Is There a Link Between Type 2 Diabetes Mellitus and Negative Symptoms in Schizophrenia? A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Adolescents or adults (>16 years of age);
- (2)
- A diagnosis of schizophrenia according to the DSM or the ICD classification systems;
- (3)
- Data reported in (pre)diabetic and non-(pre)diabetic schizophrenia/first-episode psychosis groups regarding at least one of the following: (a) negative symptoms assessed by a validated measurement tool, (b) the prevalence rate of T2DM, (c) levels of glycosylated hemoglobin and/or fasting blood glucose levels, (d) glycemic status (including serum markers) of study populations, and (e) the association of negative symptom severity with serum markers of glycemic status;
- (4)
- Publications in English.
- (1)
- Diagnosis of schizophrenia was not applied or not made according to the DSM/ICD systems;
- (2)
- No data on the severity of negative symptoms;
- (3)
- Patients with diabetes or patients receiving antidiabetic medication were excluded from participation in the study;
- (4)
- Publications reporting data from schizophrenia study groups with metabolic syndrome or obesity without conducting separate analyses reporting clear data on the presence of a T2DM subgroup (as these groups with obesity or metabolic syndrome groups can be heterogeneous regarding glycemic status);
- (5)
- Publications focused on type 1 diabetes and schizophrenia;
- (6)
- Studies that did not report any serum markers of glycemic status (HbA1c or fasting blood glucose);
- (7)
- Studies reporting negative symptom severity solely in the context of metabolic outcomes.
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Patient Characteristics
3.4. Study Findings
3.4.1. Epidemiological Associations
Author (Year) | Study Type | N SZ 1 | Study Population | Main Findings |
---|---|---|---|---|
Wu (2024) [27] | Cross-sectional Retrospective | 704 | Mean age: 27.44 ± 8.91 years Inpatients First-episode psychosis Average DUP 4: 14.82 ± 12.99 months | The rate of abnormal glucose level is significantly higher in the NS SZ 2 group compared to the PS SZ 3 group (31.57% vs. 13.49%). There is a trend that the rate of abnormal insulin resistance is higher among NS SZ 2 than PS SZ 3 (61.24% vs. 51.69%). Fasting blood glucose (r = 0.229, p < 0.0001), fasting insulin (r = 0.221, p < 0.0001), and HOMA-IR 5 (r = 0.259, p < 0.0001) exhibited moderate strength and a significant positive correlation with the PANSS N 6 subscale score. |
Sicras-Mainar (2015) [24] | Non-interventional Retrospective Cohort study | 1120 | Mean age: 46.8 ± 13.8 years 58.4% male SZ 7 outpatients NS group: 52.5% Mean number of medications including AP 8: 3.1 ± 1.9 | The prevalence of T2DM 9 was higher in the NS SZ 1 group than the non-NS SZ group (22.5% vs. 17.1%, respectively, p = 0.024). |
3.4.2. First-Episode Psychosis
Author (Year) | Study Type | N (SZ+PreD) | N (SZ−PreD) | Patient Characteristics | Findings |
---|---|---|---|---|---|
Chen (2016) [18] | C-S | 43 | 129 | Mean age: 28.7 ± 9.9 Age range: 18–45 years 48.25% male First-episode psychosis Inpatients + follow-up Medication naïve Duration of psychosis <60 months. IGT rate 25% compared to 0% in HC. | The SZ+IGT group had a significantly higher PANSS N score than SZ−IGT (21.7 ± 9.2 vs. 19.0 ± 7.6). |
Chen (2013) [19] | C-S | 49 | N/A | Mean age: 26.8 ± 8.1 Age range: 16–45 years 28.6% male First-episode psychosis Inpatients Medication naïve or short-term (<2 weeks) AP treatment (57% vs. 43%, respectively) | Insulin resistance and glycemic parameters were not associated with negative symptom severity. |
Wysokinski (2013) [28] * | C-S | 20 | 26 | Mean age: 31.7 ± 10.09 Age range: 16–45 years 76% male Inpatients with SZ Antipsychotic treatment | No association was found between the PANSS N scale score and the presence of elevated FBG. |
Lang (2021) [31] | C-S | 430 | N/A | Mean age: 32.72 ± 11.26 years 48.4% male Inpatients with first-episode SZ Duration of symptoms < 5 years Antipsychotic-naïve Partial overlap with the Li (2021) [22] study cohort | The prevalence of elevated HbA1c and elevated serum insulin was significantly higher in the patient group than in healthy controls (25.6% vs. 10.8%, p < 0.0001, and 9.1% vs. 0.9%, p < 0.0001, respectively). In the patient group, fasting glucose level was significantly associated with the PANSS N score (r = 0.13, p = 0.03). |
Li (2022) [32] | C-S | 20/12 ** | 63/49 ** | First-episode AND chronic SZ Inpatients 100% male Mean age **: 26.90 ± 9.12/45.08 ± 6.38 years Antipsychotic medication FEP group: <2 weeks duration Chronic group: 370.03 ± 179.68 mg/day CPZ dose | T2DM prevalence is 4.9% among chronic SZ vs. 0% in the FEP group. FBG is significantly higher in FEP vs. chronic SZ (4.98 ± 1.04 vs. 4.52 ± 0.80 mmol/L, p < 0.01). Trend in the FEP group that SZ+PreD had more severe negative symptoms than SZ−PreD (PANSS N 24.40 ± 9.86 vs. 20.57 ± 8.57, p = 0.09). The SZ+PreD chronic SZ group had significantly more severe negative symptoms than the SZ−PreD group (24.76 ± 9.14 17.07 ± 5.28, p = 0.003). |
Li (2025) [33] | C-S | 43 | 129 | First-episode SZ Inpatients 48.3% male Mean age: 28.90 ± 9.97 years Antipsychotic medication < 2 weeks duration | Trend in the FEP group that male patients with SZ+PreD had more severe negative symptoms than male patients with SZ−PreD (PANSS N 24.40 ± 9.86 vs. 20.57 ± 8.57, p = 0.09). This trend is missing in female patients (PANSS N 17.81 ± 7.81 vs. 18.24 ± 6.34, SZ+PreD vs. SZ−PreD, NS) |
3.4.3. Chronic Schizophrenia
Author (Year) | Study Type | N (SZ+T2DM) | N (SZ−T2DM) | Patient Characteristics | Findings |
---|---|---|---|---|---|
Li (2021) [22] | Cross-sectional | 54 | 418 | Mean age 47.22 years 87% male Chronic SZ (mean duration: 23.83 ± 8.50 years) Inpatients Antipsychotic monotherapy (mean CPZ dose: 457.14 ± 394.93 mg/day) CLO therapy: 51% Other SGA therapy: 25% T2DM prevalence: 11.4% | PANSS N subscale scores did not differ significantly between SZ+T2DM vs. SZ−T2DM groups (20.80 ± 6.64 vs. 21.84 ± 7.16, respectively). SZ+T2DM had superior cognitive performance and higher BDNF levels than SZ−T2DM. |
Huo (2020) [21] | Cross-sectional | 140 | 1049 | Mean age 48.51 ± 10.09 years (age range 16–76 years) 79% male Early-stage and chronic SZ (illness duration 1–19 years) Inpatients Antipsychotic therapy (mean CPZ doses 479.93 ± 526.89 vs. 438.29 ± 384.01 mg/day SZ+T2DM vs. SZ−T2DM) CLO therapy: N/A SGA therapy: 75% T2DM prevalence: 12.53% | PANSS N subscale scores did not differ significantly between SZ+T2DM vs. SZ−T2DM groups (22.03 ± 8.27 vs. 22.79 ± 8.4, respectively). SZ+T2DM had more severe positive symptoms than SZ−T2DM. |
Huo (2021) [20] | Cross-sectional | 73 | 216 | Mean age 64.11 ± 3.26 years (age range 60–76 years) 72% male Elderly (>60 years of age) Chronic SZ (Mean illness duration 35.34 ± 9.15 years) Inpatients Antipsychotic therapy (mean CPZ dose 363.61 ± 285.65 mg/day) CLO therapy: 23% Other SGA therapy: 59% Prevalence of T2DM: 23.5% Duration of diabetes: 57.44 ± 67.70 months Stable hypoglycemic medication: 84% | PANSS N subscale scores did not differ significantly between elderly SZ+T2DM vs. SZ−T2DM groups (22.85 ± 6.33 vs. 24.09 ± 7.42, respectively). Elderly patients with SZ+T2DM had more severe positive symptoms than those with SZ−T2DM. |
Zhang (2011) [30] | Cross-sectional | 46 | 160 | Age range 25–70 years 68% male Chronic SZ (mean disease duration 28.6 ± 9.5 vs. 25.6 ± 9.8 SZ+T2DM vs. SZ−T2DM, respectively) Inpatients CLO therapy: 100% Mean CLO dose: 180.1 ± 95.1 vs. 171.2 ± 83.9 SZ+T2DM vs. SZ−T2DM, respectively, Treatment duration with CLO: 70.1 ± 57.8 vs. 62.0 ± 59.7 SZ+T2DM vs. SZ−T2DM, respectively, Prevalence of T2DM 22.3% No data on T2DM characteristics or treatment | PANSS N subscale scores did not differ significantly between SZ+T2DM vs. SZ−T2DM groups (21.1 ± 8.4 vs. 21.5 ± 7.7, respectively). The SZ+T2DM vs. SZ−T2DM groups did not differ in PANSS total score or other PANSS subscales. Treatment with clozapine was associated with a high risk of T2DM. |
Zhang (2015) [29] | Cross-sectional | 101 | 162 | Age range 40–68 years) 73% male Chronic SZ (>5 years of duration) Inpatients Antipsychotic therapy (mean CPZ dose 415.3 ± 370.8 mg/day) CLO therapy: 44% Other SGA therapy: 32% No data on T2DM characteristics or treatment | PANSS N subscale scores did not differ significantly between SZ+T2DM vs. SZ−T2DM groups. Female patients had lower negative symptom severity than male patients. |
Takayanagi (2012) [25] | CATIE SZ study | 161 | 1128 | Age range 18–65 years) 75% male Chronic SZ (Illness duration 18.8 ± 10.1 vs. 13.6 ± 10.5 years SZ+T2DM vs. SZ−T2DM, respectively) Antipsychotic therapy (mean CPZ doses not reported for study groups) CLO therapy: 0% Duration of T2DM is unknown. Treatment for T2DM: most SZ+T2DM 40% did not take medication for T2DM. | PANSS N subscale scores did not differ significantly between SZ+T2DM vs. SZ−T2DM groups (19.3 ± 6.0 vs. 20.0 ± 6.4, respectively). Total PANSS score did not differ between SZ+T2DM vs. SZ−T2DM. |
Ogawa (2011) [23] | Cross-sectional | 19 | 19 | Mean age: 53.9 ± 8.5 (range: 37–68 years) 60.5% male Age at T2DM diagnosis: 46.2 ± 9.4 (range: 24–66 years) Antipsychotic treatment: 100% CLO therapy: N/A SGA therapy: 42% Outpatients T2DM treatment: 100% OAD: 81.6% | Hba1c level did not differ between low and high negative symptom groups (Negative symptoms subscale: 4 points = no symptoms [n = 14] vs. ≥5 points [n = 24]). Hba1c level did not differ between low- and high total BPRS and positive subscale groups. |
Vancampfort (2013) [26] | Cross-sectional | 10 | 86 | Age range: 18–65 years Mean age: 40.3 ± 10.9 vs. 34.5 ± 10.5 years SZ+T2DM vs. SZ−T2DM, respectively, 58% male All but one on medication therapy, including antipsychotics CLO therapy: 11% Other SGA therapy: 50% | Negative symptom severity was more severe in SZ+T2DM vs. SZ−T2DM, measured with the PECC N subscale (12.6 ± 5.9 vs. 9.8 ± 4.7, respectively). The difference did not reach statistical significance. |
Yan (2023) [34] | Cross-sectional Multicenter | 136 | 852 | Age range: 17–70 years 68.7% male Inpatients Chronic SZ Mean SZ duration: 21.71 ± 11.90 years Antipsychotic treatment Mean CPZ dose: 396.76 ± 808.57 mg/day CLO therapy: 34% Other SGA therapy: 56% | No statistically significant difference is detected in the PANSS N scale score in men or women SZ patients (Male SZ+T2DM vs. SZ−T2DM 22.08 ± 6.22 vs. 21.52 ± 6.86, NS, and Female SZ+T2DM vs. SZ−T2DM 21.65 ± 5.69 vs. 22.45 ± 7.78, NS). |
4. Discussion
4.1. Summary of Key Findings
4.2. Interpretation of the Findings
4.2.1. Epidemiological Associations
4.2.2. Potential Common Pathomechanisms of Schizophrenia and Type 2 Diabetes
4.2.3. Findings in Chronic Schizophrenia
4.3. Clinical and Therapeutic Implications
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SZ | Schizophrenia |
T2DM | Type 2 diabetes mellitus |
SZ+T2DM | Schizophrenia with type 2 diabetes mellitus |
SZ−T2DM | Schizophrenia without type 2 diabetes mellitus |
DSM | Diagnostic and Statistical Manual of Mental Disorders |
ICD | International Classification of Diseases |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
CATIE | Clinical Antipsychotic Trials of Intervention Effectiveness |
PANSS | Positive and Negative Syndrome Scale |
BPRS | Brief Psychiatric Rating Scale |
PECC | Psychosis Evaluation Tool for Common Use by Caregivers |
CPZ | Chlorpromazine |
CLO | Clozapine |
OAD | Oral antidiabetic |
IGT | Impaired glucose tolerance |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
FBG | Fasting blood glucose |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
OGTT | Oral glucose tolerance test |
PreD | Prediabetes |
SZ+PreD | Schizophrenia with prediabetes |
SZ−PreD | Schizophrenia without prediabetes |
NS SZ | Schizophrenia with prominent negative symptoms |
PS SZ | Schizophrenia with prominent positive symptoms |
DUP | Duration of untreated psychosis |
FEP | First-episode psychosis |
AP | Antipsychotic |
HC | Healthy controls |
NS | Not significant |
TNF-α | Tumor necrosis factor-α |
N/A | Not applicable |
References
- Green, M.F.; Llerena, K.; Kern, R.S. The “Right Stuff” Revisited: What Have We Learned About the Determinants of Daily Functioning in Schizophrenia? Schizophr. Bull. 2015, 41, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Ventura, J.; Hellemann, G.S.; Thames, A.D.; Koellner, V.; Nuechterlein, K.H. Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: A meta-analysis. Schizophr. Res. 2009, 113, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bitter, I. Mental disorders and economic change--the example of Hungary. Bull. World Health Organ 2000, 78, 505–506. [Google Scholar] [PubMed]
- Bitter, I. Definitions and measurement of negative symptoms in schizophrenia. In Managing Negative Symptoms of Schizophrenia; Bitter, I., Ed.; Oxford University Press: Oxford, UK, 2020; pp. 1–18. [Google Scholar]
- Galderisi, S.; Kaiser, S.; Bitter, I.; Nordentoft, M.; Mucci, A.; Sabe, M.; Giordano, G.M.; Nielsen, M.O.; Glenthoj, L.B.; Pezzella, P.; et al. EPA guidance on treatment of negative symptoms in schizophrenia. Eur. Psychiatry 2021, 64, e21. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Fenton, W.S.; Carpenter, W.T., Jr.; Marder, S.R. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr. Bull. 2006, 32, 214–219. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Strauss, G.P.; Nguyen, L.; Fischer, B.A.; Daniel, D.G.; Cienfuegos, A.; Marder, S.R. The brief negative symptom scale: Psychometric properties. Schizophr. Bull. 2011, 37, 300–305. [Google Scholar] [CrossRef]
- Galderisi, S.; Mucci, A.; Dollfus, S.; Nordentoft, M.; Falkai, P.; Kaiser, S.; Giordano, G.M.; Vandevelde, A.; Nielsen, M.O.; Glenthoj, L.B.; et al. EPA guidance on assessment of negative symptoms in schizophrenia. Eur. Psychiatry 2021, 64, e23. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.D. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- He, Q.; Zhu, P.; Liu, X.; Huo, C. Association of new-onset diabetes mellitus in adults with schizophrenia treated with clozapine versus patients treated with olanzapine, risperidone, or quetiapine: A systematic review and meta-analysis. Schizophr. Res. 2024, 271, 371–379. [Google Scholar] [CrossRef]
- Ho, M.T.H.; Chan, J.K.N.; Chiu, W.C.Y.; Tsang, L.L.W.; Chan, K.S.W.; Wong, M.M.C.; Wong, H.H.; Pang, P.F.; Chang, W.C. Risk of mortality and complications in patients with severe mental illness and co-occurring diabetes mellitus: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2025, 91, 25–36. [Google Scholar] [CrossRef]
- Lindekilde, N.; Scheuer, S.H.; Rutters, F.; Knudsen, L.; Lasgaard, M.; Rubin, K.H.; Henriksen, J.E.; Kivimaki, M.; Andersen, G.S.; Pouwer, F. Prevalence of type 2 diabetes in psychiatric disorders: An umbrella review with meta-analysis of 245 observational studies from 32 systematic reviews. Diabetologia 2022, 65, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Wang, S.; Qu, C.; Zheng, K.; Sun, P. Schizophrenia and type 2 diabetes risk: A systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1395771. [Google Scholar] [CrossRef] [PubMed]
- Storch Jakobsen, A.; Speyer, H.; Norgaard, H.C.B.; Hjorthoj, C.; Krogh, J.; Mors, O.; Nordentoft, M. Associations between clinical and psychosocial factors and metabolic and cardiovascular risk factors in overweight patients with schizophrenia spectrum disorders—Baseline and two-years findings from the CHANGE trial. Schizophr. Res. 2018, 199, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.I.; Salimkumar, D.; Green, D.; Meakin, A.; Gibson, A.; Mahajan, D.; Tahir, T.; Singh, S.P. Associated illness severity in schizophrenia and diabetes mellitus: A systematic review. Psychiatry Res. 2017, 256, 102–110. [Google Scholar] [CrossRef]
- Correll, C.U.; Schooler, N.R. Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment. Neuropsychiatr. Dis. Treat. 2020, 16, 519–534. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Chen, D.C.; Du, X.D.; Yin, G.Z.; Yang, K.B.; Nie, Y.; Wang, N.; Li, Y.L.; Xiu, M.H.; He, S.C.; Yang, F.D.; et al. Impaired glucose tolerance in first-episode drug-naive patients with schizophrenia: Relationships with clinical phenotypes and cognitive deficits. Psychol. Med. 2016, 46, 3219–3230. [Google Scholar] [CrossRef]
- Chen, S.; Broqueres-You, D.; Yang, G.; Wang, Z.; Li, Y.; Wang, N.; Zhang, X.; Yang, F.; Tan, Y. Relationship between insulin resistance, dyslipidaemia and positive symptom in Chinese antipsychotic-naive first-episode patients with schizophrenia. Psychiatry Res. 2013, 210, 825–829. [Google Scholar] [CrossRef]
- Huo, L.; Lu, X.; Wu, F.; Huang, X.; Ning, Y.; Zhang, X.Y. Diabetes in late-life schizophrenia: Prevalence, factors, and association with clinical symptoms. J. Psychiatr. Res. 2021, 132, 44–49. [Google Scholar] [CrossRef]
- Huo, L.; Zhang, G.; Du, X.D.; Jia, Q.; Qian, Z.K.; Chen, D.; Xiu, M.; Wu, F.; Soares, J.C.; Huang, X.; et al. The prevalence, risk factors and clinical correlates of diabetes mellitus in Chinese patients with schizophrenia. Schizophr. Res. 2020, 218, 262–266. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Xiu, M.; Li, J.; Zhang, X.Y. Diabetes mellitus, cognitive deficits and serum BDNF levels in chronic patients with schizophrenia: A case-control study. J. Psychiatr. Res. 2021, 134, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Miyamoto, Y.; Kawakami, N. Factors associated with glycemic control and diabetes self-care among outpatients with schizophrenia and type 2 diabetes. Arch. Psychiatr. Nurs. 2011, 25, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Sicras-Mainar, A.; Maurino, J.; Ruiz-Beato, E.; Navarro-Artieda, R. Prevalence of metabolic syndrome according to the presence of negative symptoms in patients with schizophrenia. Neuropsychiatr. Dis. Treat. 2015, 11, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, Y.; Cascella, N.G.; Sawa, A.; Eaton, W.W. Diabetes is associated with lower global cognitive function in schizophrenia. Schizophr. Res. 2012, 142, 183–187. [Google Scholar] [CrossRef]
- Vancampfort, D.; De Hert, M.; Sweers, K.; De Herdt, A.; Detraux, J.; Probst, M. Diabetes, physical activity participation and exercise capacity in patients with schizophrenia. Psychiatry Clin. Neurosci. 2013, 67, 451–456. [Google Scholar] [CrossRef]
- Wu, Q.; Long, Y.; Peng, X.; Song, C.; Xiao, J.; Wang, X.; Liu, F.; Xie, P.; Yang, J.; Shi, Z.; et al. Prefrontal cortical dopamine deficit may cause impaired glucose metabolism in schizophrenia. Transl. Psychiatry 2024, 14, 79. [Google Scholar] [CrossRef]
- Wysokiński, A.; Dzienniak, M.; Kłoszewska, I. Effect of metabolic abnormalities on cognitive performance and clinical symptoms in schizophrenia. Arch. Psychiatry Psychother. 2013, 4, 13–25. [Google Scholar] [CrossRef]
- Zhang, B.H.; Han, M.; Zhang, X.Y.; Hui, L.; Jiang, S.R.; Yang, F.D.; Tan, Y.L.; Wang, Z.R.; Li, J.; Huang, X.F. Gender differences in cognitive deficits in schizophrenia with and without diabetes. Compr. Psychiatry 2015, 63, 1–9. [Google Scholar] [CrossRef]
- Zhang, R.; Hao, W.; Pan, M.; Wang, C.; Zhang, X.; Chen, D.C.; Xiu, M.H.; Yang, F.D.; Kosten, T.R.; Zhang, X.Y. The prevalence and clinical-demographic correlates of diabetes mellitus in chronic schizophrenic patients receiving clozapine. Hum. Psychopharmacol. 2011, 26, 392–396. [Google Scholar] [CrossRef]
- Lang, X.; Liu, Q.; Fang, H.; Zhou, Y.; Forster, M.T.; Li, Z.; Zhang, X. The prevalence and clinical correlates of metabolic syndrome and cardiometabolic alterations in 430 drug-naive patients in their first episode of schizophrenia. Psychopharmacology 2021, 238, 3643–3652. [Google Scholar] [CrossRef]
- Li, S.; Chen, D.; Xiu, M.; Li, J.; Zhang, X.Y. Prevalence and clinical correlates of impaired glucose tolerance in first-episode versus chronic patients with schizophrenia. Early Interv. Psychiatry 2022, 16, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, N.; Qi, D.; Niu, L.; Li, Y.; Lu, C.; Dong, Y.; Wang, X.; Li, J.; Zhang, X. Sex differences in plasma lipid profiles, but not in glucose metabolism in patients with first-episode antipsychotics-naive schizophrenia. Brain Res. 2025, 1846, 149282. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, Y.; Li, S.; Zhou, C.; Wei, S.; Li, J.; Zhang, X.Y. Sex differences in the prevalence and clinical correlates of diabetes in Chinese patients with chronic schizophrenia. Heliyon 2023, 9, e14183. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Overall, J.E.; Gorham, D.R. The Brief Psychiatric Rating Scale. Psychol. Rep. 1962, 10, 799–812. [Google Scholar] [CrossRef]
- Hert, M.D.; Wampers, M.; Thys, E.; Wieselgren, I.M.; Lindstrom, E.; Peuskens, J. Validation study of PECC (Psychosis Evaluation tool for Common use by Caregivers): Interscale validity and inter-rater reliability. Int. J. Psychiatry Clin. Pr. 2002, 6, 135–140. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Guy, W. ECDEU Assessment Manual for Psychopharmacology; US Department of Health, Education, and Welfare, Public Health Service: Washington, DC, USA, 1976. [Google Scholar]
- Agardh, E.; Allebeck, P.; Hallqvist, J.; Moradi, T.; Sidorchuk, A. Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 804–818. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Detraux, J.; De Lepeleire, J.; De Hert, M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 2015, 14, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Solmi, M.; Croatto, G.; Schneider, L.K.; Rohani-Montez, S.C.; Fairley, L.; Smith, N.; Bitter, I.; Gorwood, P.; Taipale, H.; et al. Mortality in people with schizophrenia: A systematic review and meta-analysis of relative risk and aggravating or attenuating factors. World Psychiatry 2022, 21, 248–271. [Google Scholar] [CrossRef]
- Rojo, L.E.; Gaspar, P.A.; Silva, H.; Risco, L.; Arena, P.; Cubillos-Robles, K.; Jara, B. Metabolic syndrome and obesity among users of second generation antipsychotics: A global challenge for modern psychopharmacology. Pharmacol. Res. 2015, 101, 74–85. [Google Scholar] [CrossRef]
- Wang, G.J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusil, N.; Fowler, J.S. Brain dopamine and obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef]
- Ter Horst, K.W.; Lammers, N.M.; Trinko, R.; Opland, D.M.; Figee, M.; Ackermans, M.T.; Booij, J.; van den Munckhof, P.; Schuurman, P.R.; Fliers, E.; et al. Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci. Transl. Med. 2018, 10, eaar3752. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Stahl, S.M. The dopamine hypothesis of schizophrenia: A review. Schizophr. Bull. 1976, 2, 19–76. [Google Scholar] [CrossRef]
- Okubo, Y.; Suhara, T.; Suzuki, K.; Kobayashi, K.; Inoue, O.; Terasaki, O.; Someya, Y.; Sassa, T.; Sudo, Y.; Matsushima, E.; et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997, 385, 634–636. [Google Scholar] [CrossRef]
- Lawford, B.R.; Barnes, M.; Morris, C.P.; Noble, E.P.; Nyst, P.; Heslop, K.; Young, R.M.; Voisey, J.; Connor, J.P. Dopamine 2 Receptor Genes Are Associated with Raised Blood Glucose in Schizophrenia. Can. J. Psychiatry 2016, 61, 291–297. [Google Scholar] [CrossRef]
- Rahman, M.R.; Islam, T.; Nicoletti, F.; Petralia, M.C.; Ciurleo, R.; Fisicaro, F.; Pennisi, M.; Bramanti, A.; Demirtas, T.Y.; Gov, E.; et al. Identification of Common Pathogenetic Processes between Schizophrenia and Diabetes Mellitus by Systems Biology Analysis. Genes 2021, 12, 237. [Google Scholar] [CrossRef]
- Zhang, Y.; Bharadhwaj, V.S.; Kodamullil, A.T.; Herrmann, C. A network of transcriptomic signatures identifies novel comorbidity mechanisms between schizophrenia and somatic disorders. Discov. Ment. Health 2024, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Buckley, P.; Seabolt, W.; Mellor, A.; Kirkpatrick, B. Meta-analysis of cytokine alterations in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2011, 70, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Upthegrove, R.; Manzanares-Teson, N.; Barnes, N.M. Cytokine function in medication-naive first episode psychosis: A systematic review and meta-analysis. Schizophr. Res. 2014, 155, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.C.; Mattock, M.B.; Chusney, G.D.; Burt, D. NIDDM as a disease of the innate immune system: Association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 1997, 40, 1286–1292. [Google Scholar] [CrossRef]
- Macisaac, R.J.; Ekinci, E.I.; Jerums, G. Markers of and risk factors for the development and progression of diabetic kidney disease. Am. J. Kidney Dis. 2014, 63, S39–S62. [Google Scholar] [CrossRef]
- Winter, L.; Wong, L.A.; Jerums, G.; Seah, J.M.; Clarke, M.; Tan, S.M.; Coughlan, M.T.; MacIsaac, R.J.; Ekinci, E.I. Use of Readily Accessible Inflammatory Markers to Predict Diabetic Kidney Disease. Front. Endocrinol. 2018, 9, 225. [Google Scholar] [CrossRef]
- Garver, D.L.; Tamas, R.L.; Holcomb, J.A. Elevated interleukin-6 in the cerebrospinal fluid of a previously delineated schizophrenia subtype. Neuropsychopharmacology 2003, 28, 1515–1520. [Google Scholar] [CrossRef]
- Soderlund, J.; Schroder, J.; Nordin, C.; Samuelsson, M.; Walther-Jallow, L.; Karlsson, H.; Erhardt, S.; Engberg, G. Activation of brain interleukin-1beta in schizophrenia. Mol. Psychiatry 2009, 14, 1069–1071. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Dantzer, R. Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology 2016, 233, 1559–1573. [Google Scholar] [CrossRef]
- Misiak, B.; Pawlak, E.; Rembacz, K.; Kotas, M.; Zebrowska-Rozanska, P.; Kujawa, D.; Laczmanski, L.; Piotrowski, P.; Bielawski, T.; Samochowiec, J.; et al. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J. Psychiatr. Res. 2024, 171, 152–160. [Google Scholar] [CrossRef]
- Zeng, C.; Yang, P.; Cao, T.; Gu, Y.; Li, N.; Zhang, B.; Xu, P.; Liu, Y.; Luo, Z.; Cai, H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 106, 110097. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice, C. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48, S181–S206. [Google Scholar] [CrossRef] [PubMed]
- Battini, V.; Cirnigliaro, G.; Leuzzi, R.; Rissotto, E.; Mosini, G.; Benatti, B.; Pozzi, M.; Nobile, M.; Radice, S.; Carnovale, C.; et al. The potential effect of metformin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: A systematic review, meta-analysis, and meta-regression. Front. Psychiatry 2023, 14, 1215807. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Maayan, L.; Kane, J.; Hert, M.D.; Cohen, D. Efficacy for Psychopathology and Body Weight and Safety of Topiramate-Antipsychotic Cotreatment in Patients With Schizophrenia Spectrum Disorders: Results From a Meta-Analysis of Randomized Controlled Trials. J. Clin. Psychiatry 2016, 77, e746–e756. [Google Scholar] [CrossRef]
- Zheng, W.; Xiang, Y.T.; Xiang, Y.Q.; Li, X.B.; Ungvari, G.S.; Chiu, H.F.; Correll, C.U. Efficacy and safety of adjunctive topiramate for schizophrenia: A meta-analysis of randomized controlled trials. Acta Psychiatr. Scand. 2016, 134, 385–398. [Google Scholar] [CrossRef]
- Iranpour, N.; Zandifar, A.; Farokhnia, M.; Goguol, A.; Yekehtaz, H.; Khodaie-Ardakani, M.R.; Salehi, B.; Esalatmanesh, S.; Zeionoddini, A.; Mohammadinejad, P.; et al. The effects of pioglitazone adjuvant therapy on negative symptoms of patients with chronic schizophrenia: A double-blind and placebo-controlled trial. Hum. Psychopharmacol. 2016, 31, 103–112. [Google Scholar] [CrossRef]
- Fan, X.; Liu, E.; Freudenreich, O.; Copeland, P.; Hayden, D.; Ghebremichael, M.; Cohen, B.; Ongur, D.; Goff, D.C.; Henderson, D.C. No effect of adjunctive, repeated-dose intranasal insulin treatment on psychopathology and cognition in patients with schizophrenia. J. Clin. Psychopharmacol. 2013, 33, 226–230. [Google Scholar] [CrossRef]
- Ishoy, P.L.; Fagerlund, B.; Broberg, B.V.; Bak, N.; Knop, F.K.; Glenthoj, B.Y.; Ebdrup, B.H. No cognitive-enhancing effect of GLP-1 receptor agonism in antipsychotic-treated, obese patients with schizophrenia. Acta Psychiatr. Scand. 2017, 136, 52–62. [Google Scholar] [CrossRef]
- Gorczynski, P.; Firth, J.; Stubbs, B.; Rosenbaum, S.; Vancampfort, D. Are people with schizophrenia adherent to diabetes medication? A comparative meta-analysis. Psychiatry Res. 2017, 250, 17–24. [Google Scholar] [CrossRef]
- Gorczynski, P.; Patel, H.; Ganguli, R. Adherence to Diabetes Medication in Individuals with Schizophrenia: A Systematic Review of Rates and Determinants of Adherence. Clin. Schizophr. Relat. Psychoses 2017, 10, 191–200. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Kriska, A.M.; Rockette-Wagner, B.; Edelstein, S.L.; Bray, G.A.; Delahanty, L.M.; Hoskin, M.A.; Horton, E.S.; Venditti, E.M.; Knowler, W.C.; Group, D.P.P.R. The Impact of Physical Activity on the Prevention of Type 2 Diabetes: Evidence and Lessons Learned from the Diabetes Prevention Program, a Long-Standing Clinical Trial Incorporating Subjective and Objective Activity Measures. Diabetes Care 2021, 44, 43–49. [Google Scholar] [CrossRef] [PubMed]
- De Hert, M.; Correll, C.U.; Cohen, D. Do antipsychotic medications reduce or increase mortality in schizophrenia? A critical appraisal of the FIN-11 study. Schizophr. Res. 2010, 117, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Tiihonen, J.; Lonnqvist, J.; Wahlbeck, K.; Klaukka, T.; Niskanen, L.; Tanskanen, A.; Haukka, J. 11-year follow-up of mortality in patients with schizophrenia: A population-based cohort study (FIN11 study). Lancet 2009, 374, 620–627. [Google Scholar] [CrossRef]
- van der Zalm, Y.C.; Termorshuizen, F.; Selten, J.P. Concerns about bias in studies on clozapine and mortality. Schizophr. Res. 2019, 204, 425–426. [Google Scholar] [CrossRef]
- Livneh, H. Psychosocial Adaptation to Chronic Illness and Disability: An Updated and Expanded Conceptual Framework. Rehabil. Couns. Bull. 2022, 65, 171–184. [Google Scholar] [CrossRef]
- Starzer, M.; Hansen, H.G.; Hjorthoj, C.; Albert, N.; Nordentoft, M.; Madsen, T. 20-year trajectories of positive and negative symptoms after the first psychotic episode in patients with schizophrenia spectrum disorder: Results from the OPUS study. World Psychiatry 2023, 22, 424–432. [Google Scholar] [CrossRef]
- Habtewold, T.D.; Tiles-Sar, N.; Liemburg, E.J.; Sandhu, A.K.; Islam, M.A.; Boezen, H.M.; Investigators, G.; Bruggeman, R.; Alizadeh, B.Z. Six-year trajectories and associated factors of positive and negative symptoms in schizophrenia patients, siblings, and controls: Genetic Risk and Outcome of Psychosis (GROUP) study. Sci. Rep. 2023, 13, 9391. [Google Scholar] [CrossRef]
- Girdler, S.J.; Confino, J.E.; Woesner, M.E. Exercise as a Treatment for Schizophrenia: A Review. Psychopharmacol. Bull. 2019, 49, 56–69. [Google Scholar]
- Malchow, B.; Reich-Erkelenz, D.; Oertel-Knochel, V.; Keller, K.; Hasan, A.; Schmitt, A.; Scheewe, T.W.; Cahn, W.; Kahn, R.S.; Falkai, P. The effects of physical exercise in schizophrenia and affective disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 451–467. [Google Scholar] [CrossRef]
- Cao, G.; Gong, T.; Du, Y.; Wang, Y.; Ge, T.; Liu, J. Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed. Pharmacother. 2022, 156, 113686. [Google Scholar] [CrossRef] [PubMed]
- Dauwan, M.; Begemann, M.J.; Heringa, S.M.; Sommer, I.E. Exercise Improves Clinical Symptoms, Quality of Life, Global Functioning, and Depression in Schizophrenia: A Systematic Review and Meta-analysis. Schizophr. Bull. 2016, 42, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, Y.; Kang, H. Effects of Exercise on Positive Symptoms, Negative Symptoms, and Depression in Patients with Schizophrenia: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3719. [Google Scholar] [CrossRef] [PubMed]
- Pajonk, F.G.; Wobrock, T.; Gruber, O.; Scherk, H.; Berner, D.; Kaizl, I.; Kierer, A.; Muller, S.; Oest, M.; Meyer, T.; et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch. Gen. Psychiatry 2010, 67, 133–143. [Google Scholar] [CrossRef]
- Scheewe, T.W.; van Haren, N.E.; Sarkisyan, G.; Schnack, H.G.; Brouwer, R.M.; de Glint, M.; Hulshoff Pol, H.E.; Backx, F.J.; Kahn, R.S.; Cahn, W. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: A randomised controlled trial in patients with schizophrenia and healthy controls. Eur. Neuropsychopharmacol. 2013, 23, 675–685. [Google Scholar] [CrossRef]
- Korman, N.; Stanton, R.; Vecchio, A.; Chapman, J.; Parker, S.; Martland, R.; Siskind, D.; Firth, J. The effect of exercise on global, social, daily living and occupational functioning in people living with schizophrenia: A systematic review and meta-analysis. Schizophr. Res. 2023, 256, 98–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitter, I.; Czobor, P.; Tombor, L. Is There a Link Between Type 2 Diabetes Mellitus and Negative Symptoms in Schizophrenia? A Scoping Review. Brain Sci. 2025, 15, 499. https://doi.org/10.3390/brainsci15050499
Bitter I, Czobor P, Tombor L. Is There a Link Between Type 2 Diabetes Mellitus and Negative Symptoms in Schizophrenia? A Scoping Review. Brain Sciences. 2025; 15(5):499. https://doi.org/10.3390/brainsci15050499
Chicago/Turabian StyleBitter, István, Pál Czobor, and László Tombor. 2025. "Is There a Link Between Type 2 Diabetes Mellitus and Negative Symptoms in Schizophrenia? A Scoping Review" Brain Sciences 15, no. 5: 499. https://doi.org/10.3390/brainsci15050499
APA StyleBitter, I., Czobor, P., & Tombor, L. (2025). Is There a Link Between Type 2 Diabetes Mellitus and Negative Symptoms in Schizophrenia? A Scoping Review. Brain Sciences, 15(5), 499. https://doi.org/10.3390/brainsci15050499