Computed Tomography-Based Morphometric Analysis of Ossification Centers of Lesser Wings of Sphenoid Bone in Human Fetuses
Abstract
:1. Introduction
- Investigate potential sex-related and lateral differences in all examined parameters;
- Perform morphometric analysis of the ossification centers of the lesser wing of the sphenoid bone in human fetuses (including linear, planar, and volumetric parameters) in order to establish normative value ranges;
- Assess the growth dynamics of all analyzed parameters and to develop mathematical models with the best fit.
2. Materials and Methods
2.1. Examined Sample
2.2. Morphometric Measurements and Assessment of Ossification Centers
2.3. Statistical Analysis
3. Results
Morphometric Parameters of the Ossification Centers of the Lesser Wings of the Sphenoid Bone
4. Discussion
Limitations of the Study
5. Conclusions
- No sex-related differences were observed in any of the morphometric parameters of the ossification centers of the lesser wings of the sphenoid bone.
- The developmental dynamics of all studied parameters of the ossification centers of the lesser wings of the sphenoid bone increased proportionally with gestational age in weeks.
- The obtained morphometric data on the ossification centers of the lesser wings of the sphenoid bone may serve as age-specific reference values, supporting gestational age estimation and aiding in the early ultrasonographic diagnosis of craniofacial developmental anomalies. Further research is recommended to expand our understanding of their growth patterns and potential clinical relevance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chmielewski, P.P. Clinical anatomy of the sphenoid bone and its terminology. Med. J. Cell Biol. 2023, 11, 65–71. [Google Scholar] [CrossRef]
- Tsyhykalo, O.V.; Kuzniak, N.B.; Dmytrenko, R.R.; Perebyjnis, P.P.; Oliinyk, I.Y.; Fedoniuk, L.Y. Features of morphogenesis of the bones of the human orbit. Wiad. Lek. 2023, 76, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Nemzec, W.R.; Brodie, H.A.; Hecht, S.T.; Chong, B.W.; Babcook, C.J.; Seibert, J.A. MR, CT, and plain film imaging of the developing skull base in fetal specimens. AJNR Am. J. Neuroradiol. 2000, 21, 1699–1706. [Google Scholar]
- Chano, T.; Matsumoto, K.; Ishizawa, M.; Morimoto, S.; Hukuda, S.; Okabe, H.; Kato, H.; Fujino, S. Analysis of the presence of osteocalcin, S-100 protein, and proliferating cell nuclear antigen in cells of various types of osteosarcomas. Eur. J. Histochem. 1996, 40, 189–198. [Google Scholar]
- Duarte, W.R.; Shibata, T.; Takenaga, K.; Takahashi, E.; Kubota, K.; Ohya, K.; Ishikawa, I.; Yamauchi, M.; Kasugai, S. S100A4: A novel negative regulator of mineralization and osteoblast differentiation. J. Bone Min. Res. 2003, 18, 493–501. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Baumgart, M.; Szpinda, M. Quantitative study of the ossification centers of the body of sphenoid bone in the human fetus. Sci. Rep. 2024, 14, 13522. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Baumgart, M.; Kułakowski, M.; Szpinda, M. Quantitative anatomy of the primary ossification center of the squamous part of temporal bone in the human fetus. PLoS ONE 2023, 18, e0295590. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Baumgart, M.; Badura, M.; Wiśniewski, M.; Lisiecki, J.; Szpinda, M. Quantitative anatomy of primary ossification centres of the lateral and basilar parts of the occipital bone in the human foetus. Folia Morphol. 2021, 80, 895–903. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Baumgart, M.; Badura, M.; Wiśniewski, M.; Szpinda, M. Quantitative anatomy of the fused ossification center of the occipital squama in the human fetus. PLoS ONE 2021, 16, e0247601. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Baumgart, M.; Badura, M.; Wiśniewski, M.; Szpinda, M. Morphometric study of the primary ossification center of the frontal squama in the human fetus. Surg. Radiol. Anat. 2020, 42, 733–740. [Google Scholar] [CrossRef]
- Utsunomiya, N.; Katsube, M.; Yamaguchi, Y.; Yoneyama, A.; Morimoto, N.; Yamada, S. The first 3D analysis of the sphenoid morphogenesis during the human embryonic period. Sci. Rep. 2022, 12, 5259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, H.; Udagawa, J.; Otani, H. Morphological and morphometric study on sphenoid and basioccipital ossification in normal human fetuses. Congenit. Anom. 2011, 51, 138–148. [Google Scholar] [CrossRef]
- Jaworek-Troć, J.; Zarzecki, M.; Bonczar, A.; Kaythampillai, L.N.; Rutowicz, B.; Mazur, M.; Urbaniak, J.; Przybycień, W.; Piątek-Koziej, K.; Kuniewicz, M.; et al. Sphenoid bone and its sinus-anatomo-clinical review of the literature including application to FESS. Folia Med. Cracov. 2019, 59, 45–59. [Google Scholar]
- Jung, B.K.; Yun, I.S. Diagnosis and treatment of positional plagiocephaly. Arch. Craniofac. Surg. 2020, 21, 80–86. [Google Scholar] [CrossRef]
- Lieberman, D.E. Sphenoid shortening and the evolution of modern human cranial shape. Nature 1998, 393, 158–162. [Google Scholar] [CrossRef]
- Bastir, M.; Rosas, A. Cranial base topology and basic trends in the facial evolution of Homo. J. Hum. Evol. 2016, 91, 26–35. [Google Scholar] [CrossRef]
- Antonarakis, G.S.; Ghislanzoni, L.H.; La Scala, G.C.; Fisher, D.M. Sella turcica morphometrics in children with unilateral cleft lip and palate. Orthod. Craniofac. Res. 2020, 23, 398–403. [Google Scholar] [CrossRef]
- Cossellu, G.; Persico, N.; D’Ambrosi, F.; Carbone, F.; Fabietti, I.; Boito, S.; Farronato, G.; Fedele, L.; Nicolaides, K.H. Sphenofrontal distance on three-dimensional ultrasound in euploid and trisomy-21 fetuses at 16–24 weeks’ gestation. Ultrasound Obstet. Gynecol. 2016, 48, 177–180. [Google Scholar] [CrossRef]
- Degani, S.; Leibovitz, Z.; Shapiro, I.; Gonen, R.; Ohel, G. Ultrasound evaluation of the fetal skull base throughout pregnancy. Ultrasound Obstet. Gynecol. 2002, 19, 461–466. [Google Scholar] [CrossRef]
- Levaillanto, J.M.; Mabille, M. Fetal sphenoid bone: Imaging using three-dimensional ultrasound and computed tomography. Ultrasound Obstet. Gynecol. 2008, 31, 229–231. [Google Scholar] [CrossRef]
- Morimoto, N.; Ogihara, N.; Katayama, K.; Shiota, K. Three-dimensional ontogenetic shape changes in the human cranium during the fetal period. J. Anat. 2008, 212, 627–635. [Google Scholar] [CrossRef] [PubMed]
Month | GA (Weeks) | Crown–Rump Length (mm) | Number of Fetuses | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Max. | N | ♂ | ♀ | ||
V | 18 | 133.33 | 5.77 | 140.00 | 3 | 1 | 2 |
19 | 146.50 | 2.89 | 150.00 | 4 | 2 | 2 | |
20 | 161.00 | 2.71 | 165.00 | 4 | 2 | 2 | |
VI | 21 | 173.67 | 2.31 | 175.00 | 3 | 2 | 1 |
22 | 184.67 | 1.53 | 186.00 | 3 | 1 | 2 | |
23 | 198.67 | 2.89 | 202.00 | 3 | 1 | 2 | |
24 | 208.00 | 3.56 | 213.00 | 4 | 1 | 3 | |
VII | 25 | 214.00 | 214.00 | 1 | 0 | 1 | |
26 | 229.00 | 5.66 | 233.00 | 2 | 1 | 1 | |
27 | 240.33 | 1.15 | 241.00 | 3 | 3 | 0 | |
28 | 249.50 | 0.71 | 250.00 | 2 | 0 | 2 | |
VIII | 29 | 253.00 | 0.00 | 253.00 | 2 | 0 | 2 |
30 | 262.67 | 0.58 | 263.00 | 3 | 2 | 1 | |
Total | 37 | 16 |
Parameter | ICC |
---|---|
Right length of the anterior (orbital) part | 0.995 * |
Right length of the posterior (sphenoid) part | 0.996 * |
Right width | 0.996 * |
Right projection surface area | 0.999 * |
Right volume | 0.998 * |
Left length of the anterior (orbital) part | 0.996 * |
Left length of the posterior (sphenoid) part | 0.996 * |
Left width | 0.997 * |
Left projection surface area | 0.999 * |
Left volume | 0.998 * |
Month | GA (Weeks) | N | Statistically Significant Effect of Sex | Right Ossification Center of the Lesser Wings of Sphenoid Bone | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length of the Anterior (Orbital) Part (mm) | Length of the Posterior (Sphenoid) Part (mm) | Width (mm) | Projection Surface Area (mm2) | Volume (mm3) | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||
V | 18 | 3 | p > 0.05 | 3.19 | 0.03 | 3.29 | 0.05 | 3.60 | 0.10 | 10.81 | 0.47 | 11.79 | 0.62 |
19 | 4 | 3.31 | 0.06 | 3.62 | 0.10 | 3.91 | 0.12 | 12.75 | 0.50 | 14.45 | 0.70 | ||
20 | 4 | 3.51 | 0.07 | 3.96 | 0.17 | 4.31 | 0.11 | 14.22 | 0.71 | 16.82 | 0.91 | ||
VI | 21 | 3 | p > 0.05 | 3.67 | 0.04 | 4.41 | 0.11 | 4.67 | 0.13 | 16.96 | 0.92 | 20.24 | 1.18 |
22 | 3 | 3.85 | 0.11 | 4.76 | 0.14 | 5.04 | 0.14 | 19.53 | 0.98 | 23.57 | 1.28 | ||
23 | 3 | 4.26 | 0.15 | 5.04 | 0.14 | 5.31 | 0.10 | 21.93 | 0.95 | 26.68 | 1.26 | ||
24 | 4 | 4.69 | 0.11 | 5.30 | 0.10 | 5.72 | 0.14 | 24.98 | 1.07 | 30.92 | 1.54 | ||
VII | 25 | 1 | p > 0.05 | 4.90 | 5.47 | 5.94 | 26.72 | 33.40 | |||||
26 | 2 | 5.03 | 0.08 | 5.57 | 0.04 | 6.09 | 0.08 | 27.83 | 0.50 | 35.48 | 0.83 | ||
27 | 3 | 5.35 | 0.13 | 5.68 | 0.06 | 6.37 | 0.11 | 29.88 | 0.84 | 39.25 | 1.40 | ||
28 | 2 | 5.63 | 0.05 | 5.83 | 0.08 | 6.63 | 0.08 | 31.70 | 0.64 | 43.28 | 1.55 | ||
VIII | 29 | 2 | p > 0.05 | 5.81 | 0.10 | 5.96 | 0.06 | 6.83 | 0.05 | 33.59 | 0.56 | 48.21 | 1.52 |
30 | 3 | 6.05 | 0.10 | 6.19 | 0.11 | 6.96 | 0.04 | 35.53 | 0.84 | 52.70 | 1.61 |
Month | GA (Weeks) | N | Statistically Significant Effect of Sex | Left Ossification Center of the Lesser Wings of Sphenoid Bone | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length of the Anterior (Orbital) Part (mm) | Length of the Posterior (Sphenoid) Part (mm) | Width (mm) | Projection Surface Area (mm2) | Volume (mm3) | |||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||
V | 18 | 3 | p > 0.05 | 3.22 | 0.04 | 3.26 | 0.05 | 3.87 | 0.10 | 11.32 | 0.39 | 12.12 | 0.70 |
19 | 4 | 3.40 | 0.05 | 3.59 | 0.09 | 4.22 | 0.17 | 12.63 | 0.47 | 14.18 | 0.68 | ||
20 | 4 | 3.56 | 0.05 | 3.92 | 0.16 | 4.63 | 0.10 | 13.71 | 0.33 | 16.11 | 0.45 | ||
VI | 21 | 3 | p > 0.05 | 3.70 | 0.10 | 4.37 | 0.12 | 4.93 | 0.10 | 15.01 | 0.43 | 17.71 | 0.51 |
22 | 3 | 3.90 | 0.10 | 4.66 | 0.11 | 5.24 | 0.10 | 16.74 | 0.80 | 20.15 | 1.04 | ||
23 | 3 | 4.30 | 0.16 | 4.97 | 0.13 | 5.54 | 0.09 | 19.60 | 1.01 | 23.78 | 1.33 | ||
24 | 4 | 4.71 | 0.11 | 5.26 | 0.10 | 5.89 | 0.13 | 22.89 | 1.03 | 28.34 | 1.56 | ||
VII | 25 | 1 | p > 0.05 | 4.92 | 5.42 | 6.14 | 24.97 | 31.46 | |||||
26 | 2 | 5.08 | 0.09 | 5.51 | 0.03 | 6.26 | 0.06 | 26.09 | 0.67 | 33.27 | 1.04 | ||
27 | 3 | 5.38 | 0.15 | 5.65 | 0.07 | 6.47 | 0.07 | 28.70 | 0.98 | 38.38 | 1.75 | ||
28 | 2 | 5.68 | 0.03 | 5.77 | 0.05 | 6.62 | 0.03 | 30.91 | 0.40 | 43.43 | 1.22 | ||
VIII | 29 | 2 | p > 0.05 | 5.85 | 0.08 | 5.93 | 0.06 | 6.74 | 0.04 | 32.48 | 0.72 | 47.10 | 1.05 |
30 | 3 | 6.11 | 0.10 | 6.15 | 0.11 | 6.87 | 0.05 | 34.48 | 0.82 | 50.92 | 1.59 |
Month | GA (Weeks) | N | Statistically Significant Effect of Sex | N | Anterior (Orbital) Inter-Center Diameter (mm) | Posterior (Sphenoid) Inter-Center Diameter (mm) | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
V | 18 | 3 | p > 0.05 | 3 | 6.21 | 0.04 | 7.66 | 0.07 |
19 | 4 | 4 | 6.32 | 0.04 | 7.76 | 0.04 | ||
20 | 4 | 4 | 6.42 | 0.04 | 7.85 | 0.04 | ||
VI | 21 | 3 | p > 0.05 | 3 | 6.54 | 0.03 | 7.95 | 0.03 |
22 | 3 | 3 | 6.62 | 0.04 | 8.01 | 0.05 | ||
23 | 3 | 3 | 6.71 | 0.04 | 8.13 | 0.05 | ||
24 | 4 | 4 | 6.80 | 0.04 | 8.30 | 0.05 | ||
VII | 25 | 1 | p > 0.05 | 1 | 6.87 | 8.40 | ||
26 | 2 | 2 | 6.92 | 0.03 | 8.48 | 0.01 | ||
27 | 3 | 3 | 7.01 | 0.04 | 8.53 | 0.04 | ||
28 | 2 | 2 | 7.09 | 0.03 | 8.60 | 0.01 | ||
VIII | 29 | 2 | p > 0.05 | 2 | 7.17 | 0.02 | 8.62 | 0.01 |
30 | 3 | 3 | 7.23 | 0.03 | 8.65 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzonkowska, M.; Kułakowski, M.; Baumgart, M. Computed Tomography-Based Morphometric Analysis of Ossification Centers of Lesser Wings of Sphenoid Bone in Human Fetuses. Brain Sci. 2025, 15, 558. https://doi.org/10.3390/brainsci15060558
Grzonkowska M, Kułakowski M, Baumgart M. Computed Tomography-Based Morphometric Analysis of Ossification Centers of Lesser Wings of Sphenoid Bone in Human Fetuses. Brain Sciences. 2025; 15(6):558. https://doi.org/10.3390/brainsci15060558
Chicago/Turabian StyleGrzonkowska, Magdalena, Michał Kułakowski, and Mariusz Baumgart. 2025. "Computed Tomography-Based Morphometric Analysis of Ossification Centers of Lesser Wings of Sphenoid Bone in Human Fetuses" Brain Sciences 15, no. 6: 558. https://doi.org/10.3390/brainsci15060558
APA StyleGrzonkowska, M., Kułakowski, M., & Baumgart, M. (2025). Computed Tomography-Based Morphometric Analysis of Ossification Centers of Lesser Wings of Sphenoid Bone in Human Fetuses. Brain Sciences, 15(6), 558. https://doi.org/10.3390/brainsci15060558