case report: improved VOG-measured fixation stability • 30-min sessions 3×/week for 12 weeks showed benefit | • Acquired DBN requires different paradigms than congenital • Advanced systems remain in research settings • Limited to small studies and case reports |
Prism Compensation | • Base-out prisms: exploit convergence-dampening • Typical: 7 diopter base-out +−1.00 D sphere • Base-down yoked prisms: shift visual field upward for gaze-evoked DBN | • Lavin et al. first reported improvement • Most effective when DBN dampens with convergence • Immediate, non-invasive symptom relief | • Individual responses vary considerably • Effectiveness depends on convergence response • Limited to specific DBN phenotypes |
Surgical Interventions | • Extraocular muscle procedures • Null position shifting • Cerebellar decompression (for Chiari malformation) | • Promising outcomes in small case series • May benefit Chiari-associated DBN | • No RCTs comparing to medical treatment • Nystagmus improvement often lags behind other symptoms • Reserved for severe, treatment-refractory cases |
Integrated Treatment Paradigms | • Multimodal approaches combining pharmacotherapy with non-pharmacological interventions | • Literature suggests advantages over monotherapy • 4-aminopyridine + optical interventions common • May promote long-term adaptation | • High-quality comparative effectiveness studies lacking • Evidence primarily from case series and clinical experience • Specific efficacy requires systematic investigation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parker, T.M.; Jauregui, R.; Grossman, S.N.; Galetta, S.L. Downbeat Nystagmus: Case Report, Updated Review, Therapeutics, and Neurorehabilitation. Brain Sci. 2025, 15, 859. https://doi.org/10.3390/brainsci15080859
Parker TM, Jauregui R, Grossman SN, Galetta SL. Downbeat Nystagmus: Case Report, Updated Review, Therapeutics, and Neurorehabilitation. Brain Sciences. 2025; 15(8):859. https://doi.org/10.3390/brainsci15080859
Chicago/Turabian StyleParker, T. Maxwell, Ruben Jauregui, Scott N. Grossman, and Steven L. Galetta. 2025. "Downbeat Nystagmus: Case Report, Updated Review, Therapeutics, and Neurorehabilitation" Brain Sciences 15, no. 8: 859. https://doi.org/10.3390/brainsci15080859
APA StyleParker, T. M., Jauregui, R., Grossman, S. N., & Galetta, S. L. (2025). Downbeat Nystagmus: Case Report, Updated Review, Therapeutics, and Neurorehabilitation. Brain Sciences, 15(8), 859. https://doi.org/10.3390/brainsci15080859