Dual Assessment of Developmental Topographical Disorientation: Comparing Self-Reported Measures with Actual Navigational Performance
Abstract
:1. Introduction
- Assess the FSCS and the short version of the Computerised Ecological Navigational Battery (LBS) as reliable predictors of actual navigational performance by contrasting self-reported scores with outcomes from a navigational battery.
- Investigate the FSCS’s effectiveness as a screening tool for DTD, a condition with an increasing prevalence that affects approximately 3% of youth, highlighting the significance of early detection.
- Analyse potential gender differences in self-reported SOD versus real-world navigational performance to address the impact of negative stereotypes on self-assessment.
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. The Anamnesis Questionnaire
2.2.2. Familiarity and Spatial Cognitive Style Scale (FSCS)
2.2.3. The Short Version of the Computerised Ecological Navigational Battery (LBS)
2.3. Data Analysis
3. Results
3.1. LBS New Version Reliability
3.2. Relationships Between FSCS Scores and Navigational Performance
3.3. Predictive Utility of FSCS Scores for Identifying DTD
3.4. Impact of Gender
4. Discussion
4.1. Evaluating the FSCS as a Predictor of Navigational Performance with Respect to LBS
4.2. Investigating the FSCS’s Effectiveness as a Screening Tool for DTD
4.3. Examining Gender Differences in SOD and Navigation Performance Regarding Negative Stereotypes
5. Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iaria, G.; Bogod, N.; Fox, C.J.; Barton, J.J.S. Developmental topographical disorientation: Case one. Neuropsychologia 2009, 47, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Iaria, G.; Barton, J.J. Developmental topographical disorientation: A newly discovered cognitive disorder. Exp. Brain Res. 2010, 206, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Burles, F.; Iaria, G. Behavioural and cognitive mechanisms of Developmental Topographical Disorientation. Sci. Rep. 2020, 10, 20932. [Google Scholar] [CrossRef]
- Piccardi, L.; Palmiero, M.; Cofini, V.; Verde, P.; Boccia, M. ‘Where am I?’ A snapshot of the developmental topographical disorientation among young Italian adults. PLoS ONE 2022, 17, e0271334. [Google Scholar] [CrossRef]
- Gärling, T.; Böök, A.; Lindeberg, E. Spatial orientation and way-finding in the designed environment. A conceptual analysis and some suggestions for postoccupancy evaluation. J. Archit. Plan. Res. 1986, 3, 55–64. [Google Scholar]
- Kitchin, R.M. Cognitive maps: What are they and why study them? J. Environ. Psychol. 1994, 14, 1–19. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Wu, C.; Mei, D. Effects of field dependence-independence and frame of reference on navigation performance using multi-dimensional electronic maps. Personal. Individ. Differ. 2016, 97, 289–299. [Google Scholar] [CrossRef]
- Boccia, M.; Vecchione, F.; Di Vita, A.; D’Amico, S.; Guariglia, C.; Piccardi, L. Effect of Cognitive Style on Topographical Learning Across Life Span: Insights From Normal Development. Child Dev. 2019, 90, 462–470. [Google Scholar] [CrossRef]
- Nazareth, A.; Huang, X.; Voyer, D.; Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon. Bull. Rev. 2019, 26, 1503–1528. [Google Scholar] [CrossRef]
- Munion, A.K.; Stefanucci, J.K.; Rovira, E.; Squire, P.; Hendricks, M. Gender differences in spatial navigation: Characterizing wayfinding behaviors. Psychon. Bull. Rev. 2019, 26, 1933–1940. [Google Scholar] [CrossRef]
- Lawton, C.A. Gender, spatial abilities and wayfinding. In Handbook of Gender Research in Psychology; Chrisler, J., McCreary, D., Eds.; Springer: New York, NY, USA, 2010; pp. 317–341. [Google Scholar] [CrossRef]
- Moffat, S.D.; Zonderman, A.B.; Resnick, S.M. Age differences in spatial memory in a virtual environment navigation task. Neurobiol. Aging 2001, 22, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Ramanoël, S.; York, E.; Le Petit, M.; Lagrené, K.; Habas, C.; Arleo, A. Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network. Front. Neural Circuits 2019, 13, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, A.W.Y.; King, J. Spatial memory and navigation in ageing: A systematic review of MRI and fMRI studies in healthy participants. Neurosci. Biobehav. Rev. 2019, 103, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Muffato, V.; Hilton, C.; Meneghetti, C.; Beni, R.D.; Wiener, J.M. Evidence for age-related deficits in object-location binding during place recognition. Hippocampus 2019, 29, 971–979. [Google Scholar] [CrossRef]
- Fernandez-Baizan, C.; Diaz-Caceres, E.; Arias, J.L.; Mendez, M. Egocentric and allocentric spatial memory in healthy aging: Performance on real-world tasks. Braz. J. Med. Biol. Res. 2019, 52, e8041. [Google Scholar] [CrossRef]
- Piccardi, L.; Nori, R.; Palermo, L.; Guariglia, C. Age effect in generating mental images of buildings but not common objects. Neurosci. Lett. 2015, 602, 79–83. [Google Scholar] [CrossRef]
- van der Ham, I.J.M.; Claessen, M.H.G.; Evers, A.W.M. Large-scale assessment of human navigation ability across the lifespan. Sci. Rep. 2020, 10, 3299. [Google Scholar] [CrossRef]
- Reinoso-Medina, L.; Thrasher, C.A.; Harburger, L.L. Evidence for age-related decline in spatial memory in a novel allocentric memory task. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2024, 32, 19–28. [Google Scholar] [CrossRef]
- Iachini, T.; Ruotolo, F.; Ruggiero, G. The effects of familiarity and gender on spatial representation. J. Environ. Psychol. 2009, 29, 227–234. [Google Scholar] [CrossRef]
- Akbari, K.; Winter, S.; Tomko, M. A causal analysis of environmental familiarity on navigation information needs. Int. J. Geogr. Inf. Sci. 2025, 1–34. [Google Scholar] [CrossRef]
- Nori, R.; Zucchelli, M.M.; Palmiero, M.; Piccardi, L. Environmental cognitive load and spatial anxiety: What matters in navigation? J. Environ. Psychol. 2023, 88, 102032. [Google Scholar] [CrossRef]
- Piccardi, L.; Palmiero, M.; Bocchi, A.; Boccia, M.; Guariglia, C. How does environmental knowledge allow us to come back home? Exp. Brain Res. 2019, 237, 1811–1820. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.M.; Newcombe, N.S.; Chatterjee, A. Everyday taxi drivers: Do better navigators have larger hippocampi? Cortex 2019, 115, 280–293. [Google Scholar] [CrossRef]
- Lopez, A.; Caffò, A.O.; Bosco, A. Topographical disorientation in aging: Familiarity with the environment does matter. Neurol. Sci. 2018, 39, 1519–1528. [Google Scholar] [CrossRef]
- Wolbers, T.; Hegarty, M. What determines our navigational abilities? Trends Cogn. Sci. 2010, 14, 138–146. [Google Scholar] [CrossRef]
- Hegarty, M.; He, C.; Boone, A.P.; Yu, S. Understanding differences in wayfinding strategies. Top. Cogn. Sci. 2023, 15, 102–119. [Google Scholar] [CrossRef]
- Lawton, C.A. Strategies for indoor wayfinding: The role of orientation. J. Environ. Psychol. 1996, 16, 137–145. [Google Scholar] [CrossRef]
- Dogu, U.; Erkip, F. Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environ. Behav. 2000, 32, 731–755. [Google Scholar] [CrossRef]
- Armougum, A.; Orriols, E.; Gaston-Bellegarde, A.; Joie-La Marle, C.; Piolino, P. Virtual reality: A new method to investigate cognitive load during navigation. J. Environ. Psychol. 2019, 65, 101338. [Google Scholar] [CrossRef]
- Kozlowski, L.T.; Bryant, K.J. Sense of direction, spatial orientation, and cognitive maps. J. Exp. Psychol. Hum. Percept. Perform. 1977, 3, 590–598. [Google Scholar] [CrossRef]
- Sholl, M.J.; Acacio, J.C.; Makar, R.O.; Leon, C. The relation of sex and sense of direction to spatial orientation in an unfamiliar environment. J. Environ. Psychol. 2000, 20, 17–28. [Google Scholar] [CrossRef]
- Hegarty, M.; Montello, D.R.; Richardson, A.E.; Ishikawa, T.; Lovelace, K. Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence 2006, 34, 151–176. [Google Scholar] [CrossRef]
- Piccardi, L.; Risetti, M.; Nori, R. Familiarity and Environmental Representations of a City: A Self-Report Study. In Spatial Memory: Visuospatial Processes, Cognitive Performance and Developmental Effects; Thomas, J.B., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 145–156. [Google Scholar]
- Claessen, M.H.G.; van der Ham, I.J.M. Classification of navigation impairment: A systematic review of neuropsychological case studies. Neurosci. Biobehav. Rev. 2017, 73, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Claessen, M.H.G.; Visser-Meily, J.M.A.; Meilinger, T.; Postma, A.; de Rooij, N.K.; van der Ham, I.J.M. A systematic investigation of navigation impairment in chronic stroke patients: Evidence for three distinct types. Neuropsychologia 2017, 103, 154–161. [Google Scholar] [CrossRef]
- Kato, Y.; Takeuchi, Y. Individual differences in wayfinding strategies. J. Environ. Psychol. 2003, 23, 171–188. [Google Scholar] [CrossRef]
- Prestopnik, J.L.; Roskos-Ewoldsen, B. The relations among wayfinding strategy use, sense of direction, sex, familiarity, and wayfinding ability. J. Environ. Psychol. 2000, 20, 177–191. [Google Scholar] [CrossRef]
- Nori, R.; Piccardi, L. I believe to be good in orienteering… but is that true? Cogn. Process. 2015, 16, 301–307. [Google Scholar] [CrossRef]
- Piccardi, L.; Cofini, V.; Palmiero, M.; Verde, P.; Boccia, M.; Palermo, L.; Guariglia, C.; Nori, R. Where am I? Searching for the tangle in the developmental topographical disorientation. Neurol. Int. 2022, 14, 824–838. [Google Scholar] [CrossRef]
- Bian, L.; Leslie, S.-J.; Cimpian, A. Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science 2017, 355, 389–391. [Google Scholar] [CrossRef]
- Evans, L. Traffic Safety and the Driver; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Guerra, E.; Bernotat, J.; Carvacho, H.; Bohner, G. Ladies first: Gender stereotypes drive anticipatory eye-movements during incremental sentence interpretation. Front. Psychol. 2021, 12, 589429. [Google Scholar] [CrossRef]
- Nori, R.; Piccardi, L. Il senso dell’orientamento: Quanto conta la familiarità con l’ambiente? G. Ital. Psicol. 2012, 39, 343–368. [Google Scholar]
- Bonavita, A.; Teghil, A.; Pesola, M.C.; Guariglia, C.; D’Antonio, F.; Di Vita, A.; Boccia, M. Overcoming navigational challenges: A novel approach to the study and assessment of topographical orientation. Behav. Res. Methods 2022, 54, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Boccia, M.; Guariglia, C.; Sabatini, U.; Nemmi, F. Navigating toward a novel environment from a route or survey perspective: Neural correlates and context-dependent connectivity. Brain Struct. Funct. 2016, 221, 2005–2021. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Kappal, S. Data Normalization Using Median & Median Absolute Deviation (MMAD) based Z-Score for Robust Predictions vs. Min-Max Normalization. Lond. J. Res. Sci. Nat. Form. 2019, 19, 39–44. [Google Scholar] [CrossRef]
- Thériault, R.; Ben-Shachar, M.S.; Patil, I.; Lüdecke, D.; Wiernik, B.M.; Makowski, D. Check your outliers ! An introduction to identifying statistical outliers in R with easystats. Behav. Res. Methods 2024, 56, 4162–4172. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Hubert, M. Robust statistics for outlier detection. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 73–79. [Google Scholar] [CrossRef]
- Teghil, A.; Boccia, M.; Bonavita, A.; Guariglia, C. Temporal features of spatial knowledge: Representing order and duration of topographical information. Behav. Brain Res. 2019, 376, 112218. [Google Scholar] [CrossRef]
- Siegel, A.W.; White, S.H. The development of spatial representations of large-scale environments. Adv. Child Dev. Behav. 1975, 10, 9–55. [Google Scholar]
- Ishikawa, T.; Montello, D.R. Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognit. Psychol. 2006, 52, 93–129. [Google Scholar] [CrossRef]
- Montello, D.R. A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In Spatial and Temporal Reasoning in Geographic Information Systems; Oxford University Press: New York, NY, USA, 1998; pp. 143–154. [Google Scholar]
- Chrastil, E.R.; Warren, W.H. Neural evidence for distinct cognitive map and landmark navigation systems. Psychon. Bull. Rev. 2012, 19, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, R.; Liu, S.; Liang, Q.; Zheng, S.; He, X.; Huang, R. Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis. NeuroImage 2021, 238, 118264. [Google Scholar] [CrossRef] [PubMed]
- Epstein, R.A.; Higgins, J.S.; Jablonski, K.; Feiler, A.M. Visual scene processing in familiar and unfamiliar environments. J. Neurophysiol. 2005, 94, 3671–3681. [Google Scholar] [CrossRef] [PubMed]
- Epstein, R.A.; Vass, L.K. Neural systems for landmark-based wayfinding in humans. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130390. [Google Scholar] [CrossRef]
- Aguirre, G.K.; D’Esposito, M. Topographical disorientation: A synthesis and taxonomy. Brain 1999, 122, 1613–1628. [Google Scholar] [CrossRef]
- Piccardi, L.; De Luca, M.; Di Vita, A.; Palermo, L.; Tanzilli, A.; Dacquino, C.; Pizzamiglio, M.R. Evidence of taxonomy for Developmental Topographical Disorientation: Developmental Landmark Agnosia Case 1. Appl. Neuropsychol. Child 2019, 8, 187–198. [Google Scholar] [CrossRef]
- Schöberl, F.; Zwergal, A.; Brandt, T. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control. Front. Neural Circuits 2020, 14, 6. [Google Scholar] [CrossRef]
- Bocchi, A.; Palmiero, M.; Boccia, M.; Di Vita, A.; Guariglia, C.; Piccardi, L. Travel planning ability in right brain-damaged patients: Two case reports. Front. Hum. Neurosci. 2020, 14, 117. [Google Scholar] [CrossRef]
- Bryant, K.J. Geographical/spatial orientation ability within real world and simulated large scale environments. Multivar. Behav. Res. 1991, 26, 109–136. [Google Scholar] [CrossRef]
- Campbell, S.M.; Collaer, M.L. Stereotype threat and gender differences in performance on a novel visuospatial task. Psychol. Women Q. 2009, 33, 437–444. [Google Scholar] [CrossRef]
- Newcombe, N.S.; Uttal, D.H. Whorf versus Socrates, round 10. Trends Cogn. Sci. 2006, 10, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.J.; Steele, C.M.; Quinn, D.M. Stereotype threat and women’s math performance. J. Exp. Soc. Psychol. 1999, 35, 4–28. [Google Scholar] [CrossRef]
- Steele, C.M. A threat in the air: How stereotypes shape intellectual identity and performance. Am. Psychol. 1997, 52, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Moè, A. Effects of group gender composition on Mental Rotation Test performance in women. Arch. Sex. Behav. 2018, 47, 2179–2187. [Google Scholar] [CrossRef]
- Guizzo, F.; Moè, A.; Cadinu, M.; Bertolli, C. The role of implicit gender spatial stereotyping in mental rotation performance. Acta Psychol. 2019, 197, 16–23. [Google Scholar] [CrossRef]
- Cadinu, M.; Maass, A.; Rosabianca, A.; Kiesner, J. Why do women underperform under stereotype threat? Evidence for the role of negative thinking. Psychol. Sci. 2005, 16, 572–578. [Google Scholar] [CrossRef]
- Moè, A.; Pazzaglia, F. Following the instructions! Effects of gender beliefs in mental rotation. Learn. Individ. Differ. 2006, 16, 369–377. [Google Scholar] [CrossRef]
- Schmader, T.; Johns, M. Converging Evidence That Stereotype Threat Reduces Working Memory Capacity. J. Pers. Soc. Psychol. 2003, 85, 440–452. [Google Scholar] [CrossRef]
- Walton, G.M.; Cohen, G.L. Stereotype lift. J. Exp. Soc. Psychol. 2003, 39, 456–467. [Google Scholar] [CrossRef]
- Moè, A. Mental rotation and mathematics: Gender-stereotyped beliefs and relationships in primary school children. Learn. Individ. Differ. 2018, 62, 128–137. [Google Scholar] [CrossRef]
- Allison, C.; Redhead, E.S.; Chan, W. Interaction of task difficulty and gender stereotype threat with a spatial orientation task in a virtual nested environment. Learn. Motiv. 2017, 57, 26–41. [Google Scholar] [CrossRef]
- Rosenthal, H.E.; Norman, L.; Smith, S.P.; McGregor, A. Gender-based navigation stereotype improves men’s search for a hidden goal. Sex Roles 2012, 67, 682–695. [Google Scholar] [CrossRef]
- Miola, L.; Meneghetti, C.; Pazzaglia, F.; van der Ham, I. Gender-related differences in environment learning: Examining task characteristics and spatial beliefs. Learn. Individ. Differ. 2023, 104, 102218. [Google Scholar] [CrossRef]
- Coluccia, E.; Louse, G. Gender differences in spatial orientation: A review. J. Environ. Psychol. 2004, 24, 329–340. [Google Scholar] [CrossRef]
Mean | Median | SD | Shapiro–Wilk | ||
---|---|---|---|---|---|
W | p | ||||
RK_2_ACC | 7.59 | 8.00 | 1.60 | 0.82 | <0.001 |
RK_2_RT | 1585.08 | 1251.44 | 1310.18 | 0.53 | <0.001 |
RK_3_ACC | 8.29 | 9.00 | 1.26 | 0.62 | <0.001 |
RK_3_RT | 1577.94 | 1172.16 | 1552.78 | 0.50 | <0.001 |
LK_ACC | 17.02 | 18.00 | 1.48 | 0.68 | <0.001 |
LK_RT | 2536.17 | 2281.94 | 1527.34 | 0.57 | <0.001 |
SK_ACC | 14.53 | 15.00 | 2.95 | 0.92 | <0.001 |
SK_RT | 6708.08 | 6029.06 | 3588.44 | 0.85 | <0.001 |
LO_ACC | 46.89 | 49.50 | 16.65 | 0.96 | <0.001 |
LO_RT | 1973.36 | 1811.05 | 1622.84 | 0.59 | <0.001 |
FSCS_TK | 42.36 | 42.00 | 6.23 | 0.99 | 0.552 |
FSCS_SOD | 37.60 | 37.00 | 9.47 | 0.99 | 0.194 |
FSCS_SCS_L | 6.67 | 6.50 | 1.82 | 0.96 | <0.001 |
FSCS_SCS_R | 7.57 | 8.00 | 1.51 | 0.94 | <0.001 |
FSCS_SCS_S | 5.07 | 5.00 | 1.96 | 0.95 | <0.001 |
FSCS_TOT | 99.28 | 99.00 | 14.32 | 0.99 | 0.621 |
DTD_Status | Sex | N | Mean | SD | |
---|---|---|---|---|---|
Age | DTD_LBS | F | 17 | 21.82 | 3.61 |
M | 5 | 21.60 | 3.44 | ||
No DTD_LBS | F | 108 | 20.41 | 2.83 | |
M | 54 | 21.87 | 3.88 | ||
DTD_SOD | F | 7 | 20.143 | 2.035 | |
M | 2 | 21.500 | 3.536 | ||
No DTD_SOD | F | 104 | 20.673 | 3.064 | |
M | 53 | 21.736 | 3.768 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonavita, A.; Pepe, S.; Nori, R.; Palmiero, M.; Guariglia, C.; Piccardi, L. Dual Assessment of Developmental Topographical Disorientation: Comparing Self-Reported Measures with Actual Navigational Performance. Brain Sci. 2025, 15, 318. https://doi.org/10.3390/brainsci15030318
Bonavita A, Pepe S, Nori R, Palmiero M, Guariglia C, Piccardi L. Dual Assessment of Developmental Topographical Disorientation: Comparing Self-Reported Measures with Actual Navigational Performance. Brain Sciences. 2025; 15(3):318. https://doi.org/10.3390/brainsci15030318
Chicago/Turabian StyleBonavita, Alessia, Sofia Pepe, Raffaella Nori, Massimiliano Palmiero, Cecilia Guariglia, and Laura Piccardi. 2025. "Dual Assessment of Developmental Topographical Disorientation: Comparing Self-Reported Measures with Actual Navigational Performance" Brain Sciences 15, no. 3: 318. https://doi.org/10.3390/brainsci15030318
APA StyleBonavita, A., Pepe, S., Nori, R., Palmiero, M., Guariglia, C., & Piccardi, L. (2025). Dual Assessment of Developmental Topographical Disorientation: Comparing Self-Reported Measures with Actual Navigational Performance. Brain Sciences, 15(3), 318. https://doi.org/10.3390/brainsci15030318