Glucagon-like Peptide-1 Receptor Agonists: A New Frontier in Treating Alcohol Use Disorder
Abstract
1. Introduction
2. Methods
3. Results
3.1. Clinical Trials: Early but Encouraging Results
3.2. Real-World and Observational Evidence
3.3. Safety and Considerations
4. Discussion and Future Perspectives
4.1. GLP-1RAs in AUD: Efficacy of GLP-1RAs in AUD and the Role of Obesity
4.2. Observational Evidence and Real-World Relevance: GLP-1RA Use and Alcohol-Related Outcomes
4.3. Safety Considerations: Neuropsychiatric Risks, Comorbidity Gaps, and Research Limitations
4.4. Toward Precision Psychiatry and Future Directions
4.5. Beyond GLP-1RAs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danpanichkul, P.; Duangsonk, K.; Díaz, L.A.; Chen, V.L.; Rangan, P.; Sukphutanan, B.; Dutta, P.; Wanichthanaolan, O.; Ramadoss, V.; Sim, B.; et al. The burden of alcohol and substance use disorders in adolescents and young adults. Drug Alcohol Depend. 2025, 266, 112495. [Google Scholar] [CrossRef]
- Ho, M.F.; Zhang, C.; Wei, L.; Zhang, L.; Moon, I.; Geske, J.R.; Skime, M.K.; Choi, D.; Biernacka, J.M.; Oesterle, T.S.; et al. Genetic variants associated with acamprosate treatment response in alcohol use disorder patients: A multiple omics study. Br. J. Pharmacol. 2022, 179, 3330–3345. [Google Scholar] [CrossRef]
- Ho, M.F.; Zhang, C.; Zhang, L.; Wei, L.; Zhou, Y.; Moon, I.; Geske, J.R.; Choi, D.-S.; Biernacka, J.; Frye, M.; et al. TSPAN5 influences serotonin and kynurenine: Pharmacogenomic mechanisms related to alcohol use disorder and acamprosate treatment response. Mol. Psychiatry 2021, 26, 3122–3133. [Google Scholar] [CrossRef] [PubMed]
- Klausen, M.K.; Jensen, M.E.; Møller, M.; Le Dous, N.; Jensen, A.-M.Ø.; Zeeman, V.A.; Johannsen, C.-F.; Lee, A.; Thomsen, G.K.; Macoveanu, J.; et al. Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial. JCI Insight 2022, 7, e159863. [Google Scholar] [CrossRef] [PubMed]
- Jerlhag, E. Alcohol-mediated behaviours and the gut-brain axis; with focus on glucagon-like peptide-1. Brain Res. 2020, 1727, 146562. [Google Scholar] [CrossRef]
- Aranäs, C.; Edvardsson, C.E.; Shevchouk, O.T.; Zhang, Q.; Witley, S.; Blid Sköldheden, S.; Zentveld, L.; Vallöf, D.; Tufvesson-Alm, M.; Jerlhag, E. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. eBioMedicine 2023, 93, 104642. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes—State-of-the-art. Mol. Metab. 2021, 46, 101102. [Google Scholar] [CrossRef]
- Wang, W.; Volkow, N.D.; Berger, N.A.; Davis, P.B.; Kaelber, D.C.; Xu, R. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat. Commun. 2024, 15, 4548. [Google Scholar] [CrossRef]
- Athauda, D.; Maclagan, K.; Skene, S.S.; Bajwa-Joseph, M.; Letchford, D.; Chowdhury, K.; Hibbert, S.; Budnik, N.; Zampedri, L.; Dickson, J.; et al. Exenatide once weekly versus placebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1664–1675. [Google Scholar] [CrossRef]
- Klausen, M.K.; Thomsen, M.; Wortwein, G.; Fink-Jensen, A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br. J. Pharmacol. 2022, 179, 625–641. [Google Scholar] [CrossRef]
- Zheng, Z.; Zong, Y.; Ma, Y.; Tian, Y.; Pang, Y.; Zhang, C.; Gao, J. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Diz-Chaves, Y.; Herrera-Pérez, S.; González-Matías, L.C.; Mallo, F. Chapter Fifteen—Effects of Glucagon-like peptide 1 (GLP-1) analogs in the hippocampus. In Vitamins and Hormones; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 457–478. [Google Scholar]
- Chen, B.; Yu, X.; Horvath-Diano, C.; Ortuño, M.J.; Tschöp, M.H.; Jastreboff, A.M.; Schneeberger, M. GLP-1 programs the neurovascular landscape. Cell Metab. 2024, 36, 2173–2189. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Efficacy and Safety of GLP-1 Medicines for Type 2 Diabetes and Obesity. Diabetes Care 2024, 47, 1873–1888. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.D.; Yi, L.; Popławska-Domaszewicz, K.; Chaudhuri, K.R.; Jankovic, J.; Tan, E.K. Glucagon-like peptide-1 receptor agonists in neurodegenerative diseases: Promises and challenges. Pharmacol. Res. 2025, 216, 107770. [Google Scholar] [CrossRef]
- Siddeeque, N.; Hussein, M.H.; Abdelmaksoud, A.; Bishop, J.; Attia, A.S.; Elshazli, R.M.; Fawzy, M.S.; Toraih, E.A. Neuroprotective effects of GLP-1 receptor agonists in neurodegenerative Disorders: A Large-Scale Propensity-Matched cohort study. Int. Immunopharmacol. 2024, 143, 113537. [Google Scholar] [CrossRef]
- Hui, H.; Farilla, L.; Merkel, P.; Perfetti, R. The short half-life of glucagon-like peptide-1 in plasma does not reflect its long-lasting beneficial effects. Eur. J. Endocrinol. 2002, 146, 863–869. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. New Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L. Triple–Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef]
- Kalra, S. Change in Alcohol Consumption Following Liraglutide Initiation: A Real-Life Experience. In Proceedings of the 71st American Diabetes Association Annual Meeting 2011, San Diego, CA, USA, 24–28 June 2011; American Diabetes Association: Alexandria, VA, USA, 2011. Poster 1029. Volume 93. [Google Scholar]
- Probst, L.; Monnerat, S.; Vogt, D.R.; Lengsfeld, S.; Burkard, T.; Meienberg, A.; Bathelt, C.; Christ-Crain, M.; Winzeler, B. Effects of dulaglutide on alcohol consumption during smoking cessation. JCI Insight 2023, 8, e170419. [Google Scholar] [CrossRef]
- Hendershot, C.S.; Bremmer, M.P.; Paladino, M.B.; Kostantinis, G.; Gilmore, T.A.; Sullivan, N.R.; Tow, A.C.; Dermody, S.S.; Prince, M.A.; Jordan, R.; et al. Once-Weekly Semaglutide in Adults with Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2025, 82, 395. [Google Scholar] [CrossRef]
- Degenhardt, L.; Glantz, M.; Evans-Lacko, S.; Sadikova, E.; Sampson, N.; Thornicroft, G.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Helena Andrade, L.; et al. Estimating treatment coverage for people with substance use disorders: An analysis of data from the World Mental Health Surveys. World Psychiatry 2017, 16, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F. Alcohol Use Disorder Treatment: Problems and Solutions. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 255–275. [Google Scholar] [CrossRef]
- Wium-Andersen, I.K.; Wium-Andersen, M.K.; Fink-Jensen, A.; Rungby, J.; Jørgensen, M.B.; Osler, M. Use of GLP-1 receptor agonists and subsequent risk of alcohol-related events. A nationwide register-based cohort and self-controlled case series study. Basic Clin. Pharmacol. Toxicol. 2022, 131, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Qeadan, F.; McCunn, A.; Tingey, B. The association between glucose-dependent insulinotropic polypeptide and/or glucagon-like peptide-1 receptor agonist prescriptions and substance-related outcomes in patients with opioid and alcohol use disorders: A real-world data analysis. Addiction 2024, 120, 236–250. [Google Scholar] [CrossRef]
- Lahteenvuo, M.; Tiihonen, J.; Solismaa, A.; Tanskanen, A.; Mittendorfer-Rutz, E.; Taipale, H. Repurposing Semaglutide and Liraglutide for Alcohol Use Disorder. JAMA Psychiatry 2025, 82, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Sun, C. Can glucagon-like peptide-1 receptor agonists cause acute kidney injury? An analytical study based on post-marketing approval pharmacovigilance data. Front. Endocrinol. 2022, 13, 1032199. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Weiler, S.; Barbui, C.; Raschi, E.; Gastaldon, C. Disproportionality Analysis From World Health Organization Data on Semaglutide, Liraglutide, and Suicidality. JAMA Netw. Open 2024, 7, e2423385. [Google Scholar] [CrossRef]
- Kornelius, E.; Huang, J.Y.; Lo, S.C.; Huang, C.N.; Yang, Y.S. The risk of depression, anxiety, and suicidal behavior in patients with obesity on glucagon like peptide-1 receptor agonist therapy. Sci. Rep. 2024, 14, 24433. [Google Scholar] [CrossRef]
- Bezin, J.; Benard-Laribiere, A.; Hucteau, E.; Tournier, M.; Montastruc, F.; Pariente, A.; Faillie, J.L. Suicide and suicide attempt in users of GLP-1 receptor agonists: A nationwide case-time-control study. EClinicalMedicine 2025, 80, 103029. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Batlle, J.C.; Ayati, A.; Maqsood, M.H.; Long, C.; Tarabanis, C.; McGowan, N.; Liebers, D.T.; Laynor, G.; Hosseini, K.; et al. Suicide and Self-Harm Events with GLP-1 Receptor Agonists in Adults with Diabetes or Obesity: A Systematic Review and Meta-Analysis. JAMA Psychiatry 2025, 150, e250091. [Google Scholar] [CrossRef]
- Ueda, P.; Söderling, J.; Wintzell, V.; Svanström, H.; Pazzagli, L.; Eliasson, B.; Melbye, M.; Hviid, A.; Pasternak, B. GLP-1 Receptor Agonist Use and Risk of Suicide Death. JAMA Intern. Med. 2024, 184, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Volkow, N.D.; Berger, N.A.; Davis, P.B.; Kaelber, D.C.; Xu, R. Association of semaglutide with risk of suicidal ideation in a real-world cohort. Nat. Med. 2024, 30, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Wadden, T.A.; Brown, G.K.; Egebjerg, C.; Frenkel, O.; Goldman, B.; Kushner, R.F.; McGowan, B.; Overvad, M.; Fink-Jensen, A. Psychiatric Safety of Semaglutide for Weight Management in People Without Known Major Psychopathology: Post Hoc Analysis of the STEP 1, 2, 3, and 5 Trials. JAMA Intern. Med. 2024, 184, 1290–1300. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, K.; Park, S.; Cho, H.; Park, J.; Jo, H.; Son, Y.; Kim, S.; Kang, J.; Smith, L.; et al. Association between glucagon-like peptide-1 receptor agonists and risk of suicidality: A comprehensive analysis of the global pharmacovigilance database. Diabetes Obes. Metab. 2024, 26, 5183–5191. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Mansur, R.B.; Rosenblat, J.D.; Kwan, A.T.H. The association between glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and suicidality: Reports to the Food and Drug Administration Adverse Event Reporting System (FAERS). Expert Opin. Drug Saf. 2024, 23, 47–55. [Google Scholar] [CrossRef]
- Pannacciulli, N.; Le, D.S.; Salbe, A.D.; Chen, K.; Reiman, E.M.; Tataranni, P.A.; Krakoff, J. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage 2007, 35, 511–517. [Google Scholar] [CrossRef]
- Gabery, S.; Salinas, C.G.; Paulsen, S.J.; Ahnfelt-Rønne, J.; Alanentalo, T.; Baquero, A.F.; Buckley, S.T.; Farkas, E.; Fekete, C.; Frederiksen, K.S.; et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2021, 5, e133429. [Google Scholar] [CrossRef] [PubMed]
- Kabahizi, A.; Wallace, B.; Lieu, L.; Chau, D.; Dong, Y.; Hwang, E.-S.; Williams, K.W. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics. Br. J. Pharmacol. 2022, 179, 600–624. [Google Scholar] [CrossRef]
- Merchenthaler, I.; Lane, M.; Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 1999, 403, 261–280. [Google Scholar] [CrossRef]
- Muscogiuri, G.; DeFronzo, R.A.; Gastaldelli, A.; Holst, J.J. Glucagon-like Peptide-1 and the Central/Peripheral Nervous System: Crosstalk in Diabetes. Trends Endocrinol. Metab. 2017, 28, 88–103. [Google Scholar] [CrossRef]
- Eldor, R.; Daniele, G.; Huerta, C.; Al-Atrash, M.; Adams, J.; DeFronzo, R.; Duong, T.; Lancaster, J.; Zirie, M.; Jayyousi, A.; et al. Discordance Between Central (Brain) and Pancreatic Action of Exenatide in Lean and Obese Subjects. Diabetes Care 2016, 39, 1804–1810. [Google Scholar] [CrossRef]
- De Giorgi, R.; Ghenciulescu, A.; Dziwisz, O.; Taquet, M.; Adler, A.I.; Koychev, I.; Upthegrove, R.; Solmi, M.; McCutcheon, R.; Pillinger, T.; et al. An analysis on the role of glucagon-like peptide-1 receptor agonists in cognitive and mental health disorders. Nat. Ment. Health 2025, 3, 354–373. [Google Scholar] [CrossRef]
- Xie, Y.; Choi, T.; Al-Aly, Z. Mapping the effectiveness and risks of GLP-1 receptor agonists. Nat. Med. 2025, 31, 951–962. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, P.; Wang, W.; Guo, L.; Pan, Q. The Antidepressant Effects of GLP-1 Receptor Agonists: A Systematic Review and Meta-Analysis. Am. J. Geriatr. Psychiatry 2024, 32, 117–127. [Google Scholar] [CrossRef]
- Sung, Y.K.; La Flair, L.N.; Mojtabai, R.; Lee, L.C.; Spivak, S.; Crum, R.M. The Association of Alcohol Use Disorders with Suicidal Ideation and Suicide Attempts in a Population-Based Sample with Mood Symptoms. Arch. Suicide Res. 2016, 20, 219–232. [Google Scholar] [CrossRef]
- Cook, S.; Osborn, D.; Mathur, R.; Forbes, H.; Parekh, R.; Maini, A.; Neves, A.L.; Gnani, S.; Beaney, T.; Walters, K.; et al. Is alcohol use disorder associated with higher rates of depression and anxiety among people with new onset type 2 diabetes? A cohort study using linked primary care data in England. BMC Prim. Care 2024, 25, 386. [Google Scholar] [CrossRef] [PubMed]
- Madsbad, S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes. Metab. 2016, 18, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Litten, R.Z.; Falk, D.E.; Ryan, M.L.; Fertig, J.; Leggio, L. Five Priority Areas for Improving Medications Development for Alcohol Use Disorder and Promoting Their Routine Use in Clinical Practice. Alcohol. Clin. Exp. Res. 2020, 44, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Kwako, L.E.; Momenan, R.; Grodin, E.N.; Litten, R.Z.; Koob, G.F.; Goldman, D. Addictions Neuroclinical Assessment: A reverse translational approach. Neuropharmacology 2017, 122, 254–264. [Google Scholar] [CrossRef]
- Litten, R.Z.; Falk, D.E.; Ryan, M.L.; Fertig, J.B. Discovery, Development, and Adoption of Medications to Treat Alcohol Use Disorder: Goals for the Phases of Medications Development. Alcohol. Clin. Exp. Res. 2016, 40, 1368–1379. [Google Scholar] [CrossRef]
- Abo, R.; Hebbring, S.; Ji, Y.; Zhu, H.; Zeng, Z.B.; Batzler, A.; Jenkins, G.D.; Biernacka, J.; Snyder, K.; Drews, M.; et al. Merging pharmacometabolomics with pharmacogenomics using ‘1000 Genomes’ single-nucleotide polymorphism imputation: Selective serotonin reuptake inhibitor response pharmacogenomics. Pharmacogenetics Genom. 2012, 22, 247–253. [Google Scholar] [CrossRef]
- Roden, D.M.; Altman, R.B.; Benowitz, N.L.; Flockhart, D.A.; Giacomini, K.M.; Johnson, J.A.; Krauss, R.M.; McLeod, H.L.; Ratain, M.J.; Relling, M.V.; et al. Pharmacogenomics: Challenges and opportunities. Ann. Intern. Med. 2006, 145, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Motsinger-Reif, A.A.; Jorgenson, E.; Relling, M.V.; Kroetz, D.L.; Weinshilboum, R.; Cox, N.J.; Roden, D.M. Genome-wide association studies in pharmacogenomics: Successes and lessons. Pharmacogenetics Genom. 2013, 23, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Giacomini, K.M.; Yee, S.W.; Ratain, M.J.; Weinshilboum, R.M.; Kamatani, N.; Nakamura, Y. Pharmacogenomics and patient care: One size does not fit all. Sci. Transl. Med. 2012, 4, 153ps118. [Google Scholar] [CrossRef] [PubMed]
- Subhani, M.; Dhanda, A.; King, J.A.; Warren, F.C.; Creanor, S.; Davies, M.J.; Eldeghaidy, S.; Bawden, S.; Gowland, P.A.; Bataller, R.; et al. Association between glucagon-like peptide-1 receptor agonists use and change in alcohol consumption: A systematic review. eClinicalMedicine 2024, 78, 102920. [Google Scholar] [CrossRef]
- Wu, J.C.; Garg, P.; Yoshida, Y.; Yamanaka, S.; Gepstein, L.; Hulot, J.S.; Knollmann, B.C.; Schwartz, P.J. Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circ. Res. 2019, 125, 653–658. [Google Scholar] [CrossRef]
- Engle, S.J.; Blaha, L.; Kleiman, R.J. Best Practices for Translational Disease Modeling Using Human iPSC-Derived Neurons. Neuron 2018, 100, 783–797. [Google Scholar] [CrossRef]
- Ho, M.-F.; Zhang, C.; Moon, I.; Tuncturk, M.; Coombes, B.J.; Biernacka, J.; Skime, M.; Oesterle, T.S.; Karpyak, V.M.; Li, H.; et al. Molecular mechanisms involved in alcohol craving, IRF3, and endoplasmic reticulum stress: A multi-omics study. Transl. Psychiatry 2024, 14, 165. [Google Scholar] [CrossRef]
- Ho, M.-F.; Zhang, C.; Moon, I.; Biernacka, J.; Coombes, B.; Ngo, Q.; Skillon, C.; Skime, M.; Oesterle, T.; Croarkin, P.E.; et al. Epigenetic regulation of GABA catabolism in iPSC-derived neurons: The molecular links between FGF21 and histone methylation. Mol. Metab. 2023, 77, 101798. [Google Scholar] [CrossRef]
- Ho, M.-F.; Zhang, C.; Moon, I.; Zhu, X.; Coombes, B.J.; Biernacka, J.; Skime, M.; Oesterle, T.S.; Karpyak, V.M.; Schmidt, K.; et al. Single cell transcriptomics reveals distinct transcriptional responses to oxycodone and buprenorphine by iPSC-derived brain organoids from patients with opioid use disorder. Mol. Psychiatry 2022, 29, 1636–1646. [Google Scholar] [CrossRef]
- Vadodaria, K.C.; Ji, Y.; Skime, M.; Paquola, A.C.; Nelson, T.; Hall-Flavin, D.; Heard, K.J.; Fredlender, C.; Deng, Y.; Elkins, J.; et al. Altered serotonergic circuitry in SSRI-resistant major depressive disorder patient-derived neurons. Mol. Psychiatry 2019, 24, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.P.; Lieberman, R.; Kranzler, H.R.; Gelernter, J.; Clinton, K.; Covault, J. Alcohol-responsive genes identified in human iPSC-derived neural cultures. Transl. Psychiatry 2019, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Murai, K.; Sun, G.; Ye, P.; Tian, E.; Yang, S.; Cui, Q.; Sun, G.; Trinh, D.; Sun, O.; Hong, T.; et al. The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nat. Commun. 2016, 7, 10965. [Google Scholar] [CrossRef]
- Laska, E.M.; Siegel, C.E.; Lin, Z.; Bogenschutz, M.; Marmar, C.R. Gabapentin Enacarbil Extended-Release Versus Placebo: A Likely Responder Reanalysis of a Randomized Clinical Trial. Alcohol. Clin. Exp. Res. 2020, 44, 1875–1884. [Google Scholar] [CrossRef]
- Zillich, L.; Poisel, E.; Frank, J.; Foo, J.C.; Friske, M.M.; Streit, F.; Sirignano, L.; Heilmann-Heimbach, S.; Heimbach, A.; Hoffmann, P.; et al. Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum. Transl. Psychiatry 2022, 12, 190. [Google Scholar] [CrossRef]
- da Rocha, E.L.; Ung, C.Y.; McGehee, C.D.; Correia, C.; Li, H. NetDecoder: A network biology platform that decodes context-specific biological networks and gene activities. Nucleic Acids Res. 2016, 44, e100. [Google Scholar] [CrossRef]
- Zhang, C.; Correia, C.; Weiskittel, T.M.; Tan, S.H.; Meng-Lin, K.; Yu, G.T.; Yao, J.; Yeo, K.S.; Zhu, S.; Ung, C.Y.; et al. A Knowledge-Based Discovery Approach Couples Artificial Neural Networks with Weight Engineering to Uncover Immune-Related Processes Underpinning Clinical Traits of Breast Cancer. Front. Immunol. 2022, 13, 920669. [Google Scholar] [CrossRef] [PubMed]
- Ung, C.Y.; Ghanat Bari, M.; Zhang, C.; Liang, J.; Correia, C.; Li, H. Regulostat Inferelator: A novel network biology platform to uncover molecular devices that predetermine cellular response phenotypes. Nucleic Acids Res. 2019, 47, e82. [Google Scholar] [CrossRef]
- Ghanat Bari, M.; Ung, C.Y.; Zhang, C.; Zhu, S.; Li, H. Machine Learning-Assisted Network Inference Approach to Identify a New Class of Genes that Coordinate the Functionality of Cancer Networks. Sci. Rep. 2017, 7, 6993. [Google Scholar] [CrossRef]
- Lu, J.; Baccei, A.; Lummertz da Rocha, E.; Guillermier, C.; McManus, S.; Finney, L.A.; Zhang, C.; Steinhauser, M.L.; Li, H.; Lerou, P.H. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm. Stem Cell Res. 2018, 28, 48–55. [Google Scholar] [CrossRef]
- Xing, Q.R.; El Farran, C.A.; Gautam, P.; Chuah, Y.S.; Warrier, T.; Toh, C.X.D.; Kang, N.Y.; Sugii, S.; Chang, Y.T.; Xu, J.; et al. Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Sci. Adv. 2020, 6, eaba1190. [Google Scholar] [CrossRef] [PubMed]
Rank | Drug Name Manufacturer | Sales USD (Billions) | Indication(s) | Pharmacological Class |
---|---|---|---|---|
1 | Keytruda (Pembrolizumab) Merck | 29.5 | Various cancers | Anti-PD1 monoclonal antibody |
2 | Ozempic (Semaglutide) Novo Nordisk | 16.1 | Type 2 diabetes and weight loss | GLP-1RA |
3 | Dupixent (Dupilumab) Sanofi/Regeneron | 13.5 | Severe atopic dermatitis, asthma, and other conditions | Anti-IL4/IL13 monoclonal antibody |
4 | Eliquis (Apixaban) BMS/Pfizer | 13.3 | Anticoagulation | Factor Xa inhibitor |
5 | Biktarvy (Bictegravir/emtricitabine/tenofovir alafenamide) Gilead | 12.6 | Infectious diseases (HIV) | HIV treatment |
6 | Darzalex (Daratumumab) J&J | 12 | Multiple myeloma | Anti-CD38 monoclonal antibody |
7 | Opdivo (Nivolumab) BMS/Ono Pharma | 11.3 | Various cancers | Anti-PD1 monoclonal antibody |
8 | Comirnaty (Tozinameran) Pfizer/BioNTech | 10.8 | Infectious diseases (COVID-19) | SARS-COVID-19 vaccine |
9 | Gardasil (Gardasil 9) Merck/CSL | 10 | Infectious diseases (HPV) | HPV vaccine |
10 | Skyrizi (Risankizumab-rzaa) AbbVie | 9.9 | Various autoimmune disorders | Anti-IL23 monoclonal antibody |
GLP-1RA | Half Life | Molecular Formula | Approval Year | Indication |
---|---|---|---|---|
Exenatide | 2–4 h | C149H234N40O47S | 2005 | Type 2 diabetes |
Liraglutide | 12–13 h | C172H265N43O51 | 2010 | Type 2 diabetes |
Albiglutide | 4–7 days | C148H224N40O45 | 2014 | Type 2 diabetes |
Dulaglutide | 5–6 days | C2646H4044N704O836S18 | 2014 | Type 2 diabetes |
Semaglutide | ~7 days | C187H291N45O59 | 2017 | Type 2 diabetes |
Tirzepatide * | 12–13 h | C225H348N48O68 | 2022 | Type 2 diabetes |
Study | Study Design | Participants | Treatment | Control | Outcome Measures | Key Findings |
---|---|---|---|---|---|---|
Klausen et al., 2022 | DBRCT Single-site 26-week treatment + 6-month follow-up N:127 | Treatment-seeking heavy drinkers with AUD | Exenatide 2 mg SC weekly + CBT (N:62) | Placebo injection + CBT (N:65) |
|
|
Probst et al., 2023 | DBRCT Single-site 12-week treatment + 6-month follow-up N:151 | Patients in a smoking cessation trial with comorbid AUD | Dulaglutide 1.5 mg SC weekly + varenicline + counseling (N:76) | Placebo injection + varenicline + counseling (N:75) |
|
|
Hendershot et al., 2025 | DBRCT Single-site 9 weeks treatment + 1week follow-up N:48 | Non-treatment-seeking individuals with AUD | Semaglutide 0.25 mg, escalating to 1.0 mg SC weekly (N:24) | Placebo injection (N:24) |
|
|
Wium-Andersen et al., 2022 | Denmark nationwide retrospective cohort study, 2009–2018, with a median 4.1 years follow-up N:87,676 | New users of GLP-1RAs or DPP-4 inhibitors | All GLP-1RAs (N:38,454) | DPP4 inhibitors (DPP-4i) (N:49,222) |
|
|
Qeadan et al., 2024 | USA De-identified electronic health record data from the Oracle Cerner Real-World Data Retrospective cohort study, 2014–2022, with up to 2 years follow-up N:817,309 | Patients with AUD | GIP and/or GLP-1 RAs (albiglutide, dulaglutide, exenatide, liraglutide, lixisenatide, semaglutide, tirzepatide) (N:5621) | No GIP/GLP-1 RA prescription (N:811,688) |
|
|
Wang et al., 2024 | USA De-identified patient electronic health records within the TriNetX Platform Retrospective cohort study, 2017–2022, with up to 3 years follow-up N:83,825 | Patients with obesity and/or T2DM | Semaglutide (N:45,797) | Other anti-obesity and anti-diabetic medications: naltrexone and topiramate (N:38,028) |
|
|
Lähteenvuo et al., 2025 | Swedish nationwide electronic registries Retrospective cohort study, 2006–2023, with a median 8.8 years follow-up N:227,868 | Patients with AUD | Semaglutide, liraglutide, exenatide, dulaglutide (N:6276) | Other AUD medications (N:75,454) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oesterle, T.S.; Ho, M.-F. Glucagon-like Peptide-1 Receptor Agonists: A New Frontier in Treating Alcohol Use Disorder. Brain Sci. 2025, 15, 702. https://doi.org/10.3390/brainsci15070702
Oesterle TS, Ho M-F. Glucagon-like Peptide-1 Receptor Agonists: A New Frontier in Treating Alcohol Use Disorder. Brain Sciences. 2025; 15(7):702. https://doi.org/10.3390/brainsci15070702
Chicago/Turabian StyleOesterle, Tyler S., and Ming-Fen Ho. 2025. "Glucagon-like Peptide-1 Receptor Agonists: A New Frontier in Treating Alcohol Use Disorder" Brain Sciences 15, no. 7: 702. https://doi.org/10.3390/brainsci15070702
APA StyleOesterle, T. S., & Ho, M.-F. (2025). Glucagon-like Peptide-1 Receptor Agonists: A New Frontier in Treating Alcohol Use Disorder. Brain Sciences, 15(7), 702. https://doi.org/10.3390/brainsci15070702