Comparison of Glutathione, Retinol and α- and γ-Tocopherols Concentrations Between Children with and Without Epilepsy: A Single-Center Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Groups
2.2. Analyses in Subgroups of Epileptic Patients
2.3. Determination of Antioxidants
2.4. Levels of Lipid Parameters
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the Analyzed Groups
3.2. Comparison of Concentrations of Selected Antioxidants Between the Study Group and the Control Group
3.3. Analysis of Tocopherol/Lipid Ratios Between the Study and Control Groups
3.4. Analysis of Concentrations of Selected Antioxidants Depending on the ASMs Taken
3.5. Correlations Between Age and TC and the Analyzed Antioxidants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guekht, A.; Brodie, M.; Secco, M.; Li, S.; Volkers, N.; Wiebe, S. The Road to a World Health Organization Global Action Plan on Epilepsy and Other Neurological Disorders. Epilepsia 2021, 62, 1057–1063. [Google Scholar] [CrossRef]
- Epilepsy: A Public Health Imperative. World Health Organization 2019. Available online: https://www.who.int/publications/i/item/epilepsy-a-public-health-imperative (accessed on 12 May 2025).
- Cardenas-Rodriguez, N.; Huerta-Gertrudis, B.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Bandala, C.; Carmona-Aparicio, L.; Coballase-Urrutia, E. Role of Oxidative Stress in Refractory Epilepsy: Evidence in Patients and Experimental Models. Int. J. Mol. Sci. 2013, 14, 1455–1476. [Google Scholar] [CrossRef] [PubMed]
- Vu, L.C.; Piccenna, L.; Kwan, P.; O’Brien, T.J. New-Onset Epilepsy in the Elderly. Br. J. Clin. Pharmacol. 2018, 84, 2208–2217. [Google Scholar] [CrossRef] [PubMed]
- Baulac, M.; De Boer, H.; Elger, C.; Glynn, M.; Kälviäinen, R.; Little, A.; Mifsud, J.; Perucca, E.; Pitkänen, A.; Ryvlin, P. Epilepsy Priorities in Europe: A Report of the ILAE-IBE Epilepsy Advocacy Europe Task Force. Epilepsia 2015, 56, 1687–1695. [Google Scholar] [CrossRef]
- Puttachary, S.; Sharma, S.; Stark, S.; Thippeswamy, T. Seizure-induced oxidative stress in temporal lobe epilepsy. BioMed Res. Int. 2015, 2015, 745613. [Google Scholar] [CrossRef]
- Sarecka-Hujar, B.; Szołtysek-Bołdys, I.; Kopyta, I.; Dolińska, B.; Sobczak, A. Concentrations of the Selected Biomarkers of Endothelial Dysfunction in Response to Antiepileptic Drugs: A Literature Review. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029619859429. [Google Scholar] [CrossRef] [PubMed]
- Anwar, H.; Khan, Q.U.; Nadeem, N.; Pervaiz, I.; Ali, M.; Cheema, F.F. Epileptic seizures. Discoveries 2020, 8, e110. [Google Scholar] [CrossRef]
- Mlinar, S.; Petek, D.; Cotič, Ž.; Mencin Čeplak, M.; Zaletel, M. Persons with Epilepsy: Between Social Inclusion and Marginalisation. Behav. Neurol. 2016, 2016, 2018509. [Google Scholar] [CrossRef]
- St Louis, E.K.; Rosenfeld, W.E.; Bramley, T. Antiepileptic drug monotherapy: The initial approach in epilepsy management. Curr. Neuropharmacol. 2009, 7, 77–82. [Google Scholar] [CrossRef]
- Henry Daniel Raj, T.; Sylvia, A.; Chidambaranathan, S.; Nirmala, P. Monotherapy and polytherapy in Paediatric seizures: A prospective, observational study in a tertiary care teaching hospital. IAIM 2017, 4, 97–104. [Google Scholar]
- Kopciuch, D.; Kus, K.; Fliciński, J.; Steinborn, B.; Winczewska-Wiktor, A.; Paczkowska, A.; Zaprutko, T.; Ratajczak, P.; Nowakowska, E. Pharmacovigilance in Pediatric Patients with Epilepsy Using Antiepileptic Drugs. Int. J. Environ. Res. Public Health 2022, 19, 4509. [Google Scholar] [CrossRef] [PubMed]
- Egunsola, O.; Sammons, H.M.; Whitehouse, W.P. Monotherapy or polytherapy for childhood epilepsies? Arch. Dis. Child. 2016, 101, 356–358. [Google Scholar] [CrossRef]
- Liu, L.; Wells, P.G. DNA oxidation as a potential molecular mechanism mediating drug-induced birth defects: Phenytoin and structurally related teratogens initiate the formation of 8-hydroxy-2′-deoxyguanosine in vitro and in vivo in murine maternal hepatic and embryonic tissues. Free Radic. Biol. Med. 1995, 19, 639–648. [Google Scholar] [CrossRef]
- Martinc, B.; Grabnar, I.; Milosheska, D.; Lorber, B.; Vovk, T. A Cross-Sectional Study Comparing Oxidative Stress in Patients with Epilepsy Treated with Old and New Generation Antiseizure Medications. Medicina 2024, 60, 1299. [Google Scholar] [CrossRef]
- Aycicek, A.; Iscan, A. The effects of carbamazepine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. Eur. Neurol. 2007, 57, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Michoulas, A.; Tong, V.; Teng, X.W.; Chang, T.K.H.; Abbott, F.S.; Farrell, K. Oxidative stress in children receiving valproic acid. J. Pediatr. 2006, 149, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Sudha, K.; Rao, A.V.; Rao, A. Oxidative stress and antioxidants in epilepsy. Clin. Chim. Acta 2001, 303, 19–24. [Google Scholar] [CrossRef]
- Palace, V.P.; Khaper, N.; Qin, Q.; Singal, P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 1999, 26, 746–761. [Google Scholar] [CrossRef]
- Nau, H.; Tzimas, G.; Mondry, M.; Plum, C.; Spohr, H.-L. Antiepileptic drugs alter endogenous retinoid concentrations: A possible mechanism of teratogenesis of anticonvulsant therapy. Life Sci. 1995, 57, 53–60. [Google Scholar] [CrossRef]
- Teerlink, T. Determination of the Endogenous Nitric Oxide Synthase Inhibitor Asymmetric Dimethylarginine in Biological Samples by HPLC. Hypertens. Methods Protoc. 2005, 108, 263–274. [Google Scholar]
- Sobczak, A.; Skop, B.; Kula, B. Simultaneous Determination of Serum Retinol and α-and γ-Tocopherol Levels in Type II Diabetic Patients Using High-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr. B Biomed. Sci. Appl. 1999, 730, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Sarecka-Hujar, B.; Szołtysek-Bołdys, I.; Kopyta, I. Serum Levels of Lipids and Selected Aminothiols in Epileptic Children—A Pilot Case-Control Study. Brain Sci. 2022, 12, 120. [Google Scholar] [CrossRef]
- Barzegar-Amini, M.; Khorramruz, F.; Ghazizadeh, H.; Sahebi, R.; Mohammadi-Bajgyran, M.; Mohaddes Ardabili, H.; Tayefi, M.; Darroudi, S.; Moohebati, M.; Heidari-Bakavoli, A.; et al. Association between serum Vitamin E concentrations and the presence of Metabolic Syndrome: A population-based cohort study. Acta Biomed. 2021, 92, e2021047. [Google Scholar] [CrossRef]
- Hamed, S.A.; Abdellah, M.M.; El-Melegy, N. Blood Levels of Trace Elements, Electrolytes, and Oxidative Stress/Antioxidant Systems in Epileptic Patients. J. Pharmacol. Sci. 2004, 96, 465–473. [Google Scholar] [CrossRef]
- Turkdogan, D.; Toplan, S.; Karakoc, Y. Lipid Peroxidation and Antioxidative Enzyme Activities in Childhood Epilepsy. J. Child Neurol. 2002, 17, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, Y.; Wang, Y.; Pan, S.; Lu, Y.; Gao, W.; Hu, X.; Fang, Q. Diet-Derived Circulating Antioxidants and Risk of Epilepsy: A Mendelian Randomization Study. Front. Neurol. 2024, 15, 1422409. [Google Scholar] [CrossRef] [PubMed]
- Elkhayat, H.A.; Hamed, H.M.; Shouman, M.G.; Elagouza, I.A.; Mekkawy, L.H. Influence of Conventional Antiepileptic Drugs on Glutathione-S-Transferase and Lipid Peroxidation in Children with Idiopathic Epilepsy. Bull. Natl. Res. Cent. 2018, 42, 17. [Google Scholar] [CrossRef]
- Menon, B.; Ramalingam, K.; Kumar, R.V. Low Plasma Antioxidant Status in Patients with Epilepsy and the Role of Antiepileptic Drugs on Oxidative Stress. Ann. Indian Acad. Neurol. 2014, 17, 398–404. [Google Scholar] [CrossRef]
- Cárdenas-Rodriguez, N.; Coballase-Urrutia, E.; Pérez-Cruz, C.; Montesinos-Correa, H.; Rivera-Espinosa, L.; Sampieri, A., III; Carmona-Aparicio, L. Relevance of the Glutathione System in Temporal Lobe Epilepsy: Evidence in Human and Experimental Models. Oxid. Med. Cell. Longev. 2014, 2014, 759293. [Google Scholar] [CrossRef]
- Ono, H.; Sakamoto, A.; Sakura, N. Plasma Total Glutathione Concentrations in Epileptic Patients Taking Anticonvulsants. Clin. Chim. Acta 2000, 298, 135–143. [Google Scholar] [CrossRef]
- Yilgor, A.; Demir, C. Determination of oxidative stress level and some antioxidant activities in refractory epilepsy patients. Sci. Rep. 2024, 14, 6688. [Google Scholar] [CrossRef] [PubMed]
- Çoban Ramazan, D.; Anadol, Ü.; Yalçın, A.D.; Yalçın, A.S. Plasma homocysteine and aminothiol levels in idiopathic epilepsy patients receiving antiepileptic drugs. Turk. J. Biochem. 2019, 44, 661–666. [Google Scholar] [CrossRef]
- Bakhtiari, E.; Heydarian, F.; Azmoudeh, F.; Kaffashbashi, M.; Heidarian, M. Serum Level of Vitamin A in Febrile Children with and without Seizure: A Comparative Study. Heliyon 2023, 9, e18536. [Google Scholar] [CrossRef]
- Stuetz, W.; Weber, D.; Dollé, M.E.T.; Jansen, E.; Grubeck-Loebenstein, B.; Fiegl, S.; Toussaint, O.; Bernhardt, J.; Gonos, E.S.; Franceschi, C.; et al. Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35–74 Years) General Population: A Cross-Sectional Study in Six European Countries. Nutrients 2016, 8, 614. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, I.; El-Doush, I.; Billedo, G. Age and gender-related reference values for serum dl-alpha-tocopherol and all-trans-retinol levels in Saudi population. Int. J. Vitam. Nutr. Res. 2007, 77, 326–335. [Google Scholar] [CrossRef]
- Raizman, J.E.; Cohen, A.H.; Teodoro-Morrison, T.; Wan, B.; Khun-Chen, M.; Wilkenson, C.; Bevilaqua, V.; Adeli, K. Pediatric Reference Value Distributions for Vitamins A and E in the CALIPER Cohort and Establishment of Age-Stratified Reference Intervals. Clin. Biochem. 2014, 47, 812–815. [Google Scholar] [CrossRef]
- Muslim, A.T.; Altememi, W.H.; Al-Obeidy, E.S.; Shareef, B.Q. Vitamin E level in epileptic patients attending Neuroscience hospital in Baghdad. Iraqi New Med. J. 2023, 9, 107–111. [Google Scholar]
- Ambrogini, P.; Albertini, M.C.; Betti, M.; Galati, C.; Lattanzi, D.; Savelli, D.; Di Palma, M.; Saccomanno, S.; Bartolini, D.; Torquato, P.; et al. Neurobiological Correlates of Alpha-Tocopherol Antiepileptogenic Effects and MicroRNA Expression Modulation in a Rat Model of Kainate-Induced Seizures. Mol. Neurobiol. 2018, 55, 7822–7838. [Google Scholar] [CrossRef] [PubMed]
- Sayyah, M.; Yousefi-Pour, M.; Narenjkar, J. Anti-epileptogenic effect of beta-carotene and vitamin A in pentylenetetrazole-kindling model of epilepsy in mice. Epilepsy Res. 2005, 63, 11–16. [Google Scholar] [CrossRef]
- Ogunmekan, A.O.; Hwang, P.A. A randomized, double-blind, placebo-controlled, clinical trial of D-alpha-tocopheryl acetate (vitamin E), as add-on therapy, for epilepsy in children. Epilepsia 1989, 30, 84–89. [Google Scholar] [CrossRef]
- Chang, H.H.; Sung, P.-S.; Liao, W.C.; Chang, A.Y.W.; Hsiao, Y.-H.; Fu, T.-F.; Huang, C.-Y.; Huang, C.-W. An Open Pilot Study of the Effect and Tolerability of Add-on Multivitamin Therapy in Patients with Intractable Focal Epilepsy. Nutrients 2020, 12, 2359. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Group with Epilepsy N = 21 | Sex Subgroups | p * | Age Subgroups | p ** | ||
---|---|---|---|---|---|---|---|
Male N = 13 (62%) | Female N = 8 (38%) | <6 Years of Age N = 11 (52%) | >6 Years of Age N = 10 (48%) | ||||
Age (years), M ± SD | 7.1 ± 4.4 | 7.3 ± 3.7 | 6.8 ± 5.5 | 0.362 | 3.7 ± 0.7 | 10.9 ± 3.4 | <0.001 |
Number of ASMs taken, n (%) | 0.999 | 0.556 | |||||
Two | 13 (62) | 8 (61) | 5 (62) | 7 (64) | 6 (60) | ||
Three | 7 (33) | 5 (38) | 2 (25) | 4 (36) | 3 (30) | ||
Four | 1 (5) | 0 (0) | 1 (12) | 0 (0) | 1 (10) | ||
TC (mg/dL), M ± SD | 129 ± 27 | 126 ± 27 | 132 ± 27 | 0.500 | 129 ± 24 | 128 ± 31 | 0.647 |
TG (mg/dL), M ± SD | 104 ± 47 | 112 ± 49 | 90 ± 44 | 0.860 | 93 ± 46 | 116 ± 48 | 0.274 |
Retinol (µmol/L), M ± SD | 0.47 ± 0.13 | 0.44 ± 0.11 | 0.52 ± 0.15 | 0.076 | 0.44 ± 0.15 | 0.51 ± 0.09 | 0.275 |
α-tocopherol (µmol/L), M ± SD | 9.2 ± 3.3 | 9.6 ± 2.8 | 8.5 ± 4.2 | 0.414 | 10.3 ± 3.2 | 8.0 ± 3.2 | 0.084 |
γ-tocopherol (µmol/L), M ± SD | 0.51 ± 0.34 | 0.61 ± 0.36 | 0.35 ± 0.23 | 0.053 | 0.48 ± 0.37 | 0.55 ± 0.31 | 0.418 |
Glutathione (µmol/L), M ± SD | 1.5 ± 0.3 | 1.5 ± 0.4 | 1.4 ± 0.1 | 0.500 | 1.5 ± 0.4 | 1.5 ± 0.3 | 0.698 |
Variable | Total N = 44 | Individuals with Epilepsy N = 21 | Control Group N = 23 | p |
---|---|---|---|---|
Retinol (µmol/L), M ± SD | 0.46 ± 0.13 | 0.47 ± 0.13 | 0.44 ± 0.13 | 0.388 |
α-tocopherol (µmol/L), M ± SD | 9.3 ± 2.8 | 9.2 ± 3.4 | 9.4 ± 2.3 | 0.780 |
γ-tocopherol (µmol/L), M ± SD | 0.44 ± 0.27 | 0.51 ± 0.34 | 0.38 ± 0.17 | 0.388 |
Glutathione (µmol/L), M ± SD | 2.0 ± 1.0 | 1.5 ± 0.3 | 2.4 ± 1.2 | <0.001 |
α-tocopherol/γ-tocopherol ratio, M ± SD | 31 ± 36 | 25 ± 17 | 36 ± 47 | 0.252 |
α-tocopherol/glutathione ratio, M ± SD | 5.6 ± 2.5 | 6.5 ± 2.8 | 4.7 ± 1.9 | 0.042 |
γ-tocopherol/glutathione ratio, M ± SD | 0.26 ± 0.19 | 0.35 ± 0.23 | 0.18 ± 0.10 | 0.004 |
Variable | Total N = 44 | Individuals with Epilepsy N = 21 | Control Group N = 23 | p |
---|---|---|---|---|
α-tocopherol/TC ratio, M ± SD | 0.074 ± 0.024 | 0.072 ± 0.024 | 0.075 ± 0.025 | 0.925 |
α-tocopherol/TG ratio, M ± SD | 0.121 ± 0.070 | 0.109 ± 0.065 | 0.133 ± 0.070 | 0.301 |
α-tocopherol/TC + TG ratio, M ± SD | 0.044 ± 0.018 | 0.041 ± 0.016 | 0.046 ± 0.019 | 0.347 |
γ-tocopherol/TC ratio, M ± SD | 0.003 ± 0.002 | 0.004 ± 0.003 | 0.003 ± 0.001 | 0.152 |
γ-tocopherol/TG ratio, M ± SD | 0.005 ± 0.004 | 0.005 ± 0.003 | 0.005 ± 0.004 | 0.796 |
γ-tocopherol/TC + TG ratio, M ± SD | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.411 |
Variable | Total Group with Epilepsy N = 21 | A Combination of VPA and LEV of ASMs Used N = 6 (29%) | A Combination of ASMs Other Than VPA and LEV N = 15 (71%) | p |
---|---|---|---|---|
Retinol (µmol/L), M ± SD | 0.47 ± 0.13 | 0.56 ± 0.07 | 0.44 ± 0.13 | 0.047 |
α-tocopherol (µmol/L), M ± SD | 9 ± 3 | 8 ± 2 | 10 ± 4 | 0.331 |
γ-tocopherol (µmol/L), M ± SD | 0.51 ± 0.34 | 0.56 ± 0.23 | 0.49 ± 0.37 | 0.259 |
Glutathione (µmol/L), M ± SD | 1.5 ± 0.3 | 1.8 ± 0.3 | 1.3 ± 0.3 | 0.003 |
Individuals with Epilepsy | Control Group | |||||||
---|---|---|---|---|---|---|---|---|
Age (Years) | TC (mg/dL) | Age (Years) | TC (mg/dL) | |||||
Antioxidants | r | p | r | p | r | p | r | p |
Retinol (µmol/L), M ± SD | 0.128 | 0.580 | 0.065 | 0.780 | 0.573 | 0.004 | 0.491 | 0.017 |
α-tocopherol (µmol/L), M ± SD | −0.505 | 0.019 | 0.274 | 0.229 | −0.025 | 0.910 | 0.132 | 0.548 |
γ-tocopherol (µmol/L), M ± SD | 0.169 | 0.463 | −0.087 | 0.708 | 0.461 | 0.027 | 0.276 | 0.203 |
Glutathione (µmol/L), M ± SD | −0.076 | 0.742 | −0.087 | 0.708 | 0.031 | 0.892 | −0.032 | 0.887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szołtysek-Bołdys, I.; Zielińska-Danch, W.; Gajowska, Ł.; Kopyta, I.; Sarecka-Hujar, B. Comparison of Glutathione, Retinol and α- and γ-Tocopherols Concentrations Between Children with and Without Epilepsy: A Single-Center Case–Control Study. Brain Sci. 2025, 15, 655. https://doi.org/10.3390/brainsci15060655
Szołtysek-Bołdys I, Zielińska-Danch W, Gajowska Ł, Kopyta I, Sarecka-Hujar B. Comparison of Glutathione, Retinol and α- and γ-Tocopherols Concentrations Between Children with and Without Epilepsy: A Single-Center Case–Control Study. Brain Sciences. 2025; 15(6):655. https://doi.org/10.3390/brainsci15060655
Chicago/Turabian StyleSzołtysek-Bołdys, Izabela, Wioleta Zielińska-Danch, Łucja Gajowska, Ilona Kopyta, and Beata Sarecka-Hujar. 2025. "Comparison of Glutathione, Retinol and α- and γ-Tocopherols Concentrations Between Children with and Without Epilepsy: A Single-Center Case–Control Study" Brain Sciences 15, no. 6: 655. https://doi.org/10.3390/brainsci15060655
APA StyleSzołtysek-Bołdys, I., Zielińska-Danch, W., Gajowska, Ł., Kopyta, I., & Sarecka-Hujar, B. (2025). Comparison of Glutathione, Retinol and α- and γ-Tocopherols Concentrations Between Children with and Without Epilepsy: A Single-Center Case–Control Study. Brain Sciences, 15(6), 655. https://doi.org/10.3390/brainsci15060655