Alterations in Olfactory Cortex Volume in Mild Cognitive Impairment and Mild Alzheimer’s Disease Dementia: A Study of Sex-Related Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI Acquisition and Processing
2.3. Data Analysis
3. Results
3.1. Demographics of the Participants
3.2. Olfactory Cortex Volume
3.3. APOE ε4 Carriers vs. APOE ε4 Non-Carriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Dementia; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Nebel, R.A.; Aggarwal, N.T.; Barnes, L.L.; Gallagher, A.; Goldstein, J.M.; Kantarci, K.; Mallampalli, M.P.; Mormino, E.C.; Scott, L.; Yu, W.H.; et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimer’s Dement. 2018, 14, 1171–1183. [Google Scholar] [CrossRef] [PubMed]
- Son, G.; Jahanshahi, A.; Yoo, S.-J.; Boonstra, J.T.; Hopkins, D.A.; Steinbusch, H.W.M.; Moon, C. Olfactory neuropathology in Alzheimer’s disease: A sign of ongoing neurodegeneration. BMB Rep. 2021, 54, 295–304. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimer’s Dement. 2010, 6, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Alafuzoff, I.; Arzberger, T.; Al-Sarraj, S.; Bodi, I.; Bogdanovic, N.; Braak, H.; Bugiani, O.; Del-Tredici, K.; Ferrer, I.; Gelpi, E.; et al. Staging of Neurofibrillary Pathology in Alzheimer’s Disease: A Study of the BrainNet Europe Consortium. Brain Pathol. 2008, 18, 484–496. [Google Scholar] [CrossRef]
- Yilmaz, A.; Geddes, T.; Han, B.; Bahado-Singh, R.O.; Wilson, G.D.; Imam, K.; Maddens, M.; Graham, S.F. Diagnostic Biomarkers of Alzheimer’s Disease as Identified in Saliva using 1H NMR-Based Metabolomics. J. Alzheimer’s Dis. 2017, 58, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- Cermakova, P.; Eriksdotter, M.; Lund, L.H.; Winblad, B.; Religa, P.; Religa, D. Heart failure and Alzheimer′s disease. J. Intern. Med. 2015, 277, 406–425. [Google Scholar] [CrossRef]
- Hennebelle, M.; Harbeby, E.; Tremblay, S.; Chouinard-Watkins, R.; Pifferi, F.; Plourde, M.; Guesnet, P.; Cunnane, S.C. Challenges to determining whether DHA can protect against age-related cognitive decline. Clin. Lipidol. 2015, 10, 91–102. [Google Scholar] [CrossRef]
- Lloret, A.; Fuchsberger, T.; Giraldo, E.; Viña, J. Molecular mechanisms linking amyloid β toxicity and Tau hyperphosphorylation in Alzheimer’s disease. Free Radic. Biol. Med. 2015, 83, 186–191. [Google Scholar] [CrossRef]
- Flores, J.; Noël, A.; Foveau, B.; Lynham, J.; Lecrux, C.; LeBlanc, A.C. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat. Commun. 2018, 9, 3916. [Google Scholar] [CrossRef] [PubMed]
- González, L.M.; Bourissai, A.; Lessard-Beaudoin, M.; Lebel, R.; Tremblay, L.; Lepage, M.; Graham, R.K. Amelioration of Cognitive and Olfactory System Deficits in APOE4 Transgenic Mice with DHA Treatment. Mol. Neurobiol. 2023, 60, 5624–5641. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef]
- Nam, E.; Nam, G.; Lim, M.H. Synaptic Copper, Amyloid-β, and Neurotransmitters in Alzheimer’s Disease. Biochemistry 2020, 59, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Belleville, S.; Fouquet, C.; Duchesne, S.; Collins, D.L.; Hudon, C. Detecting Early Preclinical Alzheimer’s Disease via Cognition, Neuropsychiatry, and Neuroimaging: Qualitative Review and Recommendations for Testing. J. Alzheimer’s Dis. 2014, 42, S375–S382. [Google Scholar] [CrossRef] [PubMed]
- Jarholm, J.A.; Bjørnerud, A.; Dalaker, T.O.; Akhavi, M.S.; Kirsebom, B.E.; Pålhaugen, L.; Nordengen, K.; Grøntvedt, G.R.; Nakling, A.; Kalheim, L.F.; et al. Medial Temporal Lobe Atrophy in Predementia Alzheimer’s Disease: A Longitudinal Multi-Site Study Comparing Staging and A/T/N in a Clinical Research Cohort1. J. Alzheimer’s Dis. 2023, 94, 259–279. [Google Scholar] [CrossRef]
- Morris, J.C.; Storandt, M.; Miller, J.P.; McKeel, D.W.; Price, J.L.; Rubin, E.H.; Berg, L. Mild Cognitive Impairment Represents Early-Stage Alzheimer Disease. Arch. Neurol. 2001, 58, 397–405. [Google Scholar] [CrossRef]
- Jobin, B.; Boller, B.; Frasnelli, J. Volumetry of Olfactory Structures in Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and a Meta-Analysis. Brain Sci. 2021, 11, 1010. [Google Scholar] [CrossRef]
- Kashibayashi, T.; Takahashi, R.; Fujita, J.; Kamimura, N.; Okutani, F.; Kazui, H. Correlation between regional brain volume and olfactory function in very mild amnestic patients. J. Neurol. Sci. 2020, 411, 116686. [Google Scholar] [CrossRef]
- Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 2019, 15, 11–24. [Google Scholar] [CrossRef]
- Arnold, S.E.; Lee, E.B.; Moberg, P.J.; Stutzbach, L.; Kazi, H.; Han, L.-Y.; Lee, V.M.Y.; Trojanowski, J.Q. Olfactory epithelium amyloid-β and paired helical filament-tau pathology in Alzheimer disease. Ann. Neurol. 2010, 67, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Devanand, D.P.; Pradhaban, G.; Liu, X.; Khandji, A.; De Santi, S.; Segal, S.; Rusinek, H.; Pelton, G.H.; Honig, L.S.; Mayeux, R.; et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: Prediction of Alzheimer disease. Neurology 2007, 68, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Thomann, P.A.; Dos Santos, V.; Seidl, U.; Toro, P.; Essig, M.; Schröder, J. MRI-Derived Atrophy of the Olfactory Bulb and Tract in Mild Cognitive Impairment and Alzheimer’s Disease. J. Alzheimer’s Dis. 2009, 17, 213–221. [Google Scholar] [CrossRef]
- Al-Otaibi, M.; Lessard-Beaudoin, M.; Castellano, C.-A.; Gris, D.; Cunnane, S.C.; Graham, R.K. Volumetric MRI demonstrates atrophy of the olfactory cortex in AD. Curr. Alzheimer Res. 2021, 17, 904–915. [Google Scholar] [CrossRef]
- Vasavada, M.M.; Wang, J.; Eslinger, P.J.; Gill, D.J.; Sun, X.; Karunanayaka, P.; Yang, Q.X. Olfactory Cortex Degeneration in Alzheimer’s Disease and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2015, 45, 947–958. [Google Scholar] [CrossRef]
- Mitolo, M.; Stanzani-Maserati, M.; Capellari, S.; Testa, C.; Rucci, P.; Poda, R.; Oppi, F.; Gallassi, R.; Sambati, L.; Rizzo, G.; et al. Predicting conversion from mild cognitive impairment to Alzheimer’s disease using brain 1H-MRS and volumetric changes: A two-year retrospective follow-up study. NeuroImage Clin. 2019, 23, 101843. [Google Scholar] [CrossRef]
- Zheng, F.; Cui, D.; Zhang, L.; Zhang, S.; Zhao, Y.; Liu, X.; Liu, C.; Li, Z.; Zhang, D.; Shi, L.; et al. The Volume of Hippocampal Subfields in Relation to Decline of Memory Recall Across the Adult Lifespan. Front. Aging Neurosci. 2018, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef]
- Jytzler, J.A.; Lysdahlgaard, S. Radiomics evaluation for the early detection of Alzheimer’s dementia using T1-weighted MRI. Radiography 2024, 30, 1427–1433. [Google Scholar] [CrossRef]
- Alotaibi, M.M.; De Marco, M.; Venneri, A. Sex differences in olfactory cortex neuronal loss in aging. Front. Hum. Neurosci. 2023, 17, 1130200. [Google Scholar] [CrossRef]
- De Marco, M.; Beltrachini, L.; Biancardi, A.; Frangi, A.F.; Venneri, A. Machine-learning Support to Individual Diagnosis of Mild Cognitive Impairment Using Multimodal MRI and Cognitive Assessments. Alzheimer Dis. Assoc. Disord. 2017, 31, 278–286. [Google Scholar] [CrossRef]
- De Marco, M.; Ourselin, S.; Venneri, A. Age and hippocampal volume predict distinct parts of default mode network activity. Sci. Rep. 2019, 9, 16075. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Koran, M.E.I.; Wagener, M.; Hohman, T.J.; for the Alzheimer’s Neuroimaging Initiative. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav. 2017, 11, 205–213. [Google Scholar] [CrossRef]
- Mortby, M.E.; Burns, R.; Janke, A.L.; Sachdev, P.S.; Anstey, K.J.; Cherbuin, N. Relating Education, Brain Structure, and Cognition: The Role of Cardiovascular Disease Risk Factors. BioMed Res. Int. 2014, 2014, 271487. [Google Scholar] [CrossRef]
- Subramaniapillai, S.; Almey, A.; Natasha Rajah, M.; Einstein, G. Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer’s disease in women. Front. Neuroendocrinol. 2021, 60, 100879. [Google Scholar] [CrossRef]
- Maldjian, J.A.; Laurienti, P.J.; Kraft, R.A.; Burdette, J.H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 2003, 19, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Attems, J.; Jellinger, K.A. Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin. Neuropathol. 2006, 25, 265–271. [Google Scholar]
- Christen-Zaech, S.; Kraftsik, R.; Pillevuit, O.; Kiraly, M.; Martins, R.; Khalili, K.; Miklossy, J. Early Olfactory Involvement in Alzheimer’s Disease. Can. J. Neurol. Sci. 2003, 30, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, H.M.; Karimpoor, M.; van Staalduinen, E.K.; Young, C.B.; Georgiadis, M.; Leventis, S.; Carlson, M.; Romero, A.; Trelle, A.; Vossler, H.; et al. Elevated tau in the piriform cortex in Alzheimer’s but not Parkinson’s disease using PET-MR. Alzheimer’s Dement. 2024, 16, e70040. [Google Scholar] [CrossRef]
- Donix, M.; Burggren, A.C.; Scharf, M.; Marschner, K.; Suthana, N.A.; Siddarth, P.; Krupa, A.K.; Jones, M.; Martin-Harris, L.; Ercoli, L.M.; et al. APOE associated hemispheric asymmetry of entorhinal cortical thickness in aging and Alzheimer’s disease. Psychiatry Res. Neuroimaging 2013, 214, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Toga, A.W.; Thompson, P.M. Mapping brain asymmetry. Nat. Rev. Neurosci. 2003, 4, 37–48. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, J.; Lu, J.; Wu, P.; Zhang, H.; Zuo, C.; Shi, K. Brain Network and Abnormal Hemispheric Asymmetry Analyses to Explore the Marginal Differences in Glucose Metabolic Distributions Among Alzheimer’s Disease, Parkinson’s Disease Dementia, and Lewy Body Dementia. Front. Neurol. 2019, 10, 369. [Google Scholar] [CrossRef]
- Gianotti, L.R.R.; Künig, G.; Lehmann, D.; Faber, P.L.; Pascual-Marqui, R.D.; Kochi, K.; Schreiter-Gasser, U. Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Clin. Neurophysiol. 2007, 118, 186–196. [Google Scholar] [CrossRef]
- Shea, Y.; Pan, Y.; Mak, H.K.; Bao, Y.; Lee, S.; Chiu, P.K.; Chan, H.F. A systematic review of atypical Alzheimer’s disease including behavioural and psychological symptoms. Psychogeriatrics 2021, 21, 396–406. [Google Scholar] [CrossRef]
- Reiter, K.; Nielson, K.A.; Durgerian, S.; Woodard, J.L.; Smith, J.C.; Seidenberg, M.; Kelly, D.A.; Rao, S.M. Five-Year Longitudinal Brain Volume Change in Healthy Elders at Genetic Risk for Alzheimer’s Disease. J. Alzheimers Dis. 2016, 55, 1363–1377. [Google Scholar] [CrossRef]
- Forno, G.; Contador, J.; Pérez-Millan, A.; Guillen, N.; Falgàs, N.; Sarto, J.; Tort-Merino, A.; Castellví, M.; Bosch, B.; Fernández-Villullas, G.; et al. The APOE4 effect: Structural brain differences in Alzheimer’s disease according to the age at symptom onset. Eur. J. Neurol. 2023, 30, 597–605. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
Total Number | Females | Males | |||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean (SD) | N | Mean (SD) | ||||||
Age | Education | MMSE | Age | Education | MMSE | ||||
Healthy Older Adults | 95 | 57 | 72.4 (4.3) | 10.3 (3.9) | 28.5 (1.7) | 38 | 73.4 (4.9) | 12.7 (4.8) | 28.4 (1.4) |
MCI | 81 | 47 | 73.9 (6.8) | 8.9 (3.2) | 27.4 (1.9) | 34 | 74.9 (5.3) | 11.5 (4.2) | 27 (1.9) |
Probable AD Dementia | 37 | 19 | 75.7 (7.7) | 7.6 (3.6) | 20.7 (2.1) | 18 | 75.3 (6.8) | 8.6 (4.5) | 21.2 (2.7) |
HOA vs. MCI Mean Diff. (p-Value) | HOA vs. AD Mean Diff. (p-Value) | MCI vs. AD Mean Diff. (p-Value) | ||
---|---|---|---|---|
Olfactory Cortex Volume | Females | |||
Total F = 11.5 (p < 0.0001) | 0.13 (0.002) | 0.22 (0.0001) | 0.08 (0.31) | |
Left F = 10.7 (p < 0.0001) | 0.06 (0.003) | 0.11 (0.0002) | 0.04 (0.37) | |
Right F = 11.7 (p < 0.0001) | 0.07 (0.002) | 0.12 (<0.0001) | 0.05 (0.27) | |
Males | ||||
Total F = 15.3 (p < 0.0001) | 0.09 (0.32) | 0.36 (<0.0001) | 0.27 (0.0003) | |
Left F = 15.9 (p < 0.0001) | 0.05 (0.25) | 0.18 (<0.0001) | 0.13 (0.0003) | |
Right F = 14.04 (p < 0.0001) | 0.04 (0.41) | 0.18 (<0.0001) | 0.14 (0.0005) |
OCV | ||
---|---|---|
t | p-Value | |
Females total | 0.26 | 0.79 |
Females left | 0.34 | 0.73 |
Females right | 0.17 | 0.86 |
Males total | 1.18 | 0.24 |
Males left | 1.16 | 0.25 |
Males right | 1.19 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.M.; De Marco, M.; Graham, R.; Venneri, A. Alterations in Olfactory Cortex Volume in Mild Cognitive Impairment and Mild Alzheimer’s Disease Dementia: A Study of Sex-Related Differences. Brain Sci. 2025, 15, 610. https://doi.org/10.3390/brainsci15060610
Alotaibi MM, De Marco M, Graham R, Venneri A. Alterations in Olfactory Cortex Volume in Mild Cognitive Impairment and Mild Alzheimer’s Disease Dementia: A Study of Sex-Related Differences. Brain Sciences. 2025; 15(6):610. https://doi.org/10.3390/brainsci15060610
Chicago/Turabian StyleAlotaibi, Majed M., Matteo De Marco, Rona Graham, and Annalena Venneri. 2025. "Alterations in Olfactory Cortex Volume in Mild Cognitive Impairment and Mild Alzheimer’s Disease Dementia: A Study of Sex-Related Differences" Brain Sciences 15, no. 6: 610. https://doi.org/10.3390/brainsci15060610
APA StyleAlotaibi, M. M., De Marco, M., Graham, R., & Venneri, A. (2025). Alterations in Olfactory Cortex Volume in Mild Cognitive Impairment and Mild Alzheimer’s Disease Dementia: A Study of Sex-Related Differences. Brain Sciences, 15(6), 610. https://doi.org/10.3390/brainsci15060610