Trajectories of Single- or Multiple-Substance Use in a Population Representative Sample of Adolescents: Association with Substance-Related and Psychosocial Problems at Age 17
Abstract
:1. Introduction
The Present Study
2. Materials and Methods
2.1. Participants
Ethics
2.2. Measures
2.2.1. Substance Use
2.2.2. Risk Factors
2.3. Age-17 Outcomes
2.4. Data Analysis
2.5. Data Availability
3. Results
3.1. Developmental Patterns of PSU
3.2. Association Between Adolescent SU/PSU Trajectory-Classes and Age-17 Outcomes
4. Discussion
4.1. Implication for Future Studies and Practice
4.2. Strengths and Limitations
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, L.D.; Miech, R.A.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E.; Patrick, M.E. Monitoring the Future National Survey Results on Drug Use 1975–2019: Overview, Key Findings on Adolescent Drug Use. Ph.D. Thesis, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA, 2020. [Google Scholar]
- Griffin, K.W.; Botvin, G.J. Evidence-based interventions for preventing substance use disorders in adolescents. Child Adolesc. Psychiatr. Clin. N. Am. 2010, 19, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Halladay, J.; Woock, R.; El-Khechen, H.; Munn, C.; MacKillop, J.; Amlung, M.; Ogrodnik, M.; Favotto, L.; Aryal, K.; Noori, A.; et al. Patterns of substance use among adolescents: A systematic review. Drug Alcohol Depend. 2020, 216, 108222. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.D.; Miech, R.A.; O’Malley, P.M.; Bachman, J.G.; Schulenberg, J.E.; Patrick, M.E. Demographic Subgroup Trends Among Adolescents in the Use of Various Licit and Illicit Drugs, 1975–2021 (Monitoring the Future Occasional Paper No. 97). Ph.D. Thesis, Institute for Social Research, The University of Michigan, Ann Arbor, MI, USA, 2022. [Google Scholar]
- Mccabe, S.E.; Cranford, J.A.; Morales, M.; Young, A. Simultaneous and concurrent polydrug use of alcohol and prescription drugs: Prevalence, correlates, and consequences. J. Stud. Alcohol Drugs 2006, 67, 529–537. [Google Scholar]
- Han, B.; Compton, W.M.; Blanco, C.; DuPont, R.L. National Trends in Substance Use and Use Disorders Among Youth. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 747–754.e3. [Google Scholar] [CrossRef]
- Zuckermann, A.M.E.; Williams, G.; Battista, K.; de Groh, M.; Jiang, Y.; Leatherdale, S.T. Trends of poly-substance use among Canadian youth. Addict. Behav. Rep. 2019, 10, 100189. [Google Scholar] [CrossRef]
- Crummy, E.A.; O’Neal, T.J.; Baskin, B.M.; Ferguson, S.M. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front. Neurosci. 2020, 14, 569. [Google Scholar]
- Fuhrmann, D.; Knoll, L.J.; Blakemore, S.J. Adolescence as a Sensitive Period of Brain Development. Trends Cogn. Sci. 2015, 19, 558–566. [Google Scholar]
- Carbonneau, R.; Vitaro, F.; Brendgen, M.; Tremblay, R.E. Alcohol, Marijuana and Other Illicit Drugs Use Throughout Adolescence: Co-occurring Courses and Preadolescent Risk-Factors. Child Psychiatry Hum. Dev. 2021, 53, 1194–1206. [Google Scholar]
- Carbonneau, R.; Vitaro, F.; Brendgen, M.; Boivin, M.; Côté, S.M.; Tremblay, R.E. Preadolescent individual, familial, and social risk factors associated with adolescent longitudinal patterns of concurrent alcohol, cannabis, and other illicit drugs use in a population-based cohort. Dev. Psychol. 2024, online ahead of print. [Google Scholar] [CrossRef]
- Taylor, M.; Collin, S.M.; Munafò, M.R.; MacLeod, J.; Hickman, M.; Heron, J. Patterns of cannabis use during adolescence and their association with harmful substance use behaviour: Findings from a UK birth cohort. J. Epidemiol. Community Health 2017, 71, 764–770. [Google Scholar]
- Tucker, J.S.; Rodriguez, A.; Dunbar, M.S.; Pedersen, E.R.; Davis, J.P.; Shih, R.A.; D’Amico, E.J. Cannabis and tobacco use and co-use: Trajectories and correlates from early adolescence to emerging adulthood. Drug Alcohol Depend. 2019, 204, 107499. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.S.; Rodriguez, A.; Davis, J.P.; Klein, D.J.; D’Amico, E.J. Simultaneous trajectories of alcohol and cannabis use from adolescence to emerging adulthood: Associations with role transitions and functional outcomes. Psychol. Addict. Behav. 2021, 35, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Flórez-Salamanca, L.; Secades-Villa, R.; Wang, S.; Hasin, D.S. Predictors of initiation of nicotine, alcohol, cannabis, and cocaine use: Results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Am. J. Addict. 2018, 27, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Chassin, L.; Flora, L.B.; King, K.M. Trajectories of alcohol and drug use and dependence from adolescence to adulthood: The effects of familial alcoholism and personality. J. Abnorm. Psychol. 2004, 113, 483–498. [Google Scholar] [CrossRef] [PubMed]
- Mangerud, W.L.; Bjerkeset, O.; Holmen, T.L.; Lydersen, S.; Indredavik, M.S. Smoking, alcohol consumption, and drug use among adolescents with psychiatric disorders compared with a population based sample. J. Adolesc. 2014, 37, 1189–1199. [Google Scholar] [CrossRef]
- Angold, A.; Costello, E.J.; Erkanli, A. Comorbidity. Journal of Child. Psychol. Psychiatry 1999, 40, 57–87. [Google Scholar] [CrossRef]
- Tomczyk, S.; Isensee, B.; Hanewinkel, R. Latent classes of polysubstance use among adolescents-a systematic review. Drug Alcohol Depend. 2016, 160, 12–29. [Google Scholar] [CrossRef]
- Mayes, L.C.; Suchman, N.E. Developmental pathways to substance abuse. In Developmental Psychopathology: Risk, Disorder, and Adaptation, 2nd ed; Cicchetti, D., Cohen, D.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 599–619. [Google Scholar]
- Trucco, E.M.; Hartmann, S.A. Understanding the Etiology of Adolescent Substance Use through Developmental Perspectives. Child Dev. Perspect. 2021, 15, 257–264. [Google Scholar] [CrossRef]
- Patrick, C.J.; Foell, J.; Venables, N.C.; Worthy, D.A. Substance use disorders as externalizing outcomes. In The Oxford Handbook of Externalizing Spectrum Disorders; Beauchaine, T.P., Hinshaw, S.P., Eds.; Oxford University Press: New York, NY, USA, 2016; pp. 38–60. [Google Scholar]
- Tully, E.C.; Iacono, W.G. An integrative common liabilities model for the comorbidity of substance use disorders with externalizing and internalizing disorders. In The Oxford Handbook of Substance Use and Substance Use Disorders; Sher, K.J., Ed.; Oxford University Press: New York, NY, USA, 2016; pp. 187–212. [Google Scholar]
- Schulenberg, J.; Maslowsky, J.; Patrick, M.E.; Martz, M. Substance use in the context of adolescent development. In The Oxford Handbook of Adolescent Substance Abuse; Zucker, R.A., Brown, S.A., Eds.; Oxford University Press: New York, NY, USA, 2019; pp. 19–35. [Google Scholar]
- Orri, M.; Boivin, M.; Chen, C.; Ahun, M.N.; Geoffroy, M.-C.; Ouellet-Morin, I.; Tremblay, R.E.; Côté, S.M. Cohort Profile: Quebec Longitudinal Study of Child Development (QLSCD). Soc. Psychiatry Psychiatr. Epidemiol. 2020, 56, 883–894. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Henly, G.A.; Winters, K.C. Development of psychosocial scales for the assessment of adolescents involved with alcohol and drugs. Int. J. Addict. 1989, 24, 973–1001. [Google Scholar]
- Winters, K.C.; Stinchfield, R.D.; Henly, G.A.; Schwartz, R.H. Validity of adolescent self-report of alcohol and other drug involvement. Int. J. Addict. 1990, 25, 1379–1395. [Google Scholar] [PubMed]
- Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177. [Google Scholar] [PubMed]
- Kraemer, H.C.; Measelle, J.R.; Ablow, J.C.; Essex, M.J.; Boyce, W.T.; Kupfer, D.J. A new approach to integrating data from multiple informants in psychiatric assessment and research: Mixing and matching contexts and perspectives. Am. J. Psychiatry 2003, 160, 1566–1577. [Google Scholar] [PubMed]
- Monach, P.A. Repeating tests: Different roles in research studies and clinical medicine. Biomark. Med. 2012, 6, 691–703. [Google Scholar]
- Desrosiers, H.; Boivin, M.; Des Groseillers, L. Concepts, definitions and operational aspects, Part II—Data and variables. In Longitudinal Study of Child Development in Québec (ÉLDEQ 1998–2002); Institut de la statistique du Québec: Quebec, QC, Canada, 2001; Volume 1, No 12. [Google Scholar]
- Statistics Canada. Overview of Survey Instruments for 1994–1995 Data Collection; Statistics Canada: Ottawa, ON, Canada, 1995. [Google Scholar]
- Carbonneau, R.; Vitaro, F.; Brendgen, M.; Boivin, M.; Côté, S.M.; Tremblay, R.E. Developmental patterns of gambling participation and substance use throughout adolescence in a population birth cohort. J. Gambl. Stud. 2023, 39, 137–157. [Google Scholar]
- Thompson, C.A.; Arah, O.A. Selection bias modeling using observed data augmented with imputed record-level probabilities. Ann. Epidemiol. 2014, 24, 747–753. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill: Boston, MA, USA, 2005. [Google Scholar]
- Wickrama, K.A.S.; Lee, T.K.; Walker-O’Neal, C.; Lorenz, F.O. Higher-Order Growth Curves and Mixture Modeling with Mplus, 2nd ed.; Routledge: New York, NY, USA, 2022. [Google Scholar]
- Clark, S.L.; Muthén, B. Relating Latent Class Analysis Results to Variables not Included in the Analysis. 2009. Available online: http://www.statmodel.com/download/Relatinglca.pdf. (accessed on 1 January 2010).
- Nagin, D.S. Class-Based Modeling of Development; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Hardin, J.W.; Hilbe, J.M. Generalized Linear Models and Extensions, 4th ed.; Stata Press: College Station, TX, USA, 2018. [Google Scholar]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar]
- Lenhard, W.; Lenhard, A. Computation of Effect Sizes. Psychometrica. 2022. Available online: https://www.psychometrica.de/effect_size.html (accessed on 5 February 2025).
- National Research Council and Institute of Medicine. Preventing Mental, Emotional, and Behavioral Disorders Among Young People: Progress and Possibilities; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Perry, C.L. Preadolescent and adolescent influences on health (Chapter E). In Promoting Health: Intervention Strategies from Social and Behavioral Research; The National Academies Press: Washington, DC, USA, 2000; pp. 217–253. [Google Scholar]
- Conrod, P.J.; Nikolaou, K. Annual research review: On the developmental neuropsychology of substance use disorders. J. Child Psychol. Psychiatry 2016, 57, 371–394. [Google Scholar]
- Gray, K.M.; Squeglia, L.M. Research review: What have we learned about adolescent substance use? J. Child Psychol. Psychiatry 2018, 59, 618–627. [Google Scholar]
- Dodge, K.A.; Malone, P.S.; Lansford, J.E.; Miller, S.; Pettit, G.S.; Bates, J.E. A dynamic cascade model of the development of substance-use onset. Monogr. Soc. Res. Child Dev. 2009, 74, vii-119. [Google Scholar]
- Chassin, L.; Colder, C.R.; Hussong, A.M.; Sher, K.J. Substance Use and Substance Use Disorders (chapter 19). In Development and Psychopathology, Maladaptation and Psychopathology; Cicchetti, D., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 3, pp. 1–65. [Google Scholar]
- Meredith, L.; Squeglia, L. The adolescent brain: Predictors and consequences of substance use (Chapter 13). In The Routledge Handbook of Social Work and Addictive Behaviors, Begun, A.L., Murray, M.M., Eds.; Routledge: New York, NY, USA, 2020; pp. 216–231. [Google Scholar]
- Volkow, N.D.; Michaelides, M.; Baler, R. The Neuroscience of Drug Reward and Addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef]
- Hernández-Serrano, O.; Gras, M.E.; Font-Mayolas, S.; Sullman, M.J.M. Types of Polydrug Usage. In Neuropathology of Drug Addictions and Substance Misuse; Preedy, V.R., Ed.; Academic Press: New York, NY, USA, 2016; pp. 839–849. [Google Scholar]
- Harrison, L.D.; Martin, S.S.; Enev, T.; Harrington, D. Comparing Drug Testing and Self-Report of Drug Use Among Youths and Young Adults in the General Population; Substance Abuse and Mental Health Services Administration, Office of Applied Studies: Rockville, MD, USA, 2007. [Google Scholar]
Measures and Indicators | Mean (SD) or % |
---|---|
Sample characteristics | |
Race: White of European ancestry (%) | 92.0 |
Immigrant status: Mother/Father (%) | 8.5/9.9 |
French/English as first language: Mother (%) | 85.2/6.6 |
French/English as first language: Father (%) | 83.4/7.3 |
Language spoken by parents at home: French or English/Other (%) | 97.7/2.3 |
Mother/No High school diploma (%) | 20.4 |
Father/No High school diploma (%) | 24.6 |
Maternal age at birth of first child | 26.7 (9.1) |
Maternal age at child’s birth | 29.3 (5.2) |
Paternal age at child’s birth | 32.6 (8.1) |
Number of siblings | 1.4 (0.88) |
Non-intact family (%) | 36.7 |
Household income ($) | 72,800 (37,200) |
Risk factors 1 | |
Individual | |
Sex (%): male; female | 48.4; 51.6 |
Internalizing | 0.33 (0.35) |
Externalizing | 0.32 (0.32) |
Familial | |
Family adversity | 0.31 (0.26) |
Appropriate parenting | 0.58 (0.16) |
Social | |
Household SES | 0.00 (1.00) |
Association with deviant peers | 0.22 (0.23) |
Risk Factors/Control Variables | Substance-Related Outcomes | Psychosocial Adjustment Outcomes | ||||||
---|---|---|---|---|---|---|---|---|
Daily Smoker a | Frequency of 5+ Drinks on Same Occasion | Variety of Substances Used | Problems related to SU | Anxiety Symptoms | Depression Symptoms | Conduct Problems | Problems with the Justice System | |
Male sex a | 0.03 | 0.00 | 0.02 | 0.05 * | −0.36 *** | −0.32 *** | 0.02 | 0.09 *** |
Internalizing problems | 0.11 *** | −0.10 *** | 0.02 | 0.08 ** | 0.22 *** | 0.26 *** | 0.12 *** | 0.09*** |
Externalizing problems | 0.18 *** | 0.10 *** | 0.15 *** | 0.21 *** | 0.08 ** | 0.09 *** | 0.26 *** | 0.22 *** |
Family adversity | 0.07 ** | 0.04 | 0.11 *** | 0.09 *** | 0.03 | 0.07 ** | 0.14 *** | 0.15 *** |
Appropriate parenting | −0.19 *** | −0.03 | 0.02 | 0.00 | −0.01 | 0.01 | −0.02 | −0.04 |
SES | −0.15 *** | 0.04 | −0.07 ** | −0.04 | −0.01 | −0.02 | −0.08 ** | −0.12 *** |
Deviant peers | 0.11 *** | 0.15 *** | 0.15 *** | 0.21 *** | 0.02 | 0.02 | 0.19 *** | 0.14 *** |
Risk Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Individual | |||||||
1-Male sex a | 0.13 *** | 0.30 *** | 0.01 | 0.09 *** | 0.01 | 0.17 *** | |
2-Internalizing | 0.61 *** | 0.14 *** | 0.01 | −0.17 *** | 0.21 *** | ||
3-Externalizing | 0.16 *** | 0.05 | −0.16 *** | 0.52 *** | |||
Familial | |||||||
4-Family adversity | −0.02 | −0.38 *** | 0.09 ** | ||||
5-Appropriate parenting | 0.12 *** | 0.01 | |||||
Social | |||||||
6-Household SES | −0.08 ** | ||||||
7-Association with deviant peers |
Trajectory-Classes and Control Variables | Daily Smoker % p h 95% CI | Frequency of 5+ Drinks on Same Occasion Mean (SD) p d 95% CI | Variety of Substances Used Mean (SD) p d 95% CI | Problems Related to Substance Use Mean (SD) p d 95% CI | ||||
---|---|---|---|---|---|---|---|---|
(1) Non-users: Reference— class (N = 204, 12.8%) | 1.2 | 0.00 (0.00) | 0.00 (.00) | 0.01 (0.07) | ||||
(2) Later-onset/exp. AL and CA (N = 362, 22.7%) | 2.24,5 0.938 0.08 [−0.10–0.25] | 1.73 (1.73)3,4,5 < 0.001 1.25 [1.06–1.44] | 0.03 (.35)3–5 < 0.001 0.11 [−0.07–0.28] | 0.17 (.65)4,5 0.001 0.31 [0.13–0.48] | ||||
(3) Increasing AL and later- onset/exp. CA (N = 597, 37.5%) | 1.44,5 0.653 0.02 [−0.14–0.18] | 2.36 (1.88)2,4,5 < 0.001 1.45 [1.28–1.63] | 0.00 (.00)2,4,5 1.00 | 0.16 (.58)4,5 0.001 0.30 [0.14–0.46] | ||||
(4) Increasing AL + CA and later- onset-exp. OD (N = 337, 21.2%) | 12.32,3,5 < 0.001 0.50 [0.25–0.60] | 3.43 (1.76)2,3 < 0.001 2.47 [2.24–2.70] | 0.43 (.75)2,3,5 < 0.001 0.73 [0.55–0.91] | 0.94 (1.43)2,3,5 < 0.001 0.82 [0.64–1.00] | ||||
(5) Early-onset increasing AL + CA + OD (N = 93, 5.8%) | 41.62–4 < 0.001 1.39 [1.12–1.66] | 3.92 (1.55)2,3 < 0.001 4.53 [4.09–4.97] | 1.31 (1.34)2–4 < 0.001 1.75 [1.47–2.03] | 2.46 (2.46)2–4 < 0.001 1.78 [1.50–2.07] | ||||
Trajectory-classes (X2 (df) p) | 99.23 (4) < 0.0001 | 58.25 (4) < 0.0001 | 109.79 (4) < 0.0001 | 313.30 (4) < 0.0001 | ||||
Control variables (Beta; p) | ||||||||
Male sex | 0.298 | 0.274 | 0.013 | 0.849 | −0.051 | 0.773 | 0.175 | 0.147 |
Internalizing problems | 0.150 | 0.291 | −0.111 | 0.006 | −0.075 | 0.446 | 0.023 | 0.736 |
Externalizing problems | 0.498 | 0.003 | 0.082 | 0.073 | 0.182 | 0.094 | 0.198 | 0.010 |
Family adversity | 0.227 | 0.048 | −0.016 | 0.633 | −0.036 | 0.651 | −0.004 | 0.948 |
Appropriate parenting | −0.147 | 0.247 | −0.008 | 0.800 | −0.228 | 0.007 | 0.079 | 0.173 |
SES | −0.300 | 0.058 | 0.040 | 0.285 | −0.297 | 0.004 | 0.108 | 0.112 |
Deviant peers | −0.271 | 0.052 | 0.060 | 0.105 | 0.074 | 0.402 | 0.098 | 0.103 |
Model fit (X2 (df) p) | 185.50 (11) < 0.00001 | 559.78 (11) < 0.00001 | 575.23 (11) < 0.00001 | 593.46 (11) < 0.00001 | ||||
LRT (X2 (df) p) | 122.236 (4) < 0.00001 | 508.756 (4) < 0.00001 | 480.608 (4) < 0.00001 | 457.311 (4) < 0.00001 |
Trajectory-Classes and Control Variables | Anxiety Symptoms Mean (SD) p d 95% CI | Depression Symptoms Mean (SD) p d 95% CI | Conduct Problems Mean (SD) p d 95% CI | Problems with the Justice System Mean (SD) p d 95% CI | ||||
---|---|---|---|---|---|---|---|---|
(1) Non-users: Reference— class (N = 204, 12.8%) | 3.81 (2.08) | 3.09 (2.07) | 0.35 (0.77) | 0.15 (0.73) | ||||
(2) Later-onset/exp. AL and CA (N = 362, 22.7%) | 4.30 (2.17)4,5 0.004 0.23 [0.06–0.40] | 3.91 (2.30)4,5 < 0.001 0.37 [0.20–0.54] | 0.64 (.88)4,5 0.001 0.34 [0.17–0.52] | 0.18 (.70)3,4,5 0.586 0.04 [−0.13–0.21] | ||||
(3) Incr. AL later-onset-exp. CA (N = 597, 37.5%) | 4.25 (2.12)4,5 0.011 0.21 [0.05–0.37] | 3.76 (2.21)4,5 < 0.001 0.31 [0.15–0.47] | 0.58 (.81)4,5 0.008 0.29 [0.13–0.45] | 0.09 (.46)2,4,5 0.019 −0.11 [−0.27–0.05] | ||||
(4) Incr. AL + CA and later- onset/exp. OD (N = 337,21.2%) | 4.97 (2.27)2,3 < 0.001 0.53 [0.35–0.70] | 4.37 (2.40)2,3 < 0.001 0.56 [0.38–0.74] | 1.24 (1.10)2–3 < 0.001 0.90 [0.72–1.08] | 0.38 (1.04)2,3,5 < 0.001 0.25 [0.07–0.42] | ||||
(5) Early-onset incr. AL + CA + OD (N = 93, 5.8%) | 5.20 (2.09)2,3 < 0.001 0.67 [0.42–0.92] | 4.93 (2.60)2,3 < 0.001 0.82 [0.56–1.07] | 1.99 (1.39)2–3 < 0.001 1.63 [1.35–1.91] | 1.31 (1.83)2–4 < 0.001 0.98 [0.72–1.23] | ||||
Trajectory-classes (X2 (df) p) | 47.56 (4) < 0.0001 | 67.30 (4) < 0.0001 | 102.06 (4) < 0.0001 | 124.93 (4) < 0.0001 | ||||
Control variables (Beta; p) | ||||||||
Male sex | −1.603 | <0.001 | −1.507 | <0.001 | −0.044 | 0.554 | 0.443 | 0.001 |
Internalizing problems | 0.446 | <0.001 | 0.613 | <0.001 | 0.044 | 0.345 | −0.014 | 0.848 |
Externalizing problems | 0.218 | 0.002 | 0.156 | 0.032 | 0.255 | <0.001 | 0.534 | <0.001 |
Family adversity | −0.035 | 0.485 | 0.059 | 0.319 | 0.047 | 0.313 | 0.198 | 0.001 |
Appropriate parenting | 0.004 | 0.942 | 0.040 | 0.617 | −0.049 | 0.617 | −0.104 | 0.125 |
SES | 0.103 | 0.067 | 0.114 | 0.101 | −0.011 | 0.575 | −0.189 | 0.013 |
Deviant peers | −0.067 | 0.246 | −0.101 | 0.102 | 0.023 | 0.599 | −0.071 | 0.313 |
Model fit (X2 (df) p) | 369.30 (11) < 0.00001 | 383.48 (11) < 0.00001 | 200.24 (11) < 0.00001 | 345.96 (11) < 0.00001 | ||||
LRT (X2 (df) p) | 46.862 (4) < 0.00001 | 65.908 (4) < 0.00001 | 105.400 (4) < 0.00001 | 135.746 (4) < 0.00001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonneau, R.; Vitaro, F.; Brendgen, M.; Boivin, M.; Côté, S.M.; Tremblay, R.E. Trajectories of Single- or Multiple-Substance Use in a Population Representative Sample of Adolescents: Association with Substance-Related and Psychosocial Problems at Age 17. Brain Sci. 2025, 15, 331. https://doi.org/10.3390/brainsci15040331
Carbonneau R, Vitaro F, Brendgen M, Boivin M, Côté SM, Tremblay RE. Trajectories of Single- or Multiple-Substance Use in a Population Representative Sample of Adolescents: Association with Substance-Related and Psychosocial Problems at Age 17. Brain Sciences. 2025; 15(4):331. https://doi.org/10.3390/brainsci15040331
Chicago/Turabian StyleCarbonneau, Rene, Frank Vitaro, Mara Brendgen, Michel Boivin, Sylvana M. Côté, and Richard E. Tremblay. 2025. "Trajectories of Single- or Multiple-Substance Use in a Population Representative Sample of Adolescents: Association with Substance-Related and Psychosocial Problems at Age 17" Brain Sciences 15, no. 4: 331. https://doi.org/10.3390/brainsci15040331
APA StyleCarbonneau, R., Vitaro, F., Brendgen, M., Boivin, M., Côté, S. M., & Tremblay, R. E. (2025). Trajectories of Single- or Multiple-Substance Use in a Population Representative Sample of Adolescents: Association with Substance-Related and Psychosocial Problems at Age 17. Brain Sciences, 15(4), 331. https://doi.org/10.3390/brainsci15040331