Balancing Risk and Reward: Dopamine’s Central Role in Economic Decision-Making
Abstract
1. Introduction
- Dopamine release and pharmacological modulation
- Receptor subtype contributions (D1, D2, D3, D4)
- Neural circuitry and regional activity, as revealed through neuroimaging
- Genetic polymorphisms affecting dopamine signalling
- Stable trait-level influences, such as investment experience and personality
2. Dopaminergic Mechanisms in Economic Decision-Making
2.1. Dopamine Release and Pharmacological Modulation
2.2. Receptor Subtype Contributions (D1, D2, D3, D4)
2.3. Neural Circuitry and Regional Activity
2.4. Genetic Polymorphisms Affecting Dopamine Signalling
2.5. Stable Trait-Level Influences
3. Integrative Synthesis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alikaya, A.; Rack-Wildner, M.; Stauffer, W.R. Reward and value coding by dopamine neurons in non-human primates. J. Neural Transm. 2017, 125, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Schultz, W.; Stauffer, W.R.; Lak, A. The phasic dopamine signal maturing: From reward via behavioural activation to formal economic utility. Curr. Opin. Neurobiol. 2017, 43, 139–148. [Google Scholar] [CrossRef]
- Ott, T.; Nieder, A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn. Sci. 2019, 23, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Matzel, L.D.; Sauce, B. A multi-faceted role of dual-state dopamine signaling in working memory, attentional control, and intelligence. Front. Behav. Neurosci. 2023, 17, 1060786. [Google Scholar] [CrossRef]
- Albin, R.L.; Brissenden, J.A.; Lee, T.G.; Leventhal, D.K. Striatal Dopamine Actions and Movement: Inferences from Parkinson Disease. J. Neurosci. 2025, 45, e0022252025. Available online: https://www.jneurosci.org/content/45/24/e0022252025 (accessed on 1 July 2025). [CrossRef]
- Wise, R.A.; Jordan, C.J. Dopamine, behavior, and addiction. J. Biomed. Sci. 2021, 28, 83. [Google Scholar] [CrossRef]
- Sonnenschein, S.F.; Gomes, F.V.; Grace, A.A. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front. Psychiatry. 2020, 11, 613. [Google Scholar] [CrossRef]
- Sackett, D.A.; Saddoris, M.P.; Carelli, R.M. Nucleus Accumbens Shell Dopamine Preferentially Tracks Information Related to Outcome Value of Reward. eNeuro 2017, 4. [Google Scholar] [CrossRef]
- Peters, J.; Vega, T.; Weinstein, D.; Mitchell, J.; Kayser, A. Dopamine and Risky Decision-Making in Gambling Disorder. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- Wheeler, A.-R.; Truckenbrod, L.M.; Boehnke, A.; Kahanek, P.; Orsini, C.A. Sex differences in sensitivity to dopamine receptor manipulations of risk-based decision making in rats. Neuropsychopharmacology 2024, 49, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Ma, Z.; Hans, E.; Duan, Y.; Bi, G.-H.; Chae, Y.C.; Bonifazi, A.; Battiti, F.O.; Newman, A.H.; Xi, Z.-X.; et al. Involvement of dopamine D3 receptor in impulsive choice decision-making in male rats. Neuropharmacology 2024, 257, 110051. [Google Scholar] [CrossRef]
- Jenni, N.L.; Larkin, J.D.; Floresco, S.B. Prefrontal Dopamine D1 and D2 Receptors Regulate Dissociable Aspects of Decision Making via Distinct Ventral Striatal and Amygdalar Circuits. J. Neurosci. 2017, 37, 6200–6213. [Google Scholar] [CrossRef]
- Pine, A.; Shiner, T.; Seymour, B.; Dolan, R.J. Dopamine, Time, and Impulsivity in Humans. J. Neurosci. 2010, 30, 8888. [Google Scholar] [CrossRef]
- Hamidovic, A.; Kang, U.J.; de Wit, H. Effects of low to moderate acute doses of pramipexole on impulsivity and cognition in healthy volunteers. J. Clin. Psychopharmacol. 2008, 28, 45–51. [Google Scholar] [CrossRef]
- Weber, S.C.; Beck-Schimmer, B.; Kajdi, M.E.; Müller, D.; Tobler, P.N.; Quednow, B.B. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Transl. Psychiatry 2016, 6, e850. Available online: https://pubmed.ncbi.nlm.nih.gov/27378550/ (accessed on 6 August 2025). [CrossRef]
- Takahashi, H.; Fujie, S.; Camerer, C.; Arakawa, R.; Takano, H.; Kodaka, F.; Matsui, H.; Ideno, T.; Okubo, S.; Takemura, K.; et al. Norepinephrine in the brain is associated with aversion to financial loss. Mol. Psychiatry 2013, 18, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.D.; Lancaster, M.; Wakeley, J.; Bhagwagar, Z. Effects of beta-adrenoceptor blockade on components of human decision-making. Psychopharmacology 2004, 172, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Batten, S.R.; Bang, D.; Kopell, B.H.; Davis, A.N.; Heflin, M.; Fu, Q.; Perl, O.; Ziafat, K.; Hashemi, A.; Saez, I.; et al. Dopamine and serotonin in human substantia nigra track social context and value signals during economic exchange. Nat. Hum. Behav. 2024, 8, 718–728. [Google Scholar] [CrossRef]
- Sáez, I.; Zhu, L.; Set, E.; Kayser, A.; Hsu, M. Dopamine Modulates Egalitarian Behavior in Humans. Curr. Biol. 2015, 25, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Pedroni, A.; Eisenegger, C.; Hartmann, M.N.; Fischbacher, U.; Knoch, D. Dopaminergic stimulation increases selfish behavior in the absence of punishment threat. Psychopharmacology 2014, 231, 135–141. [Google Scholar] [CrossRef]
- Hakyemez, H.S.; Dagher, A.; Smith, S.D.; Zald, D.H. Striatal dopamine transmission in healthy humans during a passive monetary reward task. NeuroImage 2008, 39, 2058–2065. [Google Scholar] [CrossRef]
- Zald, D.H.; Boileau, I.; El-Dearedy, W.; Gunn, R.; McGlone, F.; Dichter, G.S.; Dagher, A. Dopamine Transmission in the Human Striatum during Monetary Reward Tasks. J. Neurosci. 2004, 24, 4105–4112. [Google Scholar] [CrossRef]
- Urban, N.B.L.; Slifstein, M.; Meda, S.; Xu, X.; Ayoub, R.; Medina, O.; Pearlson, G.D.; Krystal, J.H.; Abi-Dargham, A. Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging. Psychopharmacology 2012, 221, 67–77. [Google Scholar] [CrossRef]
- Schönberg, T.; Daw, N.D.; Joel, D.; O’DOherty, J.P. Reinforcement Learning Signals in the Human Striatum Distinguish Learners from Nonlearners during Reward-Based Decision Making. J. Neurosci. 2007, 27, 12860–12867. [Google Scholar] [CrossRef] [PubMed]
- Diederen, K.M.; Spencer, T.; Vestergaard, M.D.; Fletcher, P.C.; Schultz, W. Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency. Neuron 2016, 90, 1127–1138. [Google Scholar] [CrossRef]
- Sharot, T.; Guitart-Masip, M.; Korn, C.W.; Chowdhury, R.; Dolan, R.J. How Dopamine Enhances an Optimism Bias in Humans. Curr. Biol. 2012, 22, 1477–1481. [Google Scholar] [CrossRef]
- Aarts, E.; Wallace, D.L.; Dang, L.C.; Jagust, W.J.; Cools, R.; D’eSposito, M. Dopamine and the Cognitive Downside of a Promised Bonus. Psychol. Sci. 2014, 25, 1003–1009. [Google Scholar] [CrossRef]
- Cho, S.S.; Koshimori, Y.; Aminian, K.; Obeso, I.; Rusjan, P.; Lang, A.E.; Daskalakis, Z.J.; Houle, S.; Strafella, A.P. Investing in the Future: Stimulation of the Medial Prefrontal Cortex Reduces Discounting of Delayed Rewards. Neuropsychopharmacology 2014, 40, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.; Clos, M.; Sommer, T.; Peters, J. Dopaminergic Modulation of Human Intertemporal Choice: A Diffusion Model Analysis Using the D2-Receptor Antagonist Haloperidol. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 7936–7948. Available online: https://pubmed.ncbi.nlm.nih.gov/32948675/ (accessed on 6 August 2025). [CrossRef] [PubMed]
- Green, M.A.; Crawford, J.L.; Kuhnen, C.M.; Samanez-Larkin, G.R.; Seaman, K.L. Multivariate associations between dopamine receptor availability and risky investment decision-making across adulthood. Cereb. Cortex Commun. 2023, 4, tgad008. [Google Scholar] [CrossRef]
- Arrondo, G.; Aznárez-Sanado, M.; Fernández-Seara, M.A.; Goñi, J.; Loayza, F.R.; Salamon-Klobut, E.; Heukamp, F.H.; Pastor, M.A. Dopaminergic modulation of the trade-off between probability and time in economic decision-making. Eur. Neuropsychopharmacol. 2015, 25, 817–827. [Google Scholar] [CrossRef] [PubMed]
- van Eimeren, T.; Ko, J.H.; Pellechia, G.; Cho, S.S.; Houle, S.; Strafella, A.P. Prefrontal D2-receptor stimulation mediates flexible adaptation of economic preference hierarchies. Hum. Brain Mapp. 2013, 34, 226–232. [Google Scholar] [CrossRef][Green Version]
- Abler, B.; Erk, S.; Walter, H. Human reward system activation is modulated by a single dose of olanzapine in healthy subjects in an event-related, double-blind, placebo-controlled fMRI study. Psychopharmacology 2007, 191, 823–833. [Google Scholar] [CrossRef]
- Le Heron, C.; Kolling, N.; Plant, O.; Kienast, A.; Janska, R.; Ang, Y.-S.; Fallon, S.; Husain, M.; Apps, M.A. Dopamine Modulates Dynamic Decision-Making during Foraging. J. Neurosci. 2020, 40, 5273–5282. [Google Scholar] [CrossRef] [PubMed]
- Norbury, A.; Kurth-Nelson, Z.; Winston, J.S.; Roiser, J.P.; Husain, M. Dopamine Regulates Approach-Avoidance in Human Sensation-Seeking. Int. J. Neuropsychopharmacol. 2015, 18, pyv041. [Google Scholar] [CrossRef] [PubMed]
- Kohno, M.; Ghahremani, D.G.; Morales, A.M.; Robertson, C.L.; Ishibashi, K.; Morgan, A.T.; Mandelkern, M.A.; London, E.D. Risk-Taking Behavior: Dopamine D2/D3 Receptors, Feedback, and Frontolimbic Activity. Cereb. Cortex 2013, 25, 236–245. [Google Scholar] [CrossRef]
- Bamford, I.J.; Bamford, N.S. The Striatum’s Role in Executing Rational and Irrational Economic Behaviors. Neuroscientist 2019, 25, 475–490. [Google Scholar] [CrossRef]
- Kim, K. Electronic and Algorithmic Trading Technology: The Complete Guide; Academic Press: San Diego, CA, USA, 2010; p. 224. [Google Scholar]
- Knutson, B.; Wimmer, G.E.; Kuhnen, C.M.; Winkielman, P. Nucleus accumbens activation mediates the influence of reward cues on financial risk taking. NeuroReport 2008, 19, 509–513. [Google Scholar] [CrossRef]
- Kuhnen, C.M.; Knutson, B. The Neural Basis of Financial Risk Taking. Neuron 2005, 47, 763–770. [Google Scholar] [CrossRef]
- Adcock, R.A.; Thangavel, A.; Whitfield-Gabrieli, S.; Knutson, B.; Gabrieli, J.D.E. Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation. Neuron 2006, 50, 507–517. [Google Scholar] [CrossRef]
- Treadway, M.T.; Buckholtz, J.W.; Cowan, R.L.; Woodward, N.D.; Li, R.; Ansari, M.S.; Baldwin, R.M.; Schwartzman, A.N.; Kessler, R.M.; Zald, D.H. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 6170–6176. Available online: https://pubmed.ncbi.nlm.nih.gov/22553023/ (accessed on 6 August 2025). [CrossRef]
- Carpenter, J.P.; Garcia, J.R.; Lum, J.K. Dopamine receptor genes predict risk preferences, time preferences, and related economic choices. J. Risk Uncertain. 2011, 42, 233–261. [Google Scholar] [CrossRef]
- MacKillop, J.; Gray, J.C.; Bidwell, L.C.; Bickel, W.K.; Sheffer, C.E.; McGeary, J.E. Genetic influences on delay discounting in smokers: Examination of a priori candidates and exploration of dopamine-related haplotypes. Psychopharmacology 2015, 232, 3731–3739. [Google Scholar] [CrossRef]
- Jin, Y.; Zheng, D.; Gu, R.; Fan, Q.; Dietz, M.; Wang, C.; Li, X.; Chen, J.; Hu, J.; Zhou, Y. Substantial Heritability Underlies Fairness Norm Adaptation Capability and its Neural Basis. Adv. Sci. 2025, 12, 2411070. [Google Scholar] [CrossRef]
- Reuter, M.; Felten, A.; Penz, S.; Mainzer, A.; Markett, S.; Montag, C. The influence of dopaminergic gene variants on decision making in the ultimatum game. Front. Hum. Neurosci. 2013, 7, 242. Available online: https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2013.00242/full (accessed on 16 June 2025). [CrossRef] [PubMed]
- Zhong, S.; Israel, S.; Shalev, I.; Xue, H.; Ebstein, R.P.; Chew, S.H.; Harpending, H. Dopamine D4 Receptor Gene Associated with Fairness Preference in Ultimatum Game. PLoS ONE 2010, 5, e13765. [Google Scholar] [CrossRef] [PubMed]
- Enge, S.; Mothes, H.; Fleischhauer, M.; Reif, A.; Strobel, A. Genetic variation of dopamine and serotonin function modulates the feedback-related negativity during altruistic punishment. Sci. Rep. 2017, 7, 2996. [Google Scholar] [CrossRef]
- Set, E.; Saez, I.; Zhu, L.; Houser, D.E.; Myung, N.; Zhong, S.; Ebstein, R.P.; Chew, S.H.; Hsu, M. Dissociable contribution of prefrontal and striatal dopaminergic genes to learning in economic games. Proc. Natl. Acad. Sci. USA 2014, 111, 9615–9620. [Google Scholar] [CrossRef]
- Heitland, I.; Oosting, R.S.; Baas, J.M.P.; Massar, S.A.A.; Kenemans, J.L.; Böcker, K.B.E. Genetic polymorphisms of the dopamine and serotonin systems modulate the neurophysiological response to feedback and risk taking in healthy humans. Cogn. Affect. Behav. Neurosci. 2012, 12, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Chase, H.W.; Swainson, R.; Durham, L.; Benham, L.; Cools, R. Feedback-related Negativity Codes Prediction Error but Not Behavioral Adjustment during Probabilistic Reversal Learning. J. Cogn. Neurosci. 2011, 23, 936–946. [Google Scholar] [CrossRef]
- Dreber, A.; Apicella, C.L.; Eisenberg, D.T.; Garcia, J.R.; Zamore, R.S.; Lum, J.K.; Campbell, B. The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is associated with financial risk taking in men. Evol. Hum. Behav. 2009, 30, 85–92. [Google Scholar] [CrossRef]
- Dreber, A.; Rand, D.G.; Wernerfelt, N.; Garcia, J.R.; Vilar, M.G.; Lum, J.K.; Zeckhauser, R. Dopamine and risk choices in different domains: Findings among serious tournament bridge players. J. Risk Uncertain. 2011, 43, 19–38. [Google Scholar] [CrossRef]
- Kuhnen, C.M.; Chiao, J.Y.; Harpending, H. Genetic Determinants of Financial Risk Taking. PLoS ONE 2009, 4, e4362. [Google Scholar] [CrossRef] [PubMed]
- Muda, R.; Kicia, M.; Michalak-Wojnowska, M.; Ginszt, M.; Filip, A.; Gawda, P.; Majcher, P. The Dopamine Receptor D4 Gene (DRD4) and Financial Risk-Taking: Stimulating and Instrumental Risk-Taking Propensity and Motivation to Engage in Investment Activity. Front. Behav. Neurosci. 2018, 12, 34. Available online: https://www.frontiersin.org/journals/behavioral-neuroscience/articles/10.3389/fnbeh.2018.00034/full (accessed on 13 June 2025). [CrossRef] [PubMed]
- Frydman, C.; Camerer, C.; Bossaerts, P.; Rangel, A. MAOA-L carriers are better at making optimal financial decisions under risk. Proc. Biol. Sci. 2011, 278, 2053–2059. [Google Scholar] [CrossRef]
- Ortiz-Teran, E.; Diez, I.; Sepulcre, J.; Lopez-Pascual, J.; Ortiz, T. Connectivity adaptations in dopaminergic systems define the brain maturity of investors. Sci. Rep. 2021, 11, 11671. [Google Scholar] [CrossRef]
- Schwab-Reese, L.M.; Parker, E.A.; Peek-Asa, C. The Interaction of Dopamine Genes and Financial Stressors to Predict Adulthood Intimate Partner Violence Perpetration. J. Interpers. Violence 2020, 35, 1251–1268. [Google Scholar] [CrossRef]
- Sapra, S.; Beavin, L.E.; Zak, P.J. A Combination of Dopamine Genes Predicts Success by Professional Wall Street Traders. PLoS ONE 2012, 7, e30844. [Google Scholar] [CrossRef]
Study | Methodology | Targeted Dopaminergic Feature | Economic Paradigm | Key Finding |
---|---|---|---|---|
[18] | Deep Brain Stimulation | Dopamine release in the Substantia Nigra | Ultimatum Game | Greater dopamine release during socially motivated rejections. |
[19] | Tolcapone administration and computational modelling | Prefrontal dopamine tone via COMT inhibition | Dictator Game | Tolcapone increased rejection sensitivity to unfair offers. |
[20] | L-Dopa administration | Acute increase in dopaminergic tone | Bargaining paradigm | Dopamine increases selfishness absent social punishment risk |
[21] | PET imaging | Dopamine transmission in medial caudate and putamen | Card selection task | Unpredictable passive rewards suppressed dopamine in putamen |
[22] | PET imaging | Dopamine transmission in striatum (putamen focus) | Passive Roulette Game | Unpredictable rewards altered dopamine across striatal regions |
[26] | L-Dopa administration | Acute increase in dopaminergic tone | Belief updating under risk | L-DOPA increased optimism bias in risk beliefs |
[27] | PET imaging | Dopamine synthesis capacity in left caudate | Reward-modulated cognitive control (modified Stroop task) | High dopamine impaired control under reward uncertainty |
[28] | rTMS stimulation + [11C]raclopride PET imaging | Dopamine transmission in striatum (via prefrontal modulation) | Delay discounting (intertemporal choice task) | Prefrontal stimulation enhanced patience, increased striatal dopamine |
[29] | Haloperidol administration + drift diffusion modelling | D2 autoreceptor blockade (increased striatal dopamine release) | Delay discounting (intertemporal choice task) | Haloperidol reduced impulsivity, increased dopamine tone |
Study | Methodology | Targeted Dopaminergic Feature | Economic Paradigm | Key Finding |
---|---|---|---|---|
[30] | PET imaging | D2 receptor binding in amygdala | Risky investment task (stock vs. bond choices) | Lower D2 binding linked to inflexible risk-taking |
[31] | Metoclopramide + fMRI | D2 receptor blockade | Intertemporal and probabilistic reward valuation | D2 blockade increased preference for high-certainty delays |
[32] | Bromocriptine administration | D2 receptor stimulation | Reinforcement learning with shifting reward contingencies | Bromocriptine enhanced flexibility in reward-based updating |
[33] | Olanzapine administration + fMRI | D1/D2/D4 receptor antagonism | Monetary incentive task | Receptor blockade reduced reward salience, slowed response |
[34] | Cabergoline administration | D2 receptor agonism | Patch-leaving task | D2 stimulation inflated opportunity cost, impaired foraging decisions |
[35] | Haloperidol administration | D2 receptor antagonism | Monetary vs. aversive stimulation choice task | D2 blockade reduced sensation-seeking valuation bias |
[36] | PET and fMRI | Striatal D2/D3 receptor availability | Balloon Analogue Risk Task (BART) | Higher D2/D3 binding linked to cautious risk-taking |
Study | Methodology | Targeted Dopaminergic Feature | Economic Paradigm | Key Finding |
---|---|---|---|---|
[39] | fMRI | Nucleus accumbens (NAcc) activation | Risky financial choice task | Affective cues increased NAcc activity and risk-taking |
[40] | fMRI | Nucleus accumbens (NAcc) activation | Risky investment task | NAcc predicts risk-taking; insula predicts caution |
[41] | fMRI | VTA–hippocampus functional connectivity | Monetary Incentive Delay task | Reward anticipation enhances memory via VTA-hippocampus link |
[42] | PET imaging | Dopamine release in striatum, vmPFC, and insula | Effort-based decision-making task | Striatal/vmPFC dopamine promotes effort for reward |
Study | Methodology | Targeted Dopaminergic Feature | Economic Paradigm | Key Finding |
---|---|---|---|---|
[43] | Genetic association study | DRD4 7-repeat allele (D4 receptor sensitivity) | Temporal discounting (dual-block lottery task) | DRD4 variant impairs delayed reward valuation |
[44] | Genetic association study | COMT and ANKK1 | Temporal discounting/reward preference | COMT/ANKK1 linked to impulsive reward bias |
[45] | fMRI with computational modelling in twin sample | DRD2 variant effects | Social norm learning/fairness-based decision-making | DRD2 linked to norm updating, not fairness value |
[46] | Genetic association study | DRD4 exon III, DRD2 haplotype | Ultimatum Game | DRD4 and DRD2 variants shape fairness preferences |
[47] | Genetic association study | DRD4 exon III polymorphism | Ultimatum Game | DRD4 genotype linked to fairness preferences |
[48] | Genetic association + EEG (FRN) | DRD4 exon III (7-repeat allele) | Dictator Game | 7R+ carriers show stronger norm violation signals |
[49] | Genetic association + computational modelling | COMT, DRD2, DAT1 polymorphisms | Financial patent race task | COMT, DRD2, DAT1 shape distinct learning processes |
[50] | Genetic association study with EEG | DAT1, COMT polymorphisms | Feedback-monitoring task | DAT1, COMT variants modulate feedback monitoring signals |
[52] | Genetic association study | DRD4 7-repeat allele (7R+) | Financial risk-taking task with monetary payoff | DRD4 7R+ men showed greater risk tolerance |
[53] | Genetic association study | DRD4 7-repeat allele (7R+) | Bridge-based strategic risk task and financial gamble | 7R+ men took more strategic and financial risks |
[54] | Genetic association study | DRD4 7-repeat allele (7R+) | Investment risk-taking task | 7R+ carriers took significantly greater financial risks |
[55] | Genetic association study | DRD4 7-repeat allele (7R+) | Holt–Laury task; investment motivation questionnaire | No risk-taking difference between 7R+ and 7R− |
[56] | Genetic association study | MAOA | Risky financial gambles | MAOA-L carriers preferred advantageous financial risk choices |
Study | Methodology | Targeted Dopaminergic Feature | Economic Paradigm | Key Finding |
---|---|---|---|---|
[57] | Structural MRI and genetic association study | Grey matter/connectivity in dopamine-rich regions; catecholamine-related gene variants (SLC6A3, TH, SLC18A2) | Investment experience (long-term investor classification) | Senior investors showed enhanced dopamine-related brain traits |
[58] | Genetic association study | DAT1, DRD2, DRD4 gene–environment interaction | Financial stress exposure | DAT1 amplified intimate partner violence under stress; DRD2 reversed |
[59] | Genetic association study | DRD4 and COMT variants | Real-world occupational data (Wall Street traders) | DRD4 promoter and COMT alleles linked to balanced synaptic dopamine levels predicted longer trading careers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquili, L.; Lim, L.W. Balancing Risk and Reward: Dopamine’s Central Role in Economic Decision-Making. Brain Sci. 2025, 15, 857. https://doi.org/10.3390/brainsci15080857
Aquili L, Lim LW. Balancing Risk and Reward: Dopamine’s Central Role in Economic Decision-Making. Brain Sciences. 2025; 15(8):857. https://doi.org/10.3390/brainsci15080857
Chicago/Turabian StyleAquili, Luca, and Lee Wei Lim. 2025. "Balancing Risk and Reward: Dopamine’s Central Role in Economic Decision-Making" Brain Sciences 15, no. 8: 857. https://doi.org/10.3390/brainsci15080857
APA StyleAquili, L., & Lim, L. W. (2025). Balancing Risk and Reward: Dopamine’s Central Role in Economic Decision-Making. Brain Sciences, 15(8), 857. https://doi.org/10.3390/brainsci15080857