Effectiveness of Intracerebral Hemorrhage Aspiration with Catheter Insertion: Impact on Hematoma Volume and Symptom Improvement
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection
2.2. Intraoperative ICH Aspiration
2.3. Thrombolytic Agent Administration Through the ICH Catheter
2.4. Glasgow Coma Scale (GCS) and Medical Research Council (MRC) Scale Score Analysis
2.5. Statistical Analysis
2.6. Data Availability Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | computed tomography |
GCS | Glasgow coma scale |
ICH | intracerebral hemorrhage |
ICU | intensive care unit |
MIS | minimally invasive surgery |
MISTIE | minimally invasive surgery plus rt-PA for intracerebral hemorrhage evacuation |
PACS | picture archiving and communication system |
STICH | Surgical Trial in Intracerebral Hemorrhage |
EVD | external ventricular drainage |
ICP | intracranial pressure |
sMRCS | sum of the Medical Research Council scale |
IVH | intraventricular hemorrhage |
References
- Dennis, M.S. Outcome after brain haemorrhage. Cerebrovasc. Dis. 2003, 16 (Suppl. 1), 9–13. [Google Scholar] [CrossRef] [PubMed]
- Dey, M.; Stadnik, A.; Awad, I.A. Spontaneous intracerebral and intraventricular hemorrhage: Advances in minimally invasive surgery and thrombolytic evacuation, and lessons learned in recent trials. Neurosurgery 2014, 74 (Suppl. 1), S142–S150. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.L.; Sulmasy, D.P.; Weil, R.J. Spontaneous intracerebral hemorrhage and the challenge of surgical decision making: A review. Neurosurg. Focus 2013, 34, E1. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Cai, Z.; Han, W.; Dong, B.; Mao, Y.; Cao, J.; Wang, S.; Guan, W. Stereotactic Catheter Drainage Versus Conventional Craniotomy for Severe Spontaneous Intracerebral Hemorrhage in the Basal Ganglia. Cell Transplant. 2019, 28, 1025–1032. [Google Scholar] [CrossRef]
- Luengo-Fernandez, R.; Gray, A.M.; Rothwell, P.M. Costs of stroke using patient-level data: A critical review of the literature. Stroke 2009, 40, e18–e23. [Google Scholar] [CrossRef]
- de Oliveira Manoel, A.L. Surgery for spontaneous intracerebral hemorrhage. Crit. Care 2020, 24, 45. [Google Scholar] [CrossRef]
- Fu, C.; Wang, N.; Chen, B.; Wang, P.; Chen, H.; Liu, W.; Liu, L. Surgical Management of Moderate Basal Ganglia Intracerebral Hemorrhage: Comparison of Safety and Efficacy of Endoscopic Surgery, Minimally Invasive Puncture and Drainage, and Craniotomy. World Neurosurg. 2019, 122, e995–e1001. [Google Scholar] [CrossRef]
- Hanley, D.F.; Thompson, R.E.; Rosenblum, M.; Yenokyan, G.; Lane, K.; McBee, N.; Mayo, S.W.; Bistran-Hall, A.J.; Gandhi, D.; Mould, W.A.; et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019, 393, 1021–1032. [Google Scholar] [CrossRef]
- Mendelow, A.D.; Gregson, B.A.; Fernandes, H.M.; Murray, G.D.; Teasdale, G.M.; Hope, D.T.; Karimi, A.; Shaw, M.D.; Barer, D.H. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005, 365, 387–397. [Google Scholar] [CrossRef]
- Mendelow, A.D.; Gregson, B.A.; Rowan, E.N.; Murray, G.D.; Gholkar, A.; Mitchell, P.M. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013, 382, 397–408. [Google Scholar] [CrossRef]
- Steiner, T.; Al-Shahi Salman, R.; Beer, R.; Christensen, H.; Cordonnier, C.; Csiba, L.; Forsting, M.; Harnof, S.; Klijn, C.J.; Krieger, D.; et al. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int. J. Stroke 2014, 9, 840–855. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Hu, X.; You, C.; He, M. Effect and Feasibility of Endoscopic Surgery in Spontaneous Intracerebral Hemorrhage: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 113, 348–356.e2. [Google Scholar] [CrossRef]
- James, M.L.; Cox, M.; Xian, Y.; Smith, E.E.; Bhatt, D.L.; Schulte, P.J.; Hernandez, A.; Fonarow, G.C.; Schwamm, L.H. Sex and Age Interactions and Differences in Outcomes After Intracerebral Hemorrhage. J. Women’s Health 2016, 26, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Nobleza, C.O.S. Intracerebral Hemorrhage. Continuum 2021, 27, 1246–1277. [Google Scholar] [CrossRef] [PubMed]
- Feletti, A.; Fiorindi, A. Hemorrhagic Stroke: Endoscopic Aspiration. In Cerebrovascular Surgery; Advances and Technical Standards in Neurosurgery; Springer: Cham, Switzerland, 2022; Volume 44, pp. 97–119. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, Q.; Sun, S.; Luo, J. Minimally Invasive Surgery for Intracerebral and Intraventricular Hemorrhage. Front. Neurol. 2022, 13, 755501. [Google Scholar] [CrossRef]
- Pradilla, G.; Ratcliff, J.J.; Hall, A.J.; Saville, B.R.; Allen, J.W.; Paulon, G.; McGlothlin, A.; Lewis, R.J.; Fitzgerald, M.; Caveney, A.F.; et al. Trial of Early Minimally Invasive Removal of Intracerebral Hemorrhage. N. Engl. J. Med. 2024, 390, 1277–1289. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, H.; Zhang, J.; Luo, M.; Wang, Q.; Zhao, Y.; Gan, Z.; Xu, B.; Chen, X. Minimally invasive surgeries for spontaneous hypertensive intracerebral hemorrhage (MISICH): A multicenter randomized controlled trial. BMC Med. 2024, 22, 244. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Li, Z.; Tian, B.; Zhang, X.; Wang, J.; Zheng, L.; Wang, B.; Li, L. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia. Front. Neurol. 2017, 8, 371. [Google Scholar] [CrossRef]
- Hanley, D.F.; Thompson, R.E.; Muschelli, J.; Rosenblum, M.; McBee, N.; Lane, K.; Bistran-Hall, A.J.; Mayo, S.W.; Keyl, P.; Gandhi, D.; et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): A randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016, 15, 1228–1237. [Google Scholar] [CrossRef]
- Fam, M.D.; Hanley, D.; Stadnik, A.; Zeineddine, H.A.; Girard, R.; Jesselson, M.; Cao, Y.; Money, L.; McBee, N.; Bistran-Hall, A.J.; et al. Surgical Performance in Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation Phase III Clinical Trial. Neurosurgery 2017, 81, 860–866. [Google Scholar] [CrossRef]
- Broderick, J.; Connolly, S.; Feldmann, E.; Hanley, D.; Kase, C.; Krieger, D.; Mayberg, M.; Morgenstern, L.; Ogilvy, C.S.; Vespa, P.; et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: A guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation 2007, 116, e391–e413. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Iverson, L.M. Glasgow Coma Scale. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Naqvi, U.; Sherman, A.L. Muscle Strength Grading. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Waterhouse, C. The Glasgow Coma Scale and other neurological observations. Nurs. Stand. 2005, 19, 56–67. [Google Scholar] [CrossRef]
- Bjelica, B.; Peric, S.; Basta, I.; Bozovic, I.; Kacar, A.; Marjanovic, A.; Ivanovic, V.; Brankovic, M.; Jankovic, M.; Novakovic, I.; et al. Neuropathic pain in patients with Charcot-Marie-Tooth type 1A. Neurol. Sci. 2020, 41, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Batjer, H.H.; Reisch, J.S.; Allen, B.C.; Plaizier, L.J.; Su, C.J. Failure of surgery to improve outcome in hypertensive putaminal hemorrhage. A prospective randomized trial. Arch. Neurol. 1990, 47, 1103–1106. [Google Scholar] [CrossRef]
- Bhattathiri, P.S.; Gregson, B.; Prasad, K.S.; Mendelow, A.D. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: Results from the STICH trial. Acta Neurochir. Suppl. 2006, 96, 65–68. [Google Scholar] [CrossRef]
- Ali, M.; Yaeger, K.; Ascanio, L.; Troiani, Z.; Mocco, J.; Kellner, C.P. Early Minimally Invasive Endoscopic Intracerebral Hemorrhage Evacuation. World Neurosurg. 2021, 148, 115. [Google Scholar] [CrossRef] [PubMed]
- Hersh, E.H.; Gologorsky, Y.; Chartrain, A.G.; Mocco, J.; Kellner, C.P. Minimally Invasive Surgery for Intracerebral Hemorrhage. Curr. Neurol. Neurosci. Rep. 2018, 18, 34. [Google Scholar] [CrossRef]
- Kellner, C.P.; Chartrain, A.G.; Nistal, D.A.; Scaggiante, J.; Hom, D.; Ghatan, S.; Bederson, J.B.; Mocco, J. The Stereotactic Intracerebral Hemorrhage Underwater Blood Aspiration (SCUBA) technique for minimally invasive endoscopic intracerebral hemorrhage evacuation. J. Neurointerv. Surg. 2018, 10, 771–776. [Google Scholar] [CrossRef]
- Pan, J.; Chartrain, A.G.; Scaggiante, J.; Allen, O.S.; Hom, D.; Bederson, J.B.; Mocco, J.; Kellner, C.P. Minimally Invasive Endoscopic Intracerebral Hemorrhage Evacuation. J. Vis. Exp. 2021, 176. [Google Scholar] [CrossRef]
- Troiani, Z.; Ascanio, L.C.; Yaeger, K.A.; Ali, M.; Kellner, C.P. Minimally invasive surgiscopic evacuation of intracerebral hemorrhage. J. Neurointerv. Surg. 2021, 13, 400. [Google Scholar] [CrossRef]
- Broderick, J.P.; Brott, T.G.; Duldner, J.E.; Tomsick, T.; Huster, G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 1993, 24, 987–993. [Google Scholar] [CrossRef]
- Kellner, C.P.; Song, R.; Ali, M.; Nistal, D.A.; Samarage, M.; Dangayach, N.S.; Liang, J.; McNeill, I.; Zhang, X.; Bederson, J.B.; et al. Time to Evacuation and Functional Outcome After Minimally Invasive Endoscopic Intracerebral Hemorrhage Evacuation. Stroke 2021, 52, e536–e539. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Zhang, X.; Ascanio, L.C.; Troiani, Z.; Smith, C.; Dangayach, N.S.; Liang, J.W.; Selim, M.; Mocco, J.; Kellner, C.P. Long-term functional independence after minimally invasive endoscopic intracerebral hemorrhage evacuation. J. Neurosurg. 2023, 138, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.; Godecke, E.; Johnson, L.; Langhorne, P. Early rehabilitation after stroke. Curr. Opin. Neurol. 2017, 30, 48–54. [Google Scholar] [CrossRef]
- Coleman, E.R.; Moudgal, R.; Lang, K.; Hyacinth, H.I.; Awosika, O.O.; Kissela, B.M.; Feng, W. Early Rehabilitation After Stroke: A Narrative Review. Curr. Atheroscler. Rep. 2017, 19, 59. [Google Scholar] [CrossRef]
- Karic, T.; Røe, C.; Nordenmark, T.H.; Becker, F.; Sorteberg, W.; Sorteberg, A. Effect of early mobilization and rehabilitation on complications in aneurysmal subarachnoid hemorrhage. J. Neurosurg. 2017, 126, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Morreale, M.; Marchione, P.; Pili, A.; Lauta, A.; Castiglia, S.F.; Spallone, A.; Pierelli, F.; Giacomini, P. Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: Proprioceptive or cognitive approach? Eur. J. Phys. Rehabil. Med. 2016, 52, 81–89. [Google Scholar]
- Gaberel, T.; Macrez, R.; Gauberti, M.; Montagne, A.; Hebert, M.; Petersen, K.U.; Touze, E.; Agin, V.; Emery, E.; Ali, C.; et al. Immunotherapy blocking the tissue plasminogen activator-dependent activation of N-methyl-D-aspartate glutamate receptors improves hemorrhagic stroke outcome. Neuropharmacology 2013, 67, 267–271. [Google Scholar] [CrossRef]
- Rohde, V.; Rohde, I.; Thiex, R.; Ince, A.; Jung, A.; Dückers, G.; Gröschel, K.; Röttger, C.; Küker, W.; Müller, H.D.; et al. Fibrinolysis therapy achieved with tissue plasminogen activator and aspiration of the liquefied clot after experimental intracerebral hemorrhage: Rapid reduction in hematoma volume but intensification of delayed edema formation. J. Neurosurg. 2002, 97, 954–962. [Google Scholar] [CrossRef]
- Thiex, R.; Weis, J.; Krings, T.; Barreiro, S.; Yakisikli-Alemi, F.; Gilsbach, J.M.; Rohde, V. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J. Neurosurg. 2007, 106, 314–320. [Google Scholar] [CrossRef]
- Dastur, C.K.; Yu, W. Current management of spontaneous intracerebral haemorrhage. Stroke Vasc. Neurol. 2017, 2, 21–29. [Google Scholar] [CrossRef] [PubMed]
Characteristic | ICH Aspiration | p-Value | |
---|---|---|---|
Yes (n = 32) | No (n = 17) | ||
Sex | 0.917 | ||
Male | 17 (53.1%) | 8 (47.1%) | |
Female | 15 (46.9%) | 9 (52.9%) | |
Age | 61.13 ± 14.89 | 62.24 ± 19.45 | 0.839 |
Location | 0.401 | ||
Left basal ganglia | 8 (25.0%) | 8 (47.1%) | |
Right basal ganglia | 11 (34.4%) | 5 (29.4%) | |
Thalamus | 1 (3.1%) | 1 (5.9%) | |
Posterior fossa | 3 (9.4%) | 0 (0.0%) | |
Subcortical | 9 (28.1%) | 3 (17.6%) | |
ICH volume (mL) | 66.18 ± 29.81 | 59.92 ± 22.21 | 0.411 |
Surgery | <0.001 | ||
Catheter insertion only | 0 (0.0%) | 17 (100.0%) | |
ICH aspiration | 20 (62.5%) | 0 (0.0%) | |
Endoscopic irrigation after aspiration | 12 (37.5%) | 0 (0.0%) | |
IVH, yes | 18 (56.3%) | 5 (29.4%) | 0.136 |
Number of ICH catheters | 0.008* | ||
1 | 31 (96.9%) | 11 (64.7%) | |
2 | 1 (3.1%) | 6 (35.3%) | |
EVD insertion | 1 (3.1%) | 2 (11.8%) | 0.565 |
Past medical history | |||
Heart disease | 18 (56.3%) | 10 (58.8%) | 1.000 |
Diabetes mellitus | 5 (15.6%) | 2 (11.8%) | 1.000 |
Liver disease | 1 (3.1%) | 0 (0.0%) | 1.000 |
CKD | 2 (6.3%) | 2 (11.8%) | 0.902 |
Pulmonary disease | 0 (0.0%) | 1 (5.9%) | 0.745 |
Cerebrovascular disease | 3 (9.4%) | 3 (17.6%) | 0.702 |
Time from symptom to surgery | 0.740 | ||
<4 h | 8 (25.0%) | 5 (29.4%) | |
4–12 h | 13 (40.6%) | 5 (29.4%) | |
≥12 h | 11 (34.4%) | 7 (41.2%) | |
Postoperative actylase | 0.371 | ||
0 | 10 (31.3%) | 7 (41.2%) | |
1 | 9 (28.1%) | 5 (29.4%) | |
2 | 13 (40.6%) | 4 (23.5%) | |
3 | 0 (0.0%) | 1 (5.9%) | |
Anticoagulant use (preoperative) | 5 (15.6%) | 4 (23.5%) | 0.770 |
Variable | GCS Score | sMRCS Score | ||||
---|---|---|---|---|---|---|
Coefficient | 95% CI | p-Value | Coefficient | 95% CI | p-Value | |
ICH aspiration | ||||||
No (Group B-1) | Reference | Reference | ||||
Yes (Group A-1) | 0.255 | −1.884, 2.394 | 0.811 | −0.985 | −3.931, 1.960 | 0.504 |
Time | ||||||
Baseline | Reference | Reference | ||||
First period | 2.654 | 1.766, 3.542 | <0.001 | 2.779 | 1.960, 3.597 | <0.001 |
Second period | 4.212 | 3.324, 5.101 | <0.001 | 5.081 | 4.262, 5.900 | <0.001 |
Baseline value | 0.792 | 0.635, 0.948 | <0.001 | 0.922 | 0.811, 1.033 | <0.001 |
Sex | ||||||
Male | Reference | Reference | ||||
Female | −0.754 | −2.790, 1.282 | 0.459 | 0.984 | −1.826, 3.794 | 0.484 |
Age | −0.040 | −0.102, 0.022 | 0.202 | −0.039 | −0.126, 0.048 | 0.368 |
Location | ||||||
Left basal ganglia | Reference | Reference | ||||
Right basal ganglia | 0.426 | −2.162, 3.013 | 0.741 | 0.131 | −3.454, 3.717 | 0.941 |
Thalamus | −2.873 | −8.210, 2.465 | 0.283 | −1.150 | −8.584, 6.284 | 0.756 |
Posterior fossa | −1.030 | −5.713, 3.654 | 0.660 | −0.252 | −6.680, 6.176 | 0.937 |
Subcortical | 0.577 | −2.203, 3.356 | 0.677 | 1.925 | −1.931, 5.781 | 0.319 |
ICH volume | −0.047 | −0.081, −0.014 | 0.007 | −0.069 | −0.115, −0.023 | 0.004 |
Surgery | ||||||
No | Reference | Reference | ||||
Catheter | 0.755 | −1.533, 3.042 | 0.509 | −0.451 | −3.606, 2.704 | 0.775 |
Endoscopy | −0.553 | −3.111, 2.004 | 0.665 | −1.881 | −5.366, 1.605 | 0.284 |
IVH | ||||||
No | Reference | Reference | ||||
Yes | −2.673 | −4.592, −0.754 | 0.007 | −4.132 | −6.714, −1.550 | 0.002 |
Number of catheters | ||||||
1 | Reference | Reference | ||||
2 | −1.091 | −3.977, 1.795 | 0.450 | −0.805 | −4.808, 3.197 | 0.687 |
EVD | ||||||
No | Reference | Reference | ||||
Yes | −5.012 | −9.141, −0.883 | 0.018 | −3.671 | −9.554, 2.212 | 0.216 |
Heart disease | ||||||
No | Reference | Reference | ||||
Yes | −1.355 | −3.392, 0.683 | 0.187 | −2.176 | −4.966, 0.614 | 0.123 |
DM | ||||||
No | Reference | Reference | ||||
Yes | 0.651 | −2.365, 3.668 | 0.666 | −0.399 | −4.514, 3.717 | 0.846 |
Liver disease | ||||||
No | Reference | Reference | ||||
Yes | −3.049 | −10.029, 3.930 | 0.382 | −6.601 | −16.153, 2.950 | 0.170 |
CKD | ||||||
No | Reference | Reference | ||||
Yes | −3.546 | −7.564, 0.472 | 0.083 | −6.063 | −11.290, −0.836 | 0.024 * |
Pulmonary disease | ||||||
No | Reference | Reference | ||||
Yes | −4.758 | −11.634, 2.117 | 0.169 | −5.919 | −15.515, 3.678 | 0.220 |
Cerebrovascular disease | ||||||
No | Reference | Reference | ||||
Yes | 0.407 | −2.646, 3.460 | 0.789 | 3.740 | −0.339, 7.819 | 0.071 |
Time from symptom to surgery | ||||||
<4 h | Reference | Reference | ||||
4–12 h | 2.142 | −0.250, 4.535 | 0.078 | 1.710 | −1.492, 4.913 | 0.289 |
≥12 h | 2.500 | 0.258, 4.742 | 0.029 * | 3.765 | 0.908, 6.622 | 0.010 * |
Postoperative alteplase | ||||||
0 | Reference | Reference | ||||
1 | 1.057 | −1.109, 3.222 | 0.333 | 1.229 | −1.635, 4.094 | 0.396 |
2 | −1.647 | −3.912, 0.619 | 0.150 | −2.197 | −5.369, 0.975 | 0.170 |
3 | −6.045 | −12.741, 0.651 | 0.075 | −5.649 | −15.244, 3.946 | 0.241 |
Preoperative anticoagulant | ||||||
No | Reference | Reference | ||||
Yes | −1.158 | −3.803, 1.487 | 0.382 | −1.195 | −4.836, 2.446 | 0.512 |
Variable | GCS Score | sMRCS Score | ||||
---|---|---|---|---|---|---|
Coefficient | 95% CI | p-Value | Coefficient | 95% CI | p-Value | |
ICH aspiration | ||||||
No (Group B-1) | Reference | Reference | ||||
Yes (Group A-1) | −0.354 | −1.798, 1.089 | 0.627 | 0.031 | −1.265, 1.327 | 0.962 |
Time | ||||||
Baseline | Reference | Reference | ||||
First period | 1.565 | 0.111, 3.020 | 0.035 | 2.033 | 0.759, 3.308 | 0.002 |
Second period | 3.032 | 1.578, 4.486 | <0.001 | 3.300 | 2.026, 4.574 | <0.001 |
ICH aspiration × time | ||||||
ICH aspiration, Yes, 2 weeks after surgery | 1.529 | −0.271, 3.329 | 0.095 | 1.054 | −0.523, 2.631 | 0.188 |
ICH aspiration, Yes, 2 months after surgery | 1.670 | −0.130, 3.470 | 0.069 | 2.644 | 1.067, 4.221 | 0.001 * |
Baseline value | 0.680 | 0.515, 0.845 | <0.001 | 0.867 | 0.747, 0.988 | <0.001 |
Preoperative ICH volume | −0.023 | −0.042, −0.004 | 0.018 * | −0.011 | −0.029, 0.007 | 0.216 |
IVH | ||||||
No | Reference | Reference | ||||
Yes | 0.152 | −1.039, 1.344 | 0.798 | −0.606 | −1.648, 0.435 | 0.246 |
EVD | ||||||
No | Reference | Reference | ||||
Yes | −0.765 | −3.261, 1.732 | 0.541 | 0.728 | −1.446, 2.902 | 0.504 |
CKD | ||||||
No | Reference | Reference | ||||
Yes | −0.841 | −3.120, 1.438 | 0.464 | −0.765 | −2.830, 1.301 | 0.462 |
Time from symptom to surgery | ||||||
<4 h | Reference | Reference | ||||
4–12 h | 0.795 | −0.477, 2.066 | 0.215 | −0.823 | −1.982, 0.337 | 0.160 |
≥12 h | 0.961 | −0.271, 2.192 | 0.124 | −0.081 | −1.258, 1.096 | 0.891 |
Outcome | Variable | Group A-1 | Group B-1 | P for Interaction | ||||
---|---|---|---|---|---|---|---|---|
Coefficient | 95% CI | p-Value | Coefficient | 95% CI | p-Value | |||
GCS score | Time | 0.120 | ||||||
Baseline | Reference | Reference | ||||||
First period | 3.095 | 2.041, 4.148 | <0.001 | 1.565 | 0.111, 3.020 | 0.035 | ||
Second period | 4.702 | 3.648, 5.756 | <0.001 | 3.032 | 1.578, 4.486 | <0.001 | ||
sMRCS score | Time | 0.004 * | ||||||
Baseline | Reference | Reference | ||||||
First period | 3.087 | 2.165, 4.001 | <0.001 | 2.033 | 0.759, 3.308 | 0.002 | ||
Second period | 5.944 | 5.022, 6.867 | <0.001 | 3.300 | 2.026, 4.574 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.K.; Kim, N.Y.; Jeong, W.J.; Jang, C.K.; Lee, J.W.; Yi, T.I.; Cho, K.-C. Effectiveness of Intracerebral Hemorrhage Aspiration with Catheter Insertion: Impact on Hematoma Volume and Symptom Improvement. Brain Sci. 2025, 15, 455. https://doi.org/10.3390/brainsci15050455
Hwang JK, Kim NY, Jeong WJ, Jang CK, Lee JW, Yi TI, Cho K-C. Effectiveness of Intracerebral Hemorrhage Aspiration with Catheter Insertion: Impact on Hematoma Volume and Symptom Improvement. Brain Sciences. 2025; 15(5):455. https://doi.org/10.3390/brainsci15050455
Chicago/Turabian StyleHwang, Jun Kyu, Na Young Kim, Won Joo Jeong, Chang Ki Jang, Jae Whan Lee, Tae Im Yi, and Kwang-Chun Cho. 2025. "Effectiveness of Intracerebral Hemorrhage Aspiration with Catheter Insertion: Impact on Hematoma Volume and Symptom Improvement" Brain Sciences 15, no. 5: 455. https://doi.org/10.3390/brainsci15050455
APA StyleHwang, J. K., Kim, N. Y., Jeong, W. J., Jang, C. K., Lee, J. W., Yi, T. I., & Cho, K.-C. (2025). Effectiveness of Intracerebral Hemorrhage Aspiration with Catheter Insertion: Impact on Hematoma Volume and Symptom Improvement. Brain Sciences, 15(5), 455. https://doi.org/10.3390/brainsci15050455