Psychological and Clinical Parameters as Predictors of Relapse in Alcohol-Dependent Patients During and After Extensive Inpatient Rehabilitation Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Variables
2.2.1. Alcohol Craving
2.2.2. Attentional Bias
2.2.3. Impulsivity
2.2.4. Inhibitory Control
2.2.5. Treatment Discontinuation and Abstinence vs. Relapse
2.2.6. Exploratory Variables
Time Spent in Abstinence Before Admission and During Treatment
Demographic Data and Comorbid Psychiatric and Substance-Related Disorders
2.3. Statistical Methods
3. Results
3.1. Descriptive Statistics
3.1.1. Recruitment Success, Dropouts, and Final Sample
3.1.2. Demographic Data
3.1.3. Comorbid Psychiatric and Substance-Related Disorders
3.1.4. Time Spent in Abstinence Before Admission and Within Treatment
3.1.5. Treatment Discontinuation and Within-Treatment Relapse
3.1.6. Post-Treatment Relapse
3.1.7. Means and Standard Deviations of the Variables
3.2. Statistical Analyses
3.2.1. Statistical Analyses of the Variables Regarding Treatment Discontinuation
3.2.2. Statistical Analyses of the Variables Regarding Relapse
3.2.3. Comparison of the Logistic Regression Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, A.Z.; Chou, S.P.; Zhang, H.; Jung, J.; Grant, B.F. Prevalence and Correlates of Past-Year Recovery from DSM-5 Alcohol Use Disorder: Results from National Epidemiologic Survey on Alcohol and Related Conditions-III. Alcohol. Clin. Exp. Res. 2019, 43, 2406–2420. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Dawson, D.; Frick, U.; Gmel, G.; Roerecke, M.; Shield, K.D.; Grant, B. Burden of Disease Associated with Alcohol Use Disorders in the United States. Alcohol. Clin. Exp. Res. 2014, 38, 1068–1077. [Google Scholar] [CrossRef]
- Roerecke, M.; Rehm, J. Alcohol Use Disorders and Mortality: A Systematic Review and Meta-Analysis. Addiction 2013, 108, 1562–1578. [Google Scholar] [CrossRef] [PubMed]
- Deak, J.D.; Johnson, E.C. Genetics of Substance Use Disorders: A Review. Psychol. Med. 2021, 51, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, J.M.; Coombes, B.J.; Batzler, A.; Ho, A.M.-C.; Geske, J.R.; Frank, J.; Hodgkinson, C.; Skime, M.; Colby, C.; Zillich, L.; et al. Genetic Contributions to Alcohol Use Disorder Treatment Outcomes: A Genome-Wide Pharmacogenomics Study. Neuropsychopharmacology 2021, 46, 2132–2139. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Plasticity of Reward Neurocircuitry and the “dark Side” of Drug Addiction. Nat. Neurosci. 2005, 8, 1442–1444. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of Addiction: A Neurocircuitry Analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Volkow, N.D.; Boyle, M. Neuroscience of Addiction: Relevance to Prevention and Treatment. Am. J. Psychiatry 2018, 175, 729–740. [Google Scholar] [CrossRef]
- Aron, A.R.; Poldrack, R.A. The Cognitive Neuroscience of Response Inhibition: Relevance for Genetic Research in Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2005, 57, 1285–1292. [Google Scholar] [CrossRef]
- Bernardin, F.; Maheut-Bosser, A.; Paille, F. Cognitive Impairments in Alcohol-Dependent Subjects. Front. Psychiatry 2014, 5, 78. [Google Scholar] [CrossRef]
- Chanraud, S.; Martelli, C.; Delain, F.; Kostogianni, N.; Douaud, G.; Aubin, H.-J.; Reynaud, M.; Martinot, J.-L. Brain Morphometry and Cognitive Performance in Detoxified Alcohol-Dependents with Preserved Psychosocial Functioning. Neuropsychopharmacology 2007, 32, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Coskunpinar, A.; Dir, A.L.; Cyders, M.A. Multidimensionality in Impulsivity and Alcohol Use: A Meta-Analysis Using the UPPS Model of Impulsivity. Alcohol. Clin. Exp. Res. 2013, 37, 1441–1450. [Google Scholar] [CrossRef]
- Dick, D.M.; Smith, G.; Olausson, P.; Mitchell, S.H.; Leeman, R.F.; O’Malley, S.S.; Sher, K. Understanding the Construct of Impulsivity and Its Relationship to Alcohol Use Disorders. Addict. Biol. 2010, 15, 217–226. [Google Scholar] [CrossRef]
- Field, M.; Cox, W. Attentional Bias in Addictive Behaviors: A Review of Its Development, Causes, and Consequences. Drug Alcohol Depend. 2008, 97, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pennington, C.R.; Shaw, D.J.; Adams, J.; Kavanagh, P.; Reed, H.; Robinson, M.; Shave, E.; White, H. Where’s the Wine? Heavy Social Drinkers Show Attentional Bias towards Alcohol in a Visual Conjunction Search Task. Addiction 2020, 115, 1650–1659. [Google Scholar] [CrossRef]
- Sharma, D.; Albery, I.P.; Cook, C. Selective Attentional Bias to Alcohol Related Stimuli in Problem Drinkers and Non-Problem Drinkers. Addiction 2001, 96, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Fleming, K.A.; Bartholow, B.D. Alcohol Cues, Approach Bias, and Inhibitory Control: Applying a Dual Process Model of Addiction to Alcohol Sensitivity. Psychol. Addict. Behav. 2014, 28, 85–96. [Google Scholar] [CrossRef]
- Jones, A.; Tiplady, B.; Houben, K.; Nederkoorn, C.; Field, M. Do Daily Fluctuations in Inhibitory Control Predict Alcohol Consumption? An Ecological Momentary Assessment Study. Psychopharmacology 2018, 235, 1487–1496. [Google Scholar] [CrossRef]
- López-Caneda, E.; Rodríguez Holguín, S.; Cadaveira, F.; Corral, M.; Doallo, S. Impact of Alcohol Use on Inhibitory Control (and Vice Versa) During Adolescence and Young Adulthood: A Review. Alcohol Alcohol. 2014, 49, 173–181. [Google Scholar] [CrossRef]
- Blaine, S.K.; Milivojevic, V.; Fox, H.; Sinha, R. Alcohol Effects on Stress Pathways: Impact on Craving and Relapse Risk. Can. J. Psychiatry 2016, 61, 145–153. [Google Scholar] [CrossRef]
- Evren, C.; Durkaya, M.; Evren, B.; Dalbudak, E.; Cetin, R. Relationship of Relapse with Impulsivity, Novelty Seeking and Craving in Male Alcohol-Dependent Inpatients. Drug Alcohol Rev. 2012, 31, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Heinz, A.; Beck, A.; Grüsser, S.M.; Grace, A.A.; Wrase, J. Identifying the Neural Circuitry of Alcohol Craving and Relapse Vulnerability. Addict. Biol. 2009, 14, 108–118. [Google Scholar] [CrossRef]
- Schneekloth, T.D.; Biernacka, J.M.; Hall-Flavin, D.K.; Karpyak, V.M.; Frye, M.A.; Loukianova, L.L.; Stevens, S.R.; Drews, M.S.; Geske, J.R.; Mrazek, D.A. Alcohol Craving as a Predictor of Relapse. Am. J. Addict. 2012, 21, S20–S26. [Google Scholar] [CrossRef]
- Sliedrecht, W.; Seesink, H.J.; Vrijmoeth, C.; de Waart, R.; Wiers, R.W.; Ostafin, B.; Schaap-Jonker, H.; Roozen, H.; Witkiewitz, K.; Dom, G. Alcohol Use Disorder Relapse Factors: An Exploratory Investigation of Craving, Alcohol Dependence Severity, and Meaning in Life. Addict. Res. Theory 2022, 30, 351–359. [Google Scholar] [CrossRef]
- Stohs, M.E.; Schneekloth, T.D.; Geske, J.R.; Biernacka, J.M.; Karpyak, V.M. Alcohol Craving Predicts Relapse After Residential Addiction Treatment. Alcohol Alcohol. 2019, 54, 167–172. [Google Scholar] [CrossRef]
- Garland, E.L.; Franken, I.H.A.; Howard, M.O. Cue-Elicited Heart Rate Variability and Attentional Bias Predict Alcohol Relapse Following Treatment. Psychopharmacology 2012, 222, 17–26. [Google Scholar] [CrossRef]
- Sasaki, J.; Matsubara, T.; Chen, C.; Fujii, Y.; Fujita, Y.; Nakamuta, M.; Nitta, K.; Egashira, K.; Hashimoto, T.; Nakagawa, S. Prefrontal Activity during the Emotional Go/No-Go Task and Computational Markers of Risk-Based Decision-Making Predict Future Relapse in Alcohol Use Disorder. Front. Psychiatry 2023, 13, 1048152. [Google Scholar] [CrossRef] [PubMed]
- Charney, D.A.; Zikos, E.; Gill, K.J. Early Recovery from Alcohol Dependence: Factors That Promote or Impede Abstinence. J. Subst. Abus. Treat. 2010, 38, 42–50. [Google Scholar] [CrossRef]
- Müller, S.E.; Weijers, H.-G.; Böning, J.; Wiesbeck, G.A. Personality Traits Predict Treatment Outcome in Alcohol-Dependent Patients. Neuropsychobiology 2008, 57, 159–164. [Google Scholar] [CrossRef]
- Batschelet, H.M.; Tschuemperlin, R.M.; Moggi, F.; Soravia, L.M.; Koenig, T.; Pfeifer, P.; Roesner, S.; Keller, A.; Stein, M. Neurophysiological Correlates of Alcohol-Specific Inhibition in Alcohol Use Disorder and Its Association with Craving and Relapse. Clin. Neurophysiol. 2021, 132, 1290–1301. [Google Scholar] [CrossRef]
- Czapla, M.; Simon, J.J.; Richter, B.; Kluge, M.; Friederich, H.-C.; Herpertz, S.; Mann, K.; Herpertz, S.C.; Loeber, S. The Impact of Cognitive Impairment and Impulsivity on Relapse of Alcohol-Dependent Patients: Implications for Psychotherapeutic Treatment. Addict. Biol. 2016, 21, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Petit, G.; Cimochowska, A.; Kornreich, C.; Hanak, C.; Verbanck, P.; Campanella, S. Neurophysiological Correlates of Response Inhibition Predict Relapse in Detoxified Alcoholic Patients: Some Preliminary Evidence from Event-Related Potentials. Neuropsychiatr. Dis. Treat. 2014, 10, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, M. An Overview of Outpatient and Inpatient Detoxification. Alcohol Health Res. World 1998, 22, 44–46. [Google Scholar] [PubMed]
- Nadkarni, A.; Endsley, P.; Bhatia, U.; Fuhr, D.C.; Noorani, A.; Naik, A.; Murthy, P.; Velleman, R. Community Detoxification for Alcohol Dependence: A Systematic Review. Drug Alcohol Rev. 2017, 36, 389–399. [Google Scholar] [CrossRef]
- Livingston, N.; Ameral, V.; Hocking, E.; Leviyah, X.; Timko, C. Interventions to Improve Post-Detoxification Treatment Engagement and Alcohol Recovery: Systematic Review of Intervention Types and Effectiveness. Alcohol Alcohol. 2022, 57, 136–150. [Google Scholar] [CrossRef]
- Bachmeier, R.; Bick-Dresen, S.; Daniel, H.; Funke, W.; Kemmann, D.; Klein, T.; Medenwaldt, J.; Premper, V.; Reger, F.; Teigeler, H.; et al. FVS-Katamnese des Entlassjahrgangs 2019 von Fachkliniken für Alkohol- und Medikamentenabhängige. Available online: https://www.sucht.de/wirksamkeitsstudien/ (accessed on 14 September 2023).
- Millisecond Software. Inquisit 6, Version 6.6.1 [Computer Software]; Millisecond: Seattle, WA, USA, 2021. [Google Scholar]
- Mann, K.; Ackermann, K. Die OCDS-G: Psychometrische Kennwerte Der Deutschen Version Der Obsessive Compulsive Drinking Scale. Sucht 2000, 46, 90–100. [Google Scholar] [CrossRef]
- Nakovics, H.; Diehl, A.; Croissant, B.; Mann, K. Modifications of the Obsessive Compulsive Drinking Scale (OCDS-G) for Use in Longitudinal Studies. Addict. Behav. 2008, 33, 1276–1281. [Google Scholar] [CrossRef]
- Millisecond Software. Inquisit 6 UPPS Impulse Behavior Scale [Computer Software]; Millisecond: Seattle, WA, USA, 2013. [Google Scholar]
- Miller, M.A.; Fillmore, M.T. The Effect of Image Complexity on Attentional Bias towards Alcohol-Related Images in Adult Drinkers. Addiction 2010, 105, 883–890. [Google Scholar] [CrossRef]
- Keye, D.; Wilhelm, O.; Oberauer, K. Structure and Correlates of the German Version of the Brief UPPS Impulsive Behavior Scales. Eur. J. Psychol. Assess. 2009, 25, 175–185. [Google Scholar] [CrossRef]
- Whiteside, S.P.; Lynam, D.R. The Five Factor Model and Impulsivity: Using a Structural Model of Personality to Understand Impulsivity. Personal. Individ. Differ. 2001, 30, 669–689. [Google Scholar] [CrossRef]
- Millisecond Software. Inquisit 6 Baratt Impulsiveness Scale (BIS-11) [Computer Software]; Millisecond: Seattle, WA, USA, 2012. [Google Scholar]
- Hartmann, A.S.; Rief, W.; Hilbert, A. Psychometric Properties of the German Version of the Barratt Impulsiveness Scale, Version 11 (BIS-11) for Adolescents. Percept. Mot. Ski. 2011, 112, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor Structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Millisecond Software. Inquisit 6 Stop Signal Task (SST) [Computer Software]; Millisecond: Seattle, WA, USA, 2019. [Google Scholar]
- Verbruggen, F.; Aron, A.R.; Band, G.P.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A Consensus Guide to Capturing the Ability to Inhibit Actions and Impulsive Behaviors in the Stop-Signal Task. Elife 2019, 8, e46323. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC.: Boston, MA, USA, 2023. [Google Scholar]
- Rabl, J.; Geyer, D.; Kroll, D.; Schifano, F.; Scherbaum, N. Neuropsychological Abnormalities Associated with Alcohol Dependence During Long-Term Rehabilitation Treatment of German Inpatients. Brain Sci. 2024, 14, 1160. [Google Scholar] [CrossRef]
- Rupp, C.I.; Beck, J.K.; Heinz, A.; Kemmler, G.; Manz, S.; Tempel, K.; Fleischhacker, W.W. Impulsivity and Alcohol Dependence Treatment Completion: Is There a Neurocognitive Risk Factor at Treatment Entry? Alcohol Clin. Exp. Res. 2016, 40, 152–160. [Google Scholar] [CrossRef]
- Manning, V.; Garfield, J.B.B.; Staiger, P.K.; Lubman, D.I.; Lum, J.A.G.; Reynolds, J.; Hall, K.; Bonomo, Y.; Lloyd-Jones, M.; Wiers, R.W.; et al. Effect of Cognitive Bias Modification on Early Relapse Among Adults Undergoing Inpatient Alcohol Withdrawal Treatment: A Randomized Clinical Trial. JAMA Psychiatry 2021, 78, 133–140. [Google Scholar] [CrossRef]
- Rinck, M.; Wiers, R.W.; Becker, E.S.; Lindenmeyer, J. Relapse Prevention in Abstinent Alcoholics by Cognitive Bias Modification: Clinical Effects of Combining Approach Bias Modification and Attention Bias Modification. J. Consult. Clin. Psychol. 2018, 86, 1005–1016. [Google Scholar] [CrossRef]
- Wiers, C.E.; Gladwin, T.E.; Ludwig, V.U.; Gröpper, S.; Stuke, H.; Gawron, C.K.; Wiers, R.W.; Walter, H.; Bermpohl, F. Comparing Three Cognitive Biases for Alcohol Cues in Alcohol Dependence. Alcohol Alcohol. 2017, 52, 242–248. [Google Scholar] [CrossRef]
- Andersson, H.W.; Steinsbekk, A.; Walderhaug, E.; Otterholt, E.; Nordfjærn, T. Predictors of Dropout from Inpatient Substance Use Treatment: A Prospective Cohort Study. Subst. Abus. 2018, 12, 1178221818760551. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Stephens, L.H.; Meyerhoff, D.J. Regional Cortical Thickness Recovery with Extended Abstinence after Treatment in Those with Alcohol Use Disorder. Alcohol 2024, 114, 51–60. [Google Scholar] [CrossRef]
- Bujang, M.A.; Sa’at, N.; Sidik, T.M.I.T.A.B.; Joo, L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018, 25, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Capella, M.d.M.; Benaiges, I.; Adan, A. Neuropsychological Performance in Polyconsumer Men Under Treatment. Influence of Age of Onset of Substance Use. Sci. Rep. 2015, 5, 12038. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, N.; Rahimi, A.; Iturralde, K.; Zawertailo, L. Attentional Bias in Tobacco Use Disorder Using Eye Tracking: A Systematic Review. Drug Alcohol Depend. Rep. 2024, 13, 100294. [Google Scholar] [CrossRef] [PubMed]
M (SD) Frequency (%) Min/Max | |
---|---|
Age | 43.30 (11.09) 18/64 |
Female/male | 28 (21.9%)/100 (78.1%) |
Educational background | |
No degree | 6 (4.7%) |
Basic degree | 11 (8.6%) |
Secondary school (10th class or vocational training) | 78 (60.9%) |
High school | 27 (21.1%) |
University diploma | 6 (4.7%) |
Number of SUD diagnoses | |
1 | 26 (20.3%) |
2 | 62 (48.4%) |
3 or more | 40 (31.3%) |
Number of psychiatric diagnoses | |
0 | 63 (49.2%) |
1 | 50 (39.1%) |
2 or more | 15 (11.7%) |
Frequency (%) | |
---|---|
Comorbid mental and behavioral disorders due to use of: | |
F17.2 Tobacco | 97 (75.8) |
F11.2 Opioids | 1 (0.8) |
F12.2 Cannabinoids | 25 (19.5) |
F13.2 Sedatives or hypnotics | 3 (2.3) |
F14.2 Cocaine | 11 (8.5) |
F15.2 Other stimulants, including caffeine | 13 (10.0) |
Other psychiatric diagnoses: | |
F3 Mood [affective] disorders | 43 (33.5) |
F4 Neurotic, stress-related and somatoform disorders | 22 (17.1) |
F5 Behavioural syndromes associated with physiological disturbances and physical factors | 1 (0.8) |
F6 Disorders of adult personality and behaviour | 14 (10.9) |
F9 Behavioural and emotional disorders with onset usually occurring in childhood and adolescence | 6 (4.6) |
Status at Follow-Up N (%) | |||
---|---|---|---|
Group | Abstinence | Relapse | Not Reachable |
Completers of the first assessment, including during-treatment and post-treatment relapse (N = 128) | 66 (51.56) | 23 (17.96) | 39 (30.46) |
Completers of the first assessment, including post-treatment relapse (N = 119) | 66 (55.46) | 14 (11.76) | 39 (32.77) |
Completers of the second assessment, only post-treatment relapse (N = 97) | 62 (63.92) | 10 (10.31) | 25 (25.77) |
Completers of the third assessment, only post-treatment relapse (N = 83) | 53 (63.85) | 8 (9.63) | 22 (26.50) |
T1 M, (SD) | T2 M, (SD) | T3 M, (SD) | |
---|---|---|---|
Craving: OCDS-5 | 5.29 (3.60) | 2.93 (2.49) | 2.23 (2.14) |
Attentional Bias: Dot Probe | 1.48 (26.52) | −3.99 (24.75) | 0.74 (19.46) |
Impulsivity: BIS-11 | 67.37 (10.73) | 66.35 (10.61) | 65.02 (10.86) |
Impulsivity: UPPS | 109.84 (16.67) | 107.76 (14.84) | 105.48 (16.01) |
Inhibitory Control: SST | 221.14 (60.19) | 220.16 (51.24) | 224.30 (37.33) |
Estimate | Std. Error | z Value | p | OR | |
---|---|---|---|---|---|
Predictive value of the variables at timepoint/assessment 1 regarding therapy discontinuation, N = 128. | |||||
Intercept | −3.124553 | 1.706484 | −1.831 | 0.0671 | |
Craving | 0.006889 | 0.065129 | 0.106 | 0.9158 | 1.01 |
Attentional Bias | −0.009251 | 0.008790 | −1.052 | 0.2926 | 0.99 |
BIS-11 | −0.013818 | 0.031142 | −0.444 | 0.6572 | 0.99 |
UPPS-G | 0.017079 | 0.021566 | 0.792 | 0.4284 | 1.02 |
Stop-Signal Task | 0.004203 | 0.003526 | 1.192 | 0.2333 | 1.00 |
Predictive value of the variables at timepoint/assessment 2 regarding therapy discontinuation, N = 102. | |||||
Intercept | −6.288740 | 3.949806 | −1.592 | 0.111 | |
Craving | 0.020909 | 0.167381 | 0.125 | 0.901 | 1.02 |
Attentional Bias | 0.020890 | 0.022260 | 0.938 | 0.348 | 1.02 |
BIS-11 | −0.011213 | 0.057251 | −0.196 | 0.845 | 0.99 |
UPPS-G | 0.015931 | 0.041722 | 0.382 | 0.703 | 1.02 |
Stop-Signal Task | 0.011438 | 0.009009 | 1.270 | 0.204 | 1.01 |
Predictive value of the exploratory variables regarding therapy discontinuation, N = 128. | |||||
Intercept | 0.633038 | 1.168447 | 0.542 | 0.588 | |
Age | −0.052865 | 0.022356 | −2.365 | 0.018 * | 0.95 |
Sex | −0.249035 | 0.589497 | −0.422 | 0.673 | 0.78 |
Days Abstinent Before Admission | −0.002746 | 0.005994 | −0.458 | 0.647 | 0.99 |
Number of Psychiatric Diagnoses | −0.165511 | 0.283701 | −0.583 | 0.560 | 0.85 |
Number of SUD Diagnoses | 0.263094 | 0.233488 | 1.127 | 0.260 | 1.30 |
Estimate | Std. Error | z Value | p | OR | |
---|---|---|---|---|---|
Predictive value of the variables at timepoint/assessment 1 regarding relapse, N = 128. | |||||
Intercept | −3.3533168 | 1.5473027 | −2.167 | 0.0302 * | |
Craving | 0.1536928 | 0.0635274 | 2.419 | 0.0155 * | 1.17 |
Attentional Bias | −0.0072125 | 0.0075551 | −0.955 | 0.3398 | 0.99 |
BIS-11 | 0.0008643 | 0.0280941 | 0.031 | 0.9755 | 1.00 |
UPPS-G | 0.0089188 | 0.0193042 | 0.462 | 0.6441 | 1.01 |
Stop-Signal Task | 0.00659993 | 0.0033529 | 0.462 | 0.0490 * | 1.01 |
Predictive value of the variables at timepoint/assessment 2 regarding relapse, N = 102. | |||||
Intercept | −4.571574 | 1.953678 | −2.340 | 0.0193 * | |
Craving | 0.101813 | 0.091592 | 1.112 | 0.2663 | 1.11 |
Attentional Bias | 0.013867 | 0.010966 | 1.265 | 0.2060 | 1.01 |
BIS-11 | −0.022067 | 0.030778 | −0.717 | 0.4734 | 0.98 |
UPPS-G | 0.052914 | 0.023866 | 2.217 | 0.0266 * | 1.05 |
Stop-Signal Task | −0.001912 | 0.004229 | −0.452 | 0.6512 | 1.00 |
Predictive value of the variables at timepoint/assessment 3 regarding relapse, N = 83. | |||||
Intercept | −3.431949 | 2.470477 | −1.389 | 0.1648 | |
Craving | 0.022323 | 0.116806 | 0.191 | 0.8484 | 1.02 |
Attentional Bias | −0.012388 | 0.012510 | −0.990 | 0.3221 | 0.99 |
BIS-11 | −0.028235 | 0.032183 | −0.877 | 0.3803 | 0.97 |
UPPS-G | 0.046821 | 0.023702 | 1.975 | 0.0482 * | 1.05 |
Stop-Signal Task | −0.001483 | 0.006391 | −0.232 | 0.8165 | 1.00 |
Predictive value of the exploratory variables regarding relapse, N = 128. | |||||
Intercept | 3.467787 | 1.329495 | 2.608 | 0.00910 ** | |
Age | −0.053196 | 0.021509 | −2.473 | 0.01339 * | 0.95 |
Sex | −0.577035 | 0.551916 | −1.046 | 0.29579 | 0.56 |
Days Abstinent Before admission | −0.021608 | 0.007373 | −2.931 | 0.00338 ** | 0.98 |
Duration of Treatment (Days) | −0.018755 | 0.006062 | −3.094 | 0.00198 ** | 0.98 |
Number of Psychiatric Diagnoses | 0.636354 | 0.327422 | 1.944 | 0.05195 | 1.89 |
Number of SUD Diagnoses | 0.345315 | 0.257891 | 1.339 | 0.18057 | 1.41 |
McFadden | McFadden, Adjusted | Nagelkerke R2 | Veall-Zimmermann | McKelvey-Zavoina | |
---|---|---|---|---|---|
Models assessing predictive value of the variables toward therapy discontinuation (Table 5). | |||||
Assessment 1, N = 128. | 0.03 | −0.06 | 0.04 | 0.05 | 0.05 |
Assessment 2, N = 102. | 0.05 | −0.18 | 0.07 | 0.08 | 0.15 |
Exploratory variables, N = 128. | 0.08 | 0.00 | 0.13 | 0.16 | 0.15 |
Models assessing predictive value of the variables toward relapse (Table 6). | |||||
Assessment 1, N = 128. | 0.09 | 0.03 | 0.16 | 0.20 | 0.17 |
Assessment 2, N = 102. | 0.10 | 0.01 | 0.17 | 0.21 | 0.18 |
Assessment 3, N = 83. | 0.06 | −0.06 | 0.10 | 0.12 | 0.10 |
Exploratory variables, N = 128. | 0.26 | 0.19 | 0.41 | 0.46 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabl, J.; Geyer, D.; Steiner, K.; Schifano, F.; Scherbaum, N. Psychological and Clinical Parameters as Predictors of Relapse in Alcohol-Dependent Patients During and After Extensive Inpatient Rehabilitation Treatment. Brain Sci. 2025, 15, 374. https://doi.org/10.3390/brainsci15040374
Rabl J, Geyer D, Steiner K, Schifano F, Scherbaum N. Psychological and Clinical Parameters as Predictors of Relapse in Alcohol-Dependent Patients During and After Extensive Inpatient Rehabilitation Treatment. Brain Sciences. 2025; 15(4):374. https://doi.org/10.3390/brainsci15040374
Chicago/Turabian StyleRabl, Josef, Dieter Geyer, Katharina Steiner, Fabrizio Schifano, and Norbert Scherbaum. 2025. "Psychological and Clinical Parameters as Predictors of Relapse in Alcohol-Dependent Patients During and After Extensive Inpatient Rehabilitation Treatment" Brain Sciences 15, no. 4: 374. https://doi.org/10.3390/brainsci15040374
APA StyleRabl, J., Geyer, D., Steiner, K., Schifano, F., & Scherbaum, N. (2025). Psychological and Clinical Parameters as Predictors of Relapse in Alcohol-Dependent Patients During and After Extensive Inpatient Rehabilitation Treatment. Brain Sciences, 15(4), 374. https://doi.org/10.3390/brainsci15040374