Vocal Feature Changes for Monitoring Parkinson’s Disease Progression—A Systematic Review
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Study Selection
- English journal articles and conference proceedings analysing voice and speech changes due to Parkinson’s disease.
- Studies describing and assessing measurable changes to the acoustic, phonatory and prosodic characteristics of speech due to PD (as compared to healthy controls).
- Longitudinal studies assessing changes to the acoustic, phonatory and prosodic characteristics of speech due to PD over time.
- Studies on PD diagnosis or longitudinal monitoring using other symptoms, such as gait disorders and REM sleep disturbances.
- Studies analysing the effects of medications, therapies or surgeries.
- Review articles on techniques used for PD voice assessment.
- Studies measuring PD progression relative to other rating scales, e.g., the PD composite scale.
- Studies focusing on identifying and analysing cognitive and neurological changes brought on by PD.
- Studies relying solely on self-assessment or perceptual changes to speech and voice.
3.2. Data Extraction
3.3. Search Limitations
- Exclusion of other rating scales: While UPDRS and H&Y were chosen for their prevalence in both clinical and research applications, excluding other scales may have limited the findings and the analysis results.
- Language limitation: Including only English-language articles may have resulted in the omission of some findings.
- Exclusion of therapeutic and perceptual assessments: Excluding studies explicitly investigating therapies, perceptual and self-assessments and neurological assessments may have excluded certain results and findings.
4. Results
4.1. Phonatory Features
4.1.1. Jitter
4.1.2. Shimmer
4.1.3. Harmonics-to-Noise Ratio
4.1.4. Glottal-to-Noise Excitation Ratio
4.1.5. Correlation Dimension (D2)
4.1.6. Pitch Period Entropy
4.1.7. Recurrent Period Density Entropy
4.2. Articulatory Features
4.2.1. Mel-Frequency Cepstral Coefficients
4.2.2. Cepstral Peak Prominence
4.2.3. Bark Band Energy Features
4.2.4. Vowel Space Area
4.2.5. Vowel Articulation Index
4.2.6. Perceptual Linear Prediction Coefficients
4.3. Prosodic Features
4.3.1. Maximum Phonation Time
4.3.2. Vocal Pitch Features
4.3.3. Speaking Rate
4.3.4. Pause Number and Length
4.3.5. Detrended Fluctuation Analysis
4.4. Correlation Between Feature Changes and Progression Rating Scales
- The UPDRS only includes one question related to speech and may not capture the subtle changes seen in vocal features.
- The underlying pathophysiology of speech deterioration may differ from the motor symptoms assessed by the rating scales [74].
- Vocal changes may not be affected by dopaminergic medications, which have the effect of stabilising the UPDRS scores [87].
4.5. Feature Impact on Classifier Model Performance
4.6. Statistical Approaches in Vocal Feature Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alster, P.; Otto-Ślusarczyk, D.; Migda, A.; Migda, B.; Struga, M.; Friedman, A. Role of orexin in pathogenesis of neurodegenerative parkinsonisms. Neurol. Neurochir. Pol. 2023, 57, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Rosca, E.C.; Simu, M. Parkinson’s disease-cognitive rating scale for evaluating cognitive impairment in Parkinson’s disease: A systematic review. Brain Sci. 2020, 10, 588. [Google Scholar] [CrossRef] [PubMed]
- Ramaker, C.; Marinus, J.; Stiggelbout, A.M.; van Hilten, B.J. Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov. Disord. 2002, 17, 867–876. [Google Scholar] [CrossRef]
- Rissardo, J.P.; Caprara, A.L.F. Parkinson’s disease rating scales: A literature review. Ann. Mov. Disord. 2020, 3, 3–22. [Google Scholar] [CrossRef]
- Torbey, E.; Pachana, N.A.; Dissanayaka, N.N.W. Depression rating scales in Parkinson’s disease: A critical review updating recent literature. J. Affect. Disord. 2015, 184, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Skorvanek, M.; Goldman, J.G.; Jahanshahi, M.; Marras, C.; Rektorova, I.; Schmand, B.; van Duijn, E.; Goetz, C.G.; Weintraub, D.; Stebbins, G.T.; et al. Global scales for cognitive screening in Parkinson’s disease: Critique and recommendations. Mov. Disord. 2018, 33, 208–218. [Google Scholar] [CrossRef]
- Chaudhuri, K.R.; Odin, P. The challenge of non-motor symptoms in Parkinson’s disease. Prog. Brain Res. 2010, 184, 325–341. [Google Scholar] [CrossRef]
- Kenny, L.; Azizi, Z.; Moore, K.; Alcock, M.; Heywood, S.; Jonsson, A.; McGrath, K.; Foley, M.J.; Sweeney, B.; O’Sullivan, S.; et al. Inter-rater reliability of hand motor function assessment in Parkinson’s disease: Impact of clinician training. Clin. Park. Relat. Disord. 2024, 11, 100278. [Google Scholar] [CrossRef]
- Luiz, L.M.D.; Marques, I.A.; Folador, J.P.; Andrade, A.O. Intra and inter-rater remote assessment of bradykinesia in Parkinson’s disease. Neurologia 2024, 39, 345–352. [Google Scholar] [CrossRef]
- Li, T.; Le, W. Biomarkers for Parkinson’s Disease: How Good Are They? Neurosci. Bull. 2020, 36, 183–194. [Google Scholar] [CrossRef]
- Ho, A.K.; Iansek, R.; Marigliani, C.; Bradshaw, J.L.; Gates, S. Speech impairment in a large sample of patients with Parkinson’s disease. Behav. Neurol. 1999, 11, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Harel, B.; Snyder, P.J.; Cannizzaro, M. Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain Cogn. 2004, 56, 24–29. [Google Scholar] [CrossRef]
- Olanow, C.W.; Stern, M.B.; Sethi, K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology 2009, 72, S1–S136. [Google Scholar] [CrossRef]
- Despotovic, V.; Skovranek, T.; Schommer, C. Speech Based Estimation of Parkinson’s Disease Using Gaussian Processes and Automatic Relevance Determination. Neurocomputing 2020, 401, 173–181. [Google Scholar] [CrossRef]
- Khalil, R.A.; Jones, E.; Babar, M.I.; Jan, T.; Zafar, M.H.; Alhussain, T. Speech Emotion Recognition Using Deep Learning Techniques: A Review. IEEE Access 2019, 7, 117327–117345. [Google Scholar] [CrossRef]
- Low, D.M.; Bentley, K.H.; Ghosh, S.S. Automated assessment of psychiatric disorders using speech: A systematic review. Laryngoscope Investig. Otolaryngol. 2020, 5, 96–116. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeon, J.; Han, Y.J.; Joo, Y.; Lee, J.; Lee, S.; Im, S. Convolutional neural network classifies pathological voice change in laryngeal cancer with high accuracy. J. Clin. Med. 2020, 9, 3415. [Google Scholar] [CrossRef]
- Aharonson, V.; De Nooy, A.; Bulkin, S.; Sessel, G. Automated Classification of Depression Severity Using Speech-A Comparison of Two Machine Learning Architectures. In Proceedings of the 2020 IEEE International Conference on Healthcare Informatics (ICHI), Oldenburg, Germany, 30 November–3 December 2020. [Google Scholar] [CrossRef]
- Seedat, N.; Aharonson, V.; Hamzany, Y. Automated and Interpretable m-Health Discrimination of Vocal Cord Pathology Enabled by Machine Learning. In Proceedings of the 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, QLD, Australia, 16–18 December 2020. [Google Scholar] [CrossRef]
- Batliner, A.; Schuller, B.; Seppi, D.; Steidl, S.; Devillers, L.; Vidrascu, L.; Vogt, T.; Aharonson, V.; Amir, N. The Automatic Recognition of Emotions in Speech. In Emotion-Oriented Systems; Petta, P., Cowie, R., Pelachaud, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 71–99. [Google Scholar] [CrossRef]
- Pinkas, G.; Karny, Y.; Malachi, A.; Barkai, G.; Bachar, G.; Aharonson, V. SARS-CoV-2 Detection from Voice. IEEE Open J. Eng. Med. Biol. 2020, 1, 268–274. [Google Scholar] [CrossRef]
- Barsties, B.; De Bodt, M. Assessment of voice quality: Current state-of-the-art. Auris Nasus Larynx 2015, 42, 183–188. [Google Scholar] [CrossRef]
- Maryn, Y.; Roy, N.; De Bodt, M.; Van Cauwenberge, P.; Corthals, P. Acoustic measurement of overall voice quality: A meta-analysis. J. Acoust. Soc. Am. 2009, 126, 2619–2634. [Google Scholar] [CrossRef]
- Sidhu, M.S.; Latib, N.A.A.; Sidhu, K.K. MFCC in audio signal processing for voice disorder: A review. Multimed. Tools Appl. 2024, 1–21. [Google Scholar] [CrossRef]
- Arora, S.; Tsanas, A. Assessing parkinson’s disease at scale using telephone-recorded speech: Insights from the Parkinson’s voice initiative. Diagnostics 2021, 11, 1892. [Google Scholar] [CrossRef] [PubMed]
- Rusz, J.; Cmejla, R.; Ruzickova, H.; Klempír, J.; Majerova, V.; Picmausova, J.; Roth, J.; Ruzicka, E. Acoustic Analysis of Voice and Speech Characteristics in Early Untreated Parkinson’s Disease. In Proceedings of the 7th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2011, Florence, Italy, 25–27 August 2011. [Google Scholar]
- Moro-Velazquez, L.; Gomez-Garcia, J.A.; Arias-Londoño, J.D.; Dehak, N.; Godino-Llorente, J.I. Advances in Parkinson’s Disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomed. Signal Process Control 2021, 66, 102418. [Google Scholar] [CrossRef]
- Ngo, Q.C.; Motin, M.A.; Pah, N.D.; Drotár, P.; Kempster, P.; Kumar, D. Computerized analysis of speech and voice for Parkinson’s disease: A systematic review. Comput. Methods Programs Biomed. 2022, 226, 107133. [Google Scholar] [CrossRef]
- Amato, F.; Saggio, G.; Cesarini, V.; Olmo, G.; Costantini, G. Machine learning- and statistical-based voice analysis of Parkinson’s disease patients: A survey. Expert Syst. Appl. 2023, 219, 119651. [Google Scholar] [CrossRef]
- Jones, H.N. Prosody in Parkinson’s Disease. Perspect. Neurophysiol. Neurogenic Speech Lang. Disord. 2009, 19, 77–82. [Google Scholar] [CrossRef]
- Moro-Velazquez, L.; Dehak, N. A Review of the Use of Prosodic Aspects of Speech for the Automatic Detection and Assessment of Parkinson’s Disease. In Automatic Assessment of Parkinsonian Speech; Godino-Llorente, J.I., Ed.; Springer: Cham, Switzerland, 2020; pp. 42–59. [Google Scholar] [CrossRef]
- Narendra, N.P.; Schuller, B.; Alku, P. The Detection of Parkinson’s Disease from Speech Using Voice Source Information. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 1925–1936. [Google Scholar] [CrossRef]
- Pinto, S.; Ozsancak, C.; Tripoliti, E.; Thobois, S.; Limousin-Dowsey, P.; Auzou, P. Treatments for dysarthria in Parkinson’s disease. Lancet Neurol. 2004, 3, 547–556. [Google Scholar] [CrossRef]
- Holmes, R.J.; Oates, J.M.; Phyland, D.J.; Hughes, A.J. Voice characteristics in the progression of Parkinson’s disease. Int. J. Lang. Commun. Disord. 2000, 35, 407–418. [Google Scholar] [CrossRef]
- Midi, I.; Dogan, M.; Koseoglu, M.; Can, G.; Sehitoglu, M.A.; Gunal, D.I. Voice abnormalities and their relation with motor dysfunction in Parkinson’s disease. Acta Neurol. Scand. 2008, 117, 26–34. [Google Scholar] [CrossRef]
- Hemmerling, D.; Wójcik-Pȩdziwiatr, M.; Jaciów, P.; Ziółko, B.; Igras-Cybulska, M. Monitoring of Parkinson’s Disease Progression Based on Speech Signal. In Proceedings of the 6th International Conference on Information and Computer Technologies (ICICT), Raleigh, NC, USA, 24–26 March 2023. [Google Scholar] [CrossRef]
- Hlavica, J.; Prauzek, M.; Peterek, T.; Musilek, P. Assessment of Parkinson’s disease progression using neural network and ANFIS models. Neural Netw. World 2016, 26, 111–128. [Google Scholar] [CrossRef]
- Nilashi, M.; Ibrahim, O.; Ahmadi, H.; Shahmoradi, L.; Farahmand, M. A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques. Biocybern. Biomed. Eng. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Ramig, L.O. Enhanced Classical Dysphonia Measures and Sparse Regression for Telemonitoring of Parkinson’s Disease Progression. In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010. [Google Scholar] [CrossRef]
- Bárcenas, R.; Fuentes-García, R.; Naranjo, L. Mixed kernel SVR addressing Parkinson’s progression from voice features. PLoS ONE 2022, 17, e0275721. [Google Scholar] [CrossRef]
- Bayestehtashk, A.; Asgari, M.; Shafran, I.; McNames, J. Fully automated assessment of the severity of Parkinson’s disease from speech. Comput. Speech Lang. 2015, 29, 172–185. [Google Scholar] [CrossRef]
- Nilashi, M.; Ibrahim, O.; Ahani, A. Accuracy Improvement for Predicting Parkinson’s Disease Progression. Sci. Rep. 2016, 6, 34181. [Google Scholar] [CrossRef] [PubMed]
- Nilashi, M.; Ibrahim, O.; Samad, S.; Ahmadi, H.; Shahmoradi, L.; Akbari, E. An analytical method for measuring the Parkinson’s disease progression: A case on a Parkinson’s telemonitoring dataset. Measurement 2019, 136, 545–557. [Google Scholar] [CrossRef]
- Silbergleit, A.K.; LeWitt, P.A.; Peterson, E.L.; Gardner, G.M. Quantitative analysis of voice in Parkinson disease compared to motor performance: A pilot study. J. Park. Dis. 2015, 5, 517–524. [Google Scholar] [CrossRef]
- Perez, C.; Roca, Y.C.; Naranjo, L.; Martin, J. Diagnosis and Tracking of Parkinson’s Disease by using Automatically Extracted Acoustic Features. J. Alzheimers Dis. Park. 2016, 260, 2160-0460. [Google Scholar] [CrossRef]
- Gamboa, J.; Jiménez-Jiménez, F.J.; Nieto, A.; Montojo, J.; Ortí-Pareja, M.; Molina, J.A.; García-Albea, E.; Cobeta, I. Acoustic Voice Analysis in Patients with Parkinson’s Disease Treated with Dopaminergic Drugs. J. Voice 1997, 11, 314–320. [Google Scholar] [CrossRef]
- Majdinasab, F.; Karkheiran, S.; Soltani, M.; Moradi, N.; Shahidi, G. Relationship Between Voice and Motor Disabilities of Parkinson’s Disease. J. Voice 2016, 30, e17–e768. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nishio, M.; Niimi, S. Vocal acoustic characteristics of patients with Parkinson’s disease. Folia Phoniatr. Logop. 2011, 63, 223–230. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, F.J.; Gamboa, J.; Nieto, A.; Guerrero, J.; Orti-Pareja, M.; Molina, J.A.; García-Albea, E.; Cobeta, I. Acoustic Voice Analysis in Untreated Patients with Parkinson’s Disease. Park. Relat. Disord. 1997, 3, 111–116. [Google Scholar] [CrossRef]
- Rani, K.U.; Holi, M.S. Analysis of Speech Characteristics of Neurological Diseases and Their Classification. In Proceedings of the 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT’12), Coimbatore, India, 26–28 July 2012. [Google Scholar] [CrossRef]
- Pah, N.D.; Motin, M.A.; Kumar, D.K. Phonemes based detection of Parkinson’s disease for telehealth applications. Sci. Rep. 2022, 12, 9687. [Google Scholar] [CrossRef]
- Rusz, J.; Cmejla, R.; Ruzickova, H.; Ruzicka, E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am. 2011, 129, 350–367. [Google Scholar] [CrossRef] [PubMed]
- Skodda, S.; Grönheit, W.; Mancinelli, N.; Schlegel, U. Progression of voice and speech impairment in the course of Parkinson’s disease: A longitudinal study. Park. Dis. 2013, 2013, 389195. [Google Scholar] [CrossRef] [PubMed]
- Rusz, J.; Tykalová, T.; Novotný, M.; Růžička, E.; Dušek, P. Distinct patterns of speech disorder in early-onset and late-onset de-novo Parkinson’s disease. npj Park. Dis. 2021, 7, 98. [Google Scholar] [CrossRef]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Spielman, J.; Ramig, L.O. Novel speech signal processing algorithms for high-accuracy classification of Parkinsons disease. IEEE Trans. Biomed. Eng. 2012, 59, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Galaz, Z.; Mekyska, J.; Zvoncak, V.; Mucha, J.; Kiska, T.; Smekal, Z.; Eliasova, I.; Mrackova, M.; Kostalova, M.; Rektorova, I.; et al. Changes in phonation and their relations with progress of Parkinson’s disease. Appl. Sci. 2018, 8, 2339. [Google Scholar] [CrossRef]
- Viswanathan, R.; Arjunan, S.P.; Bingham, A.; Jelfs, B.; Kempster, P.; Raghav, S.; Kumar, D.K. Complexity measures of voice recordings as a discriminative tool for Parkinson’s disease. Biosensors 2019, 10, 1. [Google Scholar] [CrossRef]
- Rahn, D.A.; Chou, M.; Jiang, J.J.; Zhang, Y. Phonatory Impairment in Parkinson’s Disease: Evidence from Nonlinear Dynamic Analysis and Perturbation Analysis. J. Voice 2007, 21, 64–71. [Google Scholar] [CrossRef]
- Naranjo, L.; Pérez, C.J.; Campos-Roca, Y. Monitoring Parkinson’s disease progression based on recorded speech with missing ordinal responses and replicated covariates. Comput. Biol. Med. 2021, 134, 104503. [Google Scholar] [CrossRef]
- Tsanas, A.; Little, M.; McSharry, P.; Ramig, L. Accurate telemonitoring of Parkinson’s disease progression by non-invasive speech tests. IEEE Trans. Biomed. Eng. 2010, 57, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Little, M.A.; McSharry, P.E.; Hunter, E.J.; Spielman, J.; Ramig, L.O. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 2009, 56, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Benba, A.; Hammouch, A.; Jilbab, A. Detecting Patients with Parkinson’s disease using Mel Frequency Cepstral Coefficients and Support Vector Machines. Int. J. Electr. Eng. Inform. 2015, 7, 308–322. [Google Scholar] [CrossRef]
- Moro-Velázquez, L.; Gómez-García, J.A.; Godino-Llorente, J.I.; Villalba, J.; Orozco-Arroyave, J.R.; Dehak, N. Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson’s Disease. Appl. Soft Comput. 2018, 62, 649–666. [Google Scholar] [CrossRef]
- Upadhya, S.S.; Cheeran, A.N.; Nirmal, J.H. Thomson Multitaper MFCC and PLP voice features for early detection of Parkinson disease. Biomed. Signal Process Control 2018, 46, 293–301. [Google Scholar] [CrossRef]
- Khan, T.; Lundgren, L.E.; Anderson, D.G.; Nowak, I.; Dougherty, M.; Verikas, A.; Pavel, M.; Jimison, H.; Nowaczyk, S.; Aharonson, V. Assessing Parkinson’s disease severity using speech analysis in non-native speakers. Comput. Speech Lang. 2020, 61, 101047. [Google Scholar] [CrossRef]
- Oung, Q.W.; Basah, S.N.; Muthusamy, H.; Vijean, V.; Lee, H. Evaluation of Short-Term Cepstral Based Features for Detection of Parkinson’s Disease Severity Levels through Speech Signals. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012039. [Google Scholar] [CrossRef]
- Liu, Y.; Reddy, M.K.; Penttila, N.; Ihalainen, T.; Alku, P.; Rasanen, O. Automatic Assessment of Parkinson’s Disease Using Speech Representations of Phonation and Articulation. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 31, 242–255. [Google Scholar] [CrossRef]
- Rueda, A.; Krishnan, S. Feature Analysis of Dysphonia SPEECH for Monitoring Parkinson’s Disease. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- Kodali, M.; Kadiri, S.R.; Alku, P. Automatic classification of the severity level of Parkinson’s disease: A comparison of speaking tasks, features, and classifiers. Comput. Speech Lang. 2023, 83, 101548. [Google Scholar] [CrossRef]
- Šimek, M.; Rusz, J. Validation of cepstral peak prominence in assessing early voice changes of Parkinson’s disease: Effect of speaking task and ambient noise. J. Acoust. Soc. Am. 2021, 150, 4522–4533. [Google Scholar] [CrossRef] [PubMed]
- Burk, B.R.; Watts, C.R. The Effect of Parkinson Disease Tremor Phenotype on Cepstral Peak Prominence and Transglottal Airflow in Vowels and Speech. J. Voice 2019, 33, e11–e580. [Google Scholar] [CrossRef]
- Vásquez-Correa, J.C.; Orozco-Arroyave, J.R.; Nöth, E. Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson’s Disease. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, International Speech Communication Association (ISCA), Stockholm, Sweden, 20–24 August 2017. [Google Scholar] [CrossRef]
- Orozco-Arroyave, J.R.; Hönig, F.; Arias-Londoño, J.D.; Vargas-Bonilla, J.F.; Skodda, S.; Rusz, J.; Nöth, E. Voiced/Unvoiced Transitions in Speech as a Potential Bio-Marker to Detect Parkinson’s Disease. In Proceedings of the Sixteenth Annual Conference of the International Speech Communication Association, Dresden, Germany, 6–10 September 2015. [Google Scholar]
- Skodda, S.; Visser, W.; Schlegel, U. Vowel articulation in Parkinson’s disease. J. Voice 2011, 25, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Roland, V.; Huet, K.; Harmegnies, B.; Piccaluga, M.; Verhaegen, C.; Delvaux, V. Vowel production: A potential speech biomarker for early detection of dysarthria in Parkinson’s disease. Front. Psychol. 2023, 14, 1129830. [Google Scholar] [CrossRef]
- Skodda, S.; Grönheit, W.; Schlegel, U. Impairment of vowel articulation as a possible marker of disease progression in Parkinson’s disease. PLoS ONE 2012, 7, e.32132. [Google Scholar] [CrossRef]
- Rusz, J.; Cmejla, R.; Tykalova, T.; Ruzickova, H.; Klempir, J.; Majerova, V.; Picmausova, J.; Roth, J.; Ruzicka, E. Imprecise vowel articulation as a potential early marker of Parkinson’s disease: Effect of speaking task. J. Acoust. Soc. Am. 2013, 134, 2171–2181. [Google Scholar] [CrossRef]
- Whitfield, J.A.; Goberman, A.M. Articulatory-acoustic vowel space: Application to clear speech in individuals with Parkinson’s disease. J. Commun. Disord. 2014, 51, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Mirarchi, D.; Vizza, P.; Tradigo, G.; Lombardo, N.; Arabia, G.; Veltri, P. Signal Analysis for Voice Evaluation in Parkinson’s Disease. In Proceedings of the 2017 IEEE International Conference on Healthcare Informatics (ICHI), Park City, UT, USA, 23–26 August 2017. [Google Scholar] [CrossRef]
- Hemmerling, D.; Wojcik-Pedziwiatr, M. Prediction and Estimation of Parkinson’s Disease Severity Based on Voice Signal. J. Voice 2022, 36, e9–e439. [Google Scholar] [CrossRef]
- Moro-Velazquez, L.; Gomez-Garcia, J.A.; Godino-Llorente, J.I.; Grandas-Perez, F.; Shattuck-Hufnagel, S.; Yagüe-Jimenez, V.; Dehak, N. Phonetic relevance and phonemic grouping of speech in the automatic detection of Parkinson’s Disease. Sci. Rep. 2019, 9, 19066. [Google Scholar] [CrossRef]
- Benba, A.; Jilbab, A.; Hammouch, A. Discriminating Between Patients with Parkinson’s and Neurological Diseases Using Cepstral Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1100–1108. [Google Scholar] [CrossRef]
- Yücetürk, A.; YIlmaz, H.; Eǧrilmez, M.; Karaca, S. Voice analysis and videolaryngostroboscopy in patients with Parkinson’s disease. Eur. Arch. Oto-Rhino-Laryngol. 2002, 259, 290–293. [Google Scholar] [CrossRef]
- Skodda, S.; Rinsche, H.; Schlegel, U. Progression of dysprosody in Parkinson’s disease over time—A longitudinal study. Mov. Disord. 2009, 24, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, F.; Meilán, J.; Carro, J.; Íñiguez, C.G.; Millian-Morell, L.; Valverde, I.P.; López-Alburquerque, T.; López, D. Speech rate in Parkinson’s disease: A controlled study. Neurologia 2016, 31, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Skodda, S.; Visser, W.; Schlegel, U. Gender-related patterns of dysprosody in Parkinson disease and correlation between speech variables and motor symptoms. J. Voice 2011, 25, 76. [Google Scholar] [CrossRef]
- Skodda, S.; Schlegel, U. Speech rate and rhythm in Parkinson’s disease. Mov. Disord. 2008, 23, 985–992. [Google Scholar] [CrossRef]
- Skodda, S.; Flasskamp, A.; Schlegel, U. Instability of syllable repetition as a marker of disease progression in Parkinson’s disease: A longitudinal study. Mov. Disord. 2011, 26, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Little, M.A.; McSharry, P.E.; Roberts, S.J.; Costello, D.A.E.; Moroz, I.M. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed. Eng. Online 2007, 6, 23. [Google Scholar] [CrossRef]
- Little, M.A.; Costello, D.A.E.; Harries, M.L. Objective dysphonia quantification in vocal fold paralysis: Comparing nonlinear with classical measures. J. Voice 2011, 25, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Jeancolas, L.; Benali, H.; Benekelfat, B.-E.; Mangone, G.; Corvol, J.-C.; Vidailhet, M.; Lehercy, S.; Petrovska-Delacrétaz, D. Automatic Detection of Early Stages of Parkinson’s Disease through Acoustic Voice Analysis with Mel-Frequency Cepstral Coefficients. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017. [Google Scholar] [CrossRef]
- Hawi, S.; Alhozami, J.; AlQahtani, R.; AlSafran, D.; Alqarni, M.; El Sahmarany, L. Automatic Parkinson’s disease detection based on the combination of long-term acoustic features and Mel frequency cepstral coefficients (MFCC). Biomed. Signal Process Control 2022, 78, 104013. [Google Scholar] [CrossRef]
- Murton, O.; Hillman, R.; Mehta, D. Cepstral peak prominence values for clinical voice evaluation. Am. J. Speech Lang. Pathol. 2020, 29, 1596–1607. [Google Scholar] [CrossRef]
- Abur, D.; Lester-Smith, R.A.; Daliri, A.; Lupiani, A.A.; Guenther, F.H.; Stepp, C.E. Sensorimotor adaptation of voice fundamental frequency in Parkinson’s disease. PLoS ONE 2018, 13, e0191839. [Google Scholar] [CrossRef] [PubMed]
- Mollaei, F.; Shiller, D.M.; Baum, S.R.; Gracco, V.L. Sensorimotor control of vocal pitch and formant frequencies in Parkinson’s disease. Brain Res. 2016, 1646, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Harel, B.T.; Cannizzaro, M.S.; Cohen, H.; Reilly, N.; Snyder, P.J. Acoustic characteristics of Parkinsonian speech: A potential biomarker of early disease progression and treatment. J. Neurolinguistics 2004, 17, 439. [Google Scholar] [CrossRef]
- Skodda, S.; Grönheit, W.; Schlegel, U. Intonation and speech rate in Parkinson’s disease: General and dynamic aspects and responsiveness to levodopa admission. J. Voice 2011, 25, 199. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Yamada, Y.; Shinkawa, K.; Nemoto, M.; Ota, M.; Nemoto, K.; Arai, T. Speech and language characteristics differentiate Alzheimer’s disease and dementia with Lewy bodies. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2022, 14, e12364. [Google Scholar] [CrossRef]
- Skodda, S.; Visser, W.; Schlegel, U. Acoustical analysis of speech in progressive supranuclear palsy. J. Voice 2011, 25, 725–731. [Google Scholar] [CrossRef]
Feature Name | Description | Physiological Interpretation | Application | Changes Reported | References |
---|---|---|---|---|---|
Jitter | Variation in period of glottal pulses | Irregular vocal fold oscillations | Diagnosis; Monitoring | Higher in PD than healthy | [14,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51] |
Shimmer | Variation in amplitudes of glottal pulses | Irregular vocal fold oscillations | Diagnosis; Monitoring | Higher in PD than healthy | [14,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Harmonics-to-Noise Ratio | Ratio between the energy of harmonic content and the energy of the noise content of a signal | Incomplete closure of the vocal folds | Diagnosis; Monitoring | Lower in PD than in healthy | [14,34,35,36,37,39,40,42,43,45,46,47,48,50,51,52,53,54] |
Glottal-to-Noise Excitation Ratio | Measure of the contribution of vocal fold oscillations to the voice signal compared to the contribution of noise | Irregular vocal fold oscillations or incomplete closure of the vocal folds | Diagnosis | None recorded | [55,56,57] |
Correlation Dimension | Instability of the vocal signal | Irregular vocal fold oscillations | Diagnosis | Higher in PD than in healthy | [58,59] |
Pitch Period Entropy | Measure of the variation between pitch periods | Variation in the frequency of vibration of the vocal folds | Diagnosis; Monitoring | Higher in PD than in healthy | [14,36,37,40,42,43,55,60,61] |
Recurrent Period Density Entropy | Measure of the complexity of the vocal signal | Irregular vocal fold oscillations | Diagnosis; Monitoring | None recorded | [14,36,37,40,42,43,55,60,61] |
Mel-frequency Cepstral Coefficients | Power density spectrum of speech, presented on a perceptually relevant frequency scale | Spectral representation of the vocal tract | Diagnosis; Monitoring | None recorded | [38,45,62,63,64,65,66,67,68,69] |
Cepstral Peak Prominence | Height of the cepstral peak in the total cepstrum of a voice signal | Indicator of voice quality | Diagnosis | Lower in PD than in healthy | [54,59,70,71] |
Bark Band Energy Features | Measure of the energy contained in each of 25 perceptually relevant frequency bands | Differentiation between voiced and unvoiced segments of speech | Diagnosis | None recorded | [72,73] |
Vowel Space Area | A measure of how distinctly different vowel sounds can be produced | Imprecise movements of the articulator organs | Diagnosis; Monitoring | Lower in PD than in healthy | [74,75,76,77,78,79] |
Vowel Articulation Index | A measure of where in the mouth vowel sounds are produced | Imprecise movements of the articulator organs | Diagnosis | Lower in PD than in healthy | [74,75,76,77] |
Perceptual Linear Prediction Coefficients | Spectral envelope of a speech signal with frequency axis adjusted to the Bark scale | Perceptual representation of the vocal tract | Diagnosis | None recorded | [65,80,81,82] |
Maximum Phonation Time | Time that a vowel phonation can be sustained | Illustrates breathing capacity and control | Diagnosis | Shorter in PD than in healthy | [54,83] |
Fundamental Frequency Variability | Vocal pitch and its variability | Frequency of the vibration of the vocal folds | Diagnosis; Monitoring | Increased variability over short vocal segments in PD as compared to healthy | [34,35,38,46,47,48,53,54,65,74,84] |
Speaking rate | The number of speech sounds produced in a given time | Identification of altered speech patterns | Diagnosis; Monitoring | Lower in PD than in healthy | [53,84,85,86] |
Number and Length of Pauses (Pause ratio) | Number and duration of pauses taken during speaking, both between and within words | Identification of altered speech patterns | Monitoring | Higher in PD than in healthy | [53,54,65,84,85,87,88] |
Detrended Fluctuation Analysis | Measure of self-similarity and pattern identification in speech signals | Identification of altered speech patterns | Diagnosis | None recorded | [14,36,37,40,42,43,55,60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, H.; Aharonson, V. Vocal Feature Changes for Monitoring Parkinson’s Disease Progression—A Systematic Review. Brain Sci. 2025, 15, 320. https://doi.org/10.3390/brainsci15030320
Wright H, Aharonson V. Vocal Feature Changes for Monitoring Parkinson’s Disease Progression—A Systematic Review. Brain Sciences. 2025; 15(3):320. https://doi.org/10.3390/brainsci15030320
Chicago/Turabian StyleWright, Helen, and Vered Aharonson. 2025. "Vocal Feature Changes for Monitoring Parkinson’s Disease Progression—A Systematic Review" Brain Sciences 15, no. 3: 320. https://doi.org/10.3390/brainsci15030320
APA StyleWright, H., & Aharonson, V. (2025). Vocal Feature Changes for Monitoring Parkinson’s Disease Progression—A Systematic Review. Brain Sciences, 15(3), 320. https://doi.org/10.3390/brainsci15030320