Effects of Digital Neurohabilitation on Attention and Memory in Patients with a Diagnosis of Pediatric Obesity: Case Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Participants
2.3. Instruments
2.3.1. Socioeconomic Identification Card
2.3.2. Neuropsychological Attention and Memory Battery (NEUROPSI)
2.3.3. Digital Peak App
2.4. General Procedure
2.5. Statistical Analysis
3. Results
3.1. Descriptive Analysis of the Population
3.2. Cognitive Evaluations of Pediatric Patients with Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esteban, M.; Alonso, H. Obesidad infantil. Endocrinol. Nutr. 2000, 47, 55–59. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Encuesta Nacional de Salud y Nutrición: Presentación de Resultados. 2018. Available online: https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf (accessed on 5 December 2024).
- UNICEF. Sobrepeso y Obesidad en Niños, Niñas y Adolescentes. Unicef.org. Available online: https://www.unicef.org/mexico/sobrepeso-y-obesidad-en-ni%C3%B1os-ni%C3%B1as-y-adolescentes (accessed on 10 December 2024).
- World Health Organization. Obesidad y Sobrepeso. Available online: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 December 2024).
- López-Alarcón, M.G. Manejo de la obesidad en niños y adolescentes [Management of obesity in schoolchildren and adolescents]. Rev. Medica Del Inst. Mex. Del Seguro Soc. 2022, 60, 127–133. [Google Scholar]
- Aznar, L.A.M.; Garrido, H.L. Obesidad Infantil. Grupo GENUD (Growth, Exercise, Nutrition and Development). Universidad de Zaragoza y Centro de Investigación Biomédica en red de Fisiopatología de la Obesidad y Nutrición (CIBERObn). Instituto de Salud Carlos III. Madrid (2) Hospital Universitario Basurto. Universidad del País Vasco. Bilbao. Protoc. Diagn. Ter. Pediatr. 2023, 1, 535–542. [Google Scholar]
- Sistema Nacional de Vigilancia Epidemiológica. Epidemiología: Obesidad en México. Available online: https://www.gob.mx/cms/uploads/attachment/file/13056/sem43.pdf (accessed on 10 December 2024).
- Organización Mundial de la Salud. Clasificación Estadística Internacional de Enfermedades y Problemas Relacionados con la Salud. Décima Revisión (CIE-10) Volumen 2. Available online: https://ais.paho.org/classifications/Chapters/pdf/Volume2.pdf (accessed on 10 December 2024).
- Organización Mundial de la Salud. Clasificación Internacional de Enfermedades Undécima Revisión (CIE-11). Available online: https://icd.who.int/es (accessed on 15 December 2024).
- Chen, E.Y.; Eickhoff, S.B.; Giovannetti, T.; Smith, D.V. Obesity is associated with reduced orbitofrontal cortex volume: A coordinate-based meta-analysis. NeuroImage. Clin. 2020, 28, 102420. [Google Scholar] [CrossRef]
- West, R.K.; Livny, A.; Ravona-Springer, R.; Bendlin, B.B.; Heymann, A.; Leroith, D.; Liu, X.; Lin, H.M.; Hochner, H.; Friedlander, Y.; et al. Higher BMI is associated with smaller regional brain volume in older adults with type 2 diabetes. Diabetologia 2020, 63, 2446–2451. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Apo, E.; Mondragón-Maya, A.; Ferrari-Díaz, M.; Silva-Pereyra, J. Structural Brain Changes Associated with Overweight and Obesity. J. Obes. 2021, 2021, 6613385. [Google Scholar] [CrossRef]
- Ronan, L.; Alexander-Bloch, A.; Fletcher, P.C. Childhood Obesity, Cortical Structure, and Executive Function in Healthy Children. Cereb. Cortex 2020, 30, 2519–2528. [Google Scholar] [CrossRef]
- Laurent, J.S.; Watts, R.; Adise, S.; Allgaier, N.; Chaarani, B.; Garavan, H.; Potter, A.; Mackey, S. Associations Among Body Mass Index, Cortical Thickness, and Executive Function in Children. JAMA Pediatr. 2020, 174, 170–177. [Google Scholar] [CrossRef]
- Yokum, S.; Ng, J.; Stice, E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: A prospective MRI study. Int. J. Obes. 2012, 36, 656–664. [Google Scholar] [CrossRef]
- Opel, N.; Thalamuthu, A.; Milaneschi, Y.; Grotegerd, D.; Flint, C.; Leenings, R.; Goltermann, J.; Richter, M.; Hahn, T.; Woditsch, G.; et al. Brain structural abnormalities in obesity: Relation to age, genetic risk, and common psychiatric disorders: Evidence through univariate and multivariate mega-analysis including 6420 participants from the ENIGMA MDD working group. Mol. Psychiatry 2021, 26, 4839–4852. [Google Scholar] [CrossRef]
- Ruiz-Molina, Y.G.; Herrera-Ávila, J.; Espinosa-Juárez, J.V.; Esquinca-Avilés, H.A.; Tejas-Juárez, J.G.; Flores-Guillén, E.; Morales-Martínez, L.A.; Briones-Aranda, A.; Jiménez-Ceballos, B.; Sierra-Ramírez, J.A.; et al. Association of Overweight and Obesity with Impaired Executive Functioning in Mexican Adolescents: The Importance of Inhibitory Control. Healthcare 2024, 12, 1368. [Google Scholar] [CrossRef] [PubMed]
- Favieri, F.; Forte, G.; Casagrande, M. The Executive Functions in Overweight and Obesity: A Systematic Review of Neuropsychological Cross-Sectional and Longitudinal Studies. Front. Psychol. 2019, 10, 2126. [Google Scholar] [CrossRef]
- Nguyen, J.C.; Killcross, A.S.; Jenkins, T.A. Obesity and cognitive decline: Role of inflammation and vascular changes. Front. Neurosci. 2014, 8, 375. [Google Scholar] [CrossRef]
- Fergenbaum, J.H.; Bruce, S.; Lou, W.; Hanley, A.J.; Greenwood, C.; Young, T.K. Obesity and lowered cognitive performance in a Canadian First Nations population. Obesity 2009, 17, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shields, G.S.; Wu, Q.; Liu, Y.; Chen, H.; Guo, C. The association between obesity and lower working memory is mediated by inflammation: Findings from a nationally representative dataset of U.S. adults. Brain Behav. Immun. 2020, 84, 173–179. [Google Scholar] [CrossRef]
- Quaye, E.; Galecki, A.T.; Tilton, N.; Whitney, R.; Briceño, E.M.; Elkind, M.S.V.; Fitzpatrick, A.L.; Gottesman, R.F.; Griswold, M.; Gross, A.L.; et al. Association of Obesity With Cognitive Decline in Black and White Americans. Neurology 2023, 100, e220–e231. [Google Scholar] [CrossRef]
- Eduardo Espinosa-Garamendi. Cognitive Neurodevelopment: Will Knowing and Measuring it Prevent Many Problems? EC Pediatr. 2024, 13, 1–4. [Google Scholar]
- Espinosa-Garamendi, E.; Labra-Ruiz, N.A.; Naranjo, L.; Chávez-Mejía, C.A.; Valenzuela-Alarcón, E.; Mendoza-Torreblanca, J.G. Habilitation of Executive Functions in Pediatric Congenital Heart Disease Patients through LEGO®-Based Therapy: A Quasi-Experimental Study. Healthcare 2022, 10, 2348. [Google Scholar] [CrossRef]
- Zaldumbide-Alcocer, F.L.; Labra-Ruiz, N.A.; Carbó-Godinez, A.A.; Ruíz-García, M.; Mendoza-Torreblanca, J.G.; Naranjo-Albarrán, L.; Cárdenas-Rodríguez, N.; Valenzuela-Alarcón, E.; Espinosa-Garamendi, E. Neurohabilitation of Cognitive Functions in Pediatric Epilepsy Patients through LEGO®-Based Therapy. Brain Sci. 2024, 14, 702. [Google Scholar] [CrossRef]
- Takacs, Z.K.; Kassai, R. The efficacy of different interventions to foster children’s executive function skills: A series of meta-analyses. Psychol. Bull. 2019, 145, 653–697. [Google Scholar] [CrossRef]
- Kollins, S.H.; DeLoss, D.J.; Cañadas, E.; Lutz, J.; Findling, R.L.; Keefe, R.S.E.; Epstein, J.N.; Cutler, A.J.; Faraone, S.V. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): A randomised controlled trial. Lancet. Digit. Health 2020, 2, e168–e178. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, A.; Agius, M.; Zaytseva, Y. Is there an optimal cognitive application to be used for cognitive remediation in clinical psychiatric practice? Psychiatr. Danub. 2017, 29, 292–299. [Google Scholar]
- Peak. Available online: https://psiquiatria.com/app-movil/peak/ (accessed on 19 March 2025).
- The Science Behind Peak. Available online: https://www.peak.net/science/index.html (accessed on 19 March 2025).
- University of Cambridge. Brain Training App Improves Users Concentrations. Available online: https://www.cam.ac.uk/stories/decoder (accessed on 19 March 2025).
- Savulich, G.; Thorp, E.; Piercy, T.; Peterson, K.A.; Pickard, J.D.; Sahakian, B.J. Improvements in Attention Following Cognitive Training With the Novel “Decoder” Game on an iPad. Front. Behav. Neurosci. 2019, 13, 2. [Google Scholar] [CrossRef]
- Sahakian, B.J.; Bruhl, A.B.; Cook, J.; Killikelly, C.; Savulich, G.; Piercy, T.; Hafizi, S.; Perez, J.; Fernandez-Egea, E.; Suckling, J.; et al. The impact of neuroscience on society: Cognitive enhancement in neuropsychiatric disorders and in healthy people. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140214. [Google Scholar] [CrossRef]
- Bonnechère, B.; Bier, J.C.; Van Hove, O.; Sheldon, S.; Samadoulougou, S.; Kirakoya-Samadoulougou, F.; Klass, M. Age-Associated Capacity to Progress When Playing Cognitive Mobile Games: Ecological Retrospective Observational Study. JMIR Serious Games 2020, 8, e17121. [Google Scholar] [CrossRef] [PubMed]
- Gates, N.J.; Vernooij, R.W.; Di Nisio, M.; Karim, S.; March, E.; Martínez, G.; Rutjes, A.W. Computerised cognitive training for preventing dementia in people with mild cognitive impairment. Cochrane Database Syst. Rev. 2019, 3, CD012279. [Google Scholar] [CrossRef]
- Edwards, J.D.; Xu, H.; Clark, D.O.; Guey, L.T.; Ross, L.A.; Unverzagt, F.W. Speed of processing training results in lower risk of dementia. Alzheimer’s Dement. 2017, 3, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Lizarazo, O.M.C.; Riaño-Garzón, M.E.; Bermúdez-Pirela, V.; Chaparro-Suarez, Y.K.; Hernández-Lalinde, J.D. Efectos de la estimulación cognitiva asistida por software sobre la capacidad de atención visual en niños escolarizados. AVFT–Arch. Venezolanos de Farmacología y Terapéutica 2018, 37. Available online: http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/16153 (accessed on 20 March 2025).
- Blackburne, T.; Rodriguez, A.; Johnstone, S.J. A Serious Game to Increase Healthy Food Consumption in Overweight or Obese Adults: Randomized Controlled Trial. JMIR Serious Games 2016, 4, e10. [Google Scholar] [CrossRef]
- Peak-Juegos cerebrales. Juegos para Mentes Astutas. Synaptic Labs. Available online: https://apps.apple.com/mx/app/peak-juegos-cerebrales/id806223188 (accessed on 20 March 2025).
- Aguilar Martínez Ma del, C.; Fernández Guerrero, X.; Luna Gutiérrez, G.; Ocampo Bandera, R.; Torres Olivo, A.; Gutiérrez Castrellón, P. Cédula socioeconómica comparada con estudio social. Análisis En El Inst. Nac. De Pediatría. Acta Pediatr. 2002, 22, 118–121. [Google Scholar]
- Ostrosky, F.; Gómez, M.E.; Matute, E.; Rosselli, M.; Ardila, A.; Pineda, D. NEUROPSI Atención y Memoria, 3rd ed.; Manual Moderno: Mexico City, Mexico, 2019; pp. 1–61. [Google Scholar]
- Pagano, R.R. Estadística para las Ciencias del Comportamiento, 7th ed.; Thomson: Mexico City, Mexico, 2006; pp. 317–352. [Google Scholar]
- Morton, G.J.; Meek, T.H.; Schwartz, M.W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 2014, 15, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.W.; Shin, Y.J.; Ma, X.; Kim, D.H. Lactobacillus plantarum and Bifidobacterium longum Alleviate High-Fat Diet-Induced Obesity and Depression/Cognitive Impairment-like Behavior in Mice by Upregulating AMPK Activation and Downregulating Adipogenesis and Gut Dysbiosis. Nutrients 2024, 16, 3810. [Google Scholar] [CrossRef]
- Han, Y.P.; Tang, X.; Han, M.; Yang, J.; Cardoso, M.A.; Zhou, J.; Simó, R. Relationship between obesity and structural brain abnormality: Accumulated evidence from observational studies. Ageing Res. Rev. 2021, 71, 101445. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, W.; Lu, M.; Zhang, X.; Zhang, P.; Xin, Z.; Sun, R.; Tian, W.; Cardoso, M.A.; Yang, J.; et al. Relationship between Central Obesity and the incidence of Cognitive Impairment and Dementia from Cohort Studies Involving 5,060,687 Participants. Neurosci. Biobehav. Rev. 2021, 130, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Walther, K.; Birdsill, A.C.; Glisky, E.L.; Ryan, L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum. Brain Mapp. 2010, 31, 1052–1064. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, X.; Liu, J.; Gao, Y.; Liu, X.; Wang, K.; Zheng, X. Estimating global prevalence of mild cognitive impairment and dementia in elderly with overweight, obesity, and central obesity: A systematic review and meta-analysis. Obes. Rev. 2024, e13882, online a head of print. [Google Scholar] [CrossRef]
- Arshad, N.; Lin, T.S.; Yahaya, M.F. Metabolic Syndrome and Its Effect on the Brain: Possible Mechanism. CNS Neurol. Disord. Drug Targets 2018, 17, 595–603. [Google Scholar] [CrossRef]
- Yates, K.F.; Sweat, V.; Yau, P.L.; Turchiano, M.M.; Convit, A. Impact of metabolic syndrome on cognition and brain: A selected review of the literature. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2060–2067. [Google Scholar] [CrossRef]
- Ali, N.H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Papadakis, M.; Bahaa, M.M.; Alibrahim, F.; Batiha, G.E. New insight on the potential detrimental effect of metabolic syndrome on the Alzheimer disease neuropathology: Mechanistic role. J. Cell. Mol. Med. 2024, 28, e70118. [Google Scholar] [CrossRef]
- Lentoor, A.G. Obesity and Neurocognitive Performance of Memory, Attention, and Executive Function. NeuroSci 2022, 3, 376–386. [Google Scholar] [CrossRef]
- Liang, J.; Matheson, B.E.; Kaye, W.H.; Boutelle, K.N. Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. Int. J. Obes. 2014, 38, 494–506. [Google Scholar] [CrossRef]
- Small, G.W.; Lee, J.; Kaufman, A.; Jalil, J.; Siddarth, P.; Gaddipati, H.; Moody, T.D.; Bookheimer, S.Y. Brain health consequences of digital technology use. Dialogues Clin. Neurosci. 2020, 22, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Castañeda, C.; Luis-Ruiz, S.; Ramon-Krauel, M.; Lerin, C.; Sanchez, C.; Miró, N.; Martínez, S.; Garolera, M.; Jurado, M.A. Executive Function Training in Childhood Obesity: Food Choice, Quality of Life, and Brain Connectivity (TOuCH): A Randomized Control Trial Protocol. Front. Pediatr. 2021, 9, 551869. [Google Scholar] [CrossRef] [PubMed]
- Forman, E.M.; Goldstein, S.P.; Flack, D.; Evans, B.C.; Manasse, S.M.; Dochat, C. Promising technological innovations in cognitive training to treat eating-related behavior. Appetite 2018, 124, 68–77. [Google Scholar] [CrossRef]
- Opheusden, B.; Galbiati, G.; Bnaya, Z.; Li, Y.; Ma, W.J. A Computational Model for Decision Tree Search. 2017, pp. 1254–1259. Available online: https://www.cns.nyu.edu/malab/static/files/publications/2017%20Van%20Opheusden%20Galbiati%20Bnaya%20Li%20Ma.pdf (accessed on 20 March 2025).
- Hakamata, Y.; Lissek, S.; Bar-Haim, Y.; Britton, J.C.; Fox, N.A.; Leibenluft, E.; Ernst, M.; Pine, D.S. Attention bias modification treatment: A meta-analysis toward the establishment of novel treatment for anxiety. Biol. Psychiatry. 2010, 68, 982–990. [Google Scholar] [CrossRef]
- Bonnechère, B.; Van Vooren, M.; Bier, J.C.; De Breucker, S.; Van Hove, O.; Van Sint Jan, S.; Feipel, V.; Jansen, B. The Use of Mobile Games to Assess Cognitive Function of Elderly with and without Cognitive Impairment. J. Alzheimer’s Dis. 2018, 64, 1285–1293. [Google Scholar] [CrossRef]
- Motter, J.N.; Grinberg, A.; Lieberman, D.H.; Iqnaibi, W.B.; Sneed, J.R. Computerized cognitive training in young adults with depressive symptoms: Effects on mood, cognition, and everyday functioning. J. Affect. Disord. 2019, 245, 28–37. [Google Scholar] [CrossRef]
- Cheke, L.G.; Simons, J.S.; Clayton, N.S. Higher body mass index is associated with episodic memory deficits in young adults. Q. J. Exp. Psychol. 2016, 69, 2305–2316. [Google Scholar] [CrossRef]
Weeks | Attention Games | Memory Games |
---|---|---|
1 to 4 | Object Find | Perilous Path |
5 to 10 | Decoder | Spin Circle |
11 to 16 | Rush Back | Partial Math |
17 to 24 | Must Sort | Wizard |
Variable | Characteristics | Values |
---|---|---|
Sex 1 | Male | 6 (85.7%) |
Female | 1 (14.3%) | |
Age 2 | Years | 10.00 (9–12) |
Scholar grade 1 | 1–3° primary | 2 (28.6%) |
4–6° primary | 3 (2.9%) | |
1–2° high school | 2 (28.6%) | |
Socioeconomic level 1 1 | Level 1 | 3 (45%) |
Level 2 | 4 (55%) | |
BMI 2 | Obesity nutritional/ exogenous | 28.79 (24.76–34) |
Variable | Mean | |||
---|---|---|---|---|
Subprocess | Pretest | Posttest | t | p Value |
Orientation in person | 0.71 ± 0.48 | 0.71 ± 0.48 | −0.487 | 0.00 |
Orientation in time | 2.57 ± 1.27 | 3.28 ± 1.25 | −2.500 | 0.047 * |
Orientation in space | 1.14 ± 0.48 | 1.29 ± 0.48 | −0.548 | 0.604 |
Digital retention | 3 ± 1.82 | 4 ± 2 | −2.646 | 0.038 * |
Progression cubes | 3 ± 2 | 4.42 ± 2.29 | −2.335 | 0.031 * |
Visual detection | 6.71 ± 5.4 | 10.28 ± 7.4 | −2.813 | 0.086 |
Digital detection | 5.14 ± 3.1 | 6.85 ± 3.4 | −2.048 | 0.040 * |
Successive series | 0.51 ± 1.13 | 0.71 ± 1.11 | −1.000 | 0.356 |
Variable | Mean | |||
---|---|---|---|---|
Subprocess | Pretest | Posttest | t | p Value |
Detection in digital progression | 2.00 ± 1.0 | 2.4 ± 1.27 | −1.441 | 0.200 |
Cube regression | 3.00 ± 1.9 | 3.7 ± 1.8 | −2.500 | 0.047 * |
Memory curve | 5.50 ± 1.5 | 6.8 ± 0.98 | −4.000 | 0.010 * |
Associated pairs | 6.57 ± 2.29 | 8.2 ± 1.88 | −6.000 | 0.001 * |
Historical logical memory | 6.57 ± 1.8 | 8.00 ± 2.1 | −1.987 | 0.094 |
Thematic logical memory | 3.8 ± 1.06 | 4.00 ± 1.8 | −0.311 | 0.766 |
Semi-complete figure codification | 12.5 ± 10.22 | 13.5 ± 9.19 | −1.066 | 0.327 |
Face recognition | 1.4 ± 1.5 | 2.0 ± 1.41 | −1.922 | 0.103 |
Variable | Mean | |||
---|---|---|---|---|
Pretest | Posttest | t | p Value | |
Spontaneous verbal memory | 4.5 ± 2.3 | 6.28 ± 3.3 | −3.618 | 0.011 * |
Verbal memory by cues | 4.42 ± 2.50 | 6.42 ± 3.15 | −3.240 | 0.018 * |
Verbal memory total recognition | 6.5 ± 3.2 | 9.0 ± 2.1 | −5.050 | 0.002 * |
Associated pair evocation memory | 7.0 ± 2.6 | 9.0 ± 2.3 | −5.292 | 0.002 * |
Logical memory story evocation | 4.8 ± 2.8 | 6.42 ± 2.59 | −1.213 | 0.271 |
Logical memory theme evocation | 3.7 ± 1.6 | 4.0 ± 1.8 | −0.795 | 0.457 |
Semi-complete figure evocation | 7.4 ± 5.77 | 9.57 ± 7.46 | −2.423 | 0.052 * |
Names | 1.0 ± 1.8 | 1.7 ± 2.8 | −1.698 | 0.140 |
Face recognition evocation | 1.0 ± 1.0 | 0.85 ± 0.89 | 1.000 | 0.356 |
Variable | Mean | |||
---|---|---|---|---|
Pretest | Posttest | t | p Value | |
Category formation | 6.57 ± 4.8 | 8.2 ± 5.5 | −1.816 | 0.119 |
Semantic verbal fluency | 1.57 ± 0.78 | 1.57 ± 0.53 | 0.000 | 1.000 |
Phonological verbal fluency | 1.28 ± 0.48 | 1.28 ± 0.95 | 0.000 | 1.000 |
Phonological nonverbal fluency | 1.28 ± 1.25 | 1.42 ± 1.27 | −1.000 | 0.356 |
Motor functions | 12.00 ± 5.8 | 14.00 ± 6.9 | −1.833 | 0.116 |
Stroop interference | 1.42 ± 0.9 | 1.8 ± 1.2 | −2.121 | 0.078 |
Stroop hit | 1.28 ± 0.95 | 1.4 ± 1.13 | −1.000 | 0.356 |
Variable | Mean | |||
---|---|---|---|---|
Pretest | Posttest | t | p Value | |
Total attention and executive functions | 51.71 ± 14.78 | 72.18 ± 18.61 | −3.000 | 0.024 * |
Total memory | 56.57 ± 12.10 | 74.28 ± 19.00 | −3.447 | 0.014 * |
Total attention and memory | 52.14 ± 10.77 | 69.57 ± 18.07 | −3.177 | 0.019 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Rodríguez, N.; Chávez-Mejía, C.A.; Gardida-Álvarez, V.S.; Labra-Ruíz, N.A.; Mendoza-Torreblanca, J.G.; Espinosa-Garamendi, E. Effects of Digital Neurohabilitation on Attention and Memory in Patients with a Diagnosis of Pediatric Obesity: Case Series. Brain Sci. 2025, 15, 353. https://doi.org/10.3390/brainsci15040353
Cárdenas-Rodríguez N, Chávez-Mejía CA, Gardida-Álvarez VS, Labra-Ruíz NA, Mendoza-Torreblanca JG, Espinosa-Garamendi E. Effects of Digital Neurohabilitation on Attention and Memory in Patients with a Diagnosis of Pediatric Obesity: Case Series. Brain Sciences. 2025; 15(4):353. https://doi.org/10.3390/brainsci15040353
Chicago/Turabian StyleCárdenas-Rodríguez, Noemí, Claudia Andrea Chávez-Mejía, Vania Sofía Gardida-Álvarez, Norma Angélica Labra-Ruíz, Julieta Griselda Mendoza-Torreblanca, and Eduardo Espinosa-Garamendi. 2025. "Effects of Digital Neurohabilitation on Attention and Memory in Patients with a Diagnosis of Pediatric Obesity: Case Series" Brain Sciences 15, no. 4: 353. https://doi.org/10.3390/brainsci15040353
APA StyleCárdenas-Rodríguez, N., Chávez-Mejía, C. A., Gardida-Álvarez, V. S., Labra-Ruíz, N. A., Mendoza-Torreblanca, J. G., & Espinosa-Garamendi, E. (2025). Effects of Digital Neurohabilitation on Attention and Memory in Patients with a Diagnosis of Pediatric Obesity: Case Series. Brain Sciences, 15(4), 353. https://doi.org/10.3390/brainsci15040353