Driving Performance in Schizophrenia: The Role of Neurocognitive Correlates—A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Reporting
2.2. Search
- Scopus
- Pubmed
2.3. Selection Criteria
2.4. Data Extraction and Analysis
2.5. Quality Assessment
2.6. Assessment of Certainty in the Body of Evidence
3. Results
3.1. Database Searches
3.2. Quality Assessment of Included Studies
3.3. Data Extraction
3.3.1. Study Design and Characteristics
3.3.2. Assessment of Driving Ability
3.3.3. Assessment of Cognitive Deficits
3.3.4. Neuroimaging
3.3.5. Interventions and Treatment Variables
3.3.6. Main Findings
3.3.7. Assessment of Certainty in the Body of Evidence
4. Discussion
4.1. Overview
4.2. Driving Behavior of Individuals with Schizophrenia
4.2.1. Findings from the Six Included Studies
4.2.2. Supporting Evidence from Broader Literature
4.3. Cognitive Deficits and Brain Activity Associated with Driving Ability in Patients with Schizophrenia
4.3.1. Findings from the Six Included Studies
4.3.2. Supporting Evidence from Broader Literature
4.4. Impact of Medication on the Driving Ability
4.4.1. Findings from the Six Included Studies
4.4.2. Supporting Evidence from Broader Literature
4.5. Overall Perspective and Implications for Clinical Practice
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Hofer, A. Schizophrenia. In Encyclopedia of Psychopharmacology; Stolerman, I.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1175–1180. [Google Scholar]
- Bhati, M.T. Defining psychosis: The evolution of DSM-5 schizophrenia spectrum disorders. Curr. Psychiatry Rep. 2013, 15, 409. [Google Scholar] [CrossRef]
- Reddy, L.F.; Horan, W.P.; Green, M.F. Revisions and refinements of the diagnosis of schizophrenia in DSM-5. Clin. Psychol. Sci. Pract. 2014, 21, 236. [Google Scholar] [CrossRef]
- Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tsuang, M. Definition and description of schizophrenia in the DSM-5. Schizophr. Res. 2013, 150, 3–10. [Google Scholar] [CrossRef]
- Jin, H.; Mosweu, I. The societal cost of schizophrenia: A systematic review. Pharmacoeconomics 2017, 35, 25–42. [Google Scholar] [CrossRef]
- Harvey, P.D.; Strassnig, M.T.; Silberstein, J. Prediction of disability in schizophrenia: Symptoms, cognition, and self-assessment. J. Exp. Psychopathol. 2019, 10, 2043808719865693. [Google Scholar] [CrossRef]
- Keepers, G.A.; Fochtmann, L.J.; Anzia, J.M.; Benjamin, S.; Lyness, J.M.; Mojtabai, R.; Servis, M.; Walaszek, A.; Buckley, P.; Lenzenweger, M.F. The American Psychiatric Association practice guideline for the treatment of patients with schizophrenia. Am. J. Psychiatry 2020, 177, 868–872. [Google Scholar] [CrossRef]
- Kharawala, S.; Hastedt, C.; Podhorna, J.; Shukla, H.; Kappelhoff, B.; Harvey, P.D. The relationship between cognition and functioning in schizophrenia: A semi-systematic review. Schizophr. Res. Cogn. 2022, 27, 100217. [Google Scholar] [CrossRef]
- Granholm, E.; Holden, J.L.; Mikhael, T.; Link, P.C.; Swendsen, J.; Depp, C.; Moore, R.C.; Harvey, P.D. What do people with schizophrenia do all day? Ecological momentary assessment of real-world functioning in schizophrenia. Schizophr. Bull. 2020, 46, 242–251. [Google Scholar] [CrossRef]
- Sampogna, G.; Di Vincenzo, M.; Giuliani, L.; Menculini, G.; Mancuso, E.; Arsenio, E.; Cipolla, S.; Della Rocca, B.; Martiadis, V.; Signorelli, M.S. A systematic review on the effectiveness of antipsychotic drugs on the quality of life of patients with schizophrenia. Brain Sci. 2023, 13, 1577. [Google Scholar] [CrossRef]
- Fond, G.; Vidal, M.; Joseph, M.; Etchecopar-Etchart, D.; Solmi, M.; Yon, D.K.; Correll, C.U.; Boyer, L. Self-stigma in schizophrenia: A systematic review and meta-analysis of 37 studies from 25 high-and low-to-middle income countries. Mol. Psychiatry 2023, 28, 1920–1931. [Google Scholar] [CrossRef]
- Valery, K.-M.; Prouteau, A. Schizophrenia stigma in mental health professionals and associated factors: A systematic review. Psychiatry Res. 2020, 290, 113068. [Google Scholar] [CrossRef]
- Biedermann, F.; Kurzthaler, I.; Haibach, M.; Pardeller, S.; Pichler, T.; Kemmler, G.; Holzner, B.; Hofer, A. Driving fitness in clinically stable outpatients with chronic schizophrenia. Compr. Psychiatry 2022, 118, 152340. [Google Scholar] [CrossRef]
- Ledger, S.; Bennett, J.M.; Chekaluk, E.; Batchelor, J. Cognitive function and driving: Important for young and old alike. Transp. Res. Part F Traffic Psychol. Behav. 2019, 60, 262–273. [Google Scholar] [CrossRef]
- Jekel, K.; Damian, M.; Wattmo, C.; Hausner, L.; Bullock, R.; Connelly, P.J.; Dubois, B.; Eriksdotter, M.; Ewers, M.; Graessel, E. Mild cognitive impairment and deficits in instrumental activities of daily living: A systematic review. Alzheimer’s Res. Ther. 2015, 7, 17. [Google Scholar] [CrossRef]
- Tsouvala, A.; Katsouri, I.-G.; Moraitou, D.; Papantoniou, G.; Sofologi, M.; Nikova, A.; Vlotinou, P.; Tsiakiri, A.; Tsolaki, M. Metacognitive awareness of older adult drivers with mild cognitive impairment: Relationships with demographics, subjective evaluation of cognition, and driving self-efficacy. Behav. Sci. 2024, 14, 483. [Google Scholar] [CrossRef]
- Wolfe, P.L.; Lehockey, K.A. Neuropsychological assessment of driving capacity. Arch. Clin. Neuropsychol. 2016, 31, 517–529. [Google Scholar] [CrossRef]
- Bascom, G.W.; Christensen, K.M. The impacts of limited transportation access on persons with disabilities’ social participation. J. Transp. Health 2017, 7, 227–234. [Google Scholar] [CrossRef]
- Unsworth, C.A.; Baker, A.M.; So, M.H.; Harries, P.; O’Neill, D. A systematic review of evidence for fitness-to-drive among people with the mental health conditions of schizophrenia, stress/anxiety disorder, depression, personality disorder and obsessive compulsive disorder. BMC Psychiatry 2017, 17, 318. [Google Scholar] [CrossRef]
- Fernandes, C.; Esper, C.D.A.; Faiman, C.J.S. Schizophrenia and vehicle driving: A systematic literature review Esquizofrenia e direção veicular: Uma revisão sistemática da literatura. Saúde Ética Justiça 2017, 22, 72–80. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 1–9. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA Statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Stubbs, B.; Solmi, M.; Veronese, N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J. Meta-Anal. 2017, 5, 80–84. [Google Scholar] [CrossRef]
- Munn, Z.; Stone, J.C.; Aromataris, E.; Klugar, M.; Sears, K.; Leonardi-Bee, J.; Barker, T.H. Assessing the risk of bias of quantitative analytical studies: Introducing the vision for critical appraisal within JBI systematic reviews. JBI Evid. Synth. 2023, 21, 467–471. [Google Scholar] [CrossRef]
- Barker, T.H.; Hasanoff, S.; Aromataris, E.; Stone, J.C.; Leonardi-Bee, J.; Sears, K.; Klugar, M.; Tufanaru, C.; Moola, S.; Liu, X.-L.; et al. The revised JBI critical appraisal tool for the assessment of risk of bias for analytical cross-sectional studies. JBI Evid. Synth. 2025. [Google Scholar] [CrossRef]
- Ziada, S.; Wishahe, A.; Mabrouk, N.; Sahtout, S. Vitamin D deficiency and oral health: A systematic review of literature. BMC Oral Health 2025, 25, 468. [Google Scholar] [CrossRef]
- Mukin, S.B.; Affrita, T.M.; Yudianto, A. Morbidity and mortality of riot control agents exposure in several countries in the last 50 years: A systematic review. Egypt. J. Forensic Sci. 2025, 15, 40. [Google Scholar] [CrossRef]
- Shi, Q.; Wotherspoon, R.; Morphet, J. Nursing informatics and patient safety outcomes in critical care settings: A systematic review. BMC Nurs. 2025, 24, 546. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K. Systematic reviews of etiology and risk. Joanna Briggs Inst. Rev. Man. 2017, 5, 217–269. [Google Scholar] [CrossRef]
- Okada, H.; Komagata, S.; Takagi, M.; Kamata, Y.; Matsumoto, J.; Maeyama, T.; Takashio, Y.; Matoba, M. Characteristics of real-world driving behavior in people with schizophrenia: A naturalistic study utilizing drive recorders. Schizophrenia 2025, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Steinert, T.; Veit, F.; Schmid, P.; Jacob Snellgrove, B.; Borbe, R. Participating in mobility: People with schizophrenia driving motorized vehicles. Psychiatry Res. 2015, 228, 719–723. [Google Scholar] [CrossRef]
- Okada, H.; Morimoto, T.; Ikeda, N. Exploratory study on driving ability of people with schizophrenia: Relationships among cognitive function, symptoms, and brain activity. Schizophr. Res. 2024, 264, 290–297. [Google Scholar] [CrossRef]
- Noh, S.; Na, E.; Park, S.J.; Kim, S.H.; Evins, A.E.; Roh, S. Effects of various antipsychotics on driving-related cognitive performance in adults with schizophrenia. J. Psychiatr. Res. 2020, 131, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Fuermaier, A.B.M.; Piersma, D.; Huntjens, R.J.C.; de Waard, D.; Westermann, C.; Bossert, M.; Lange, K.W.; Weisbrod, M.; Bruggeman, R.; Aschenbrenner, S.; et al. Simulated car driving and its association with cognitive abilities in patients with schizophrenia. Schizophr. Res. 2019, 204, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Tsiakiri, A.; Christidi, F.; Tsiptsios, D.; Vlotinou, P.; Kitmeridou, S.; Bebeletsi, P.; Kokkotis, C.; Serdari, A.; Tsamakis, K.; Aggelousis, N. Processing speed and attentional shift/mental flexibility in patients with stroke: A comprehensive review on the trail making test in stroke studies. Neurol. Int. 2024, 16, 210–225. [Google Scholar] [CrossRef]
- Germain, S.A.S.; Kurtz, M.M.; Pearlson, G.D.; Astur, R.S. Virtual driving in individuals with schizophrenia. Annu. Rev. CyberTherapy Telemed. 2004, 2, 153–159. [Google Scholar] [CrossRef]
- Wylie, K.R.; Thompson, D.J.; Wildgust, H.J. Effects of depot neuroleptics on driving performance in chronic schizophrenic patients. J. Neurol. Neurosurg. Psychiatry 1993, 56, 910. [Google Scholar] [CrossRef]
- Brunnauer, A.; Laux, G.; Zwick, S. Driving simulator performance and psychomotor functions of schizophrenic patients treated with antipsychotics. Eur. Arch. Psychiatry Clin. Neurosci. 2009, 259, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Brunnauer, A.; Laux, G. Driving ability under sertindole. Pharmacopsychiatry 2012, 45, 47–50. [Google Scholar] [CrossRef]
- Soyka, M.; Dittert, S.; Kagerer-Volk, S. Driving ability with alcohol and drug dependence and schizophrenia. Der Nervenarzt 2014, 85, 816–821. [Google Scholar] [CrossRef]
- Sacher, P. Schizophrenia and the ability to drive. Schweiz. Med. Wochenschr. 1978, 108, 373–379. [Google Scholar]
- Adamowicz, D.H.; Shilling, P.D.; Palmer, B.W.; Nguyen, T.T.; Wang, E.; Liu, C.; Tu, X.; Jeste, D.V.; Irwin, M.R.; Lee, E.E. Associations between inflammatory marker profiles and neurocognitive functioning in people with schizophrenia and non-psychiatric comparison subjects. J. Psychiatry Res. 2022, 149, 106–113. [Google Scholar] [CrossRef]
- Okada, H.; Sawamura, D.; Kunita, K.; Ogasawara, H.; Maeda, K.; Morimoto, T.; Ikeda, N. Prefrontal activation during simulated driving in people with schizophrenia: A functional near-infrared spectroscopy study. Psychiatry Res. 2023, 326, 115285. [Google Scholar] [CrossRef] [PubMed]
- Segmiller, F.M.; Buschert, V.; Laux, G.; Nedopil, N.; Palm, U.; Furjanic, K.; Zwanzger, P.; Brunnauer, A. Driving skills in unmedicated first-and recurrent-episode schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 83–88. [Google Scholar] [CrossRef]
- Pardeller, S.; Biedermann, F.; Haibach, M.; Holzner, B.; Kemmler, G.; Kurzthaler, I.; Hofer, A. Drining abilities in patients With Schizophrenia. Schizophr. Bull. 2020, 46, S163. [Google Scholar] [CrossRef]
- Lipskaya-Velikovsky, L.; Kotler, M.; Weiss, P.; Kaspi, M.; Gamzo, S.; Ratzon, N. Car driving in schizophrenia: Can visual memory and organization make a difference? Disabil. Rehabil. 2013, 35, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.M.; Diaz Dellarossa, C.; Barbagelata, D.; Vasquez, J.; Mena, C.; Tepper, A.; Ramirez-Mahaluf, J.P.; Aceituno, D.; Nachar, R.; Undurraga, J.; et al. Cognitive function at first episode in patients subsequently developing treatment-resistant schizophrenia. Schizophr. Res. 2025, 276, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Granato, G.; Costanzo, R.; Borghi, A.; Mattera, A.; Carruthers, S.; Rossell, S.; Baldassarre, G. An experimental and computational investigation of executive functions and inner speech in schizophrenia spectrum disorders. Sci. Rep. 2025, 15, 5185. [Google Scholar] [CrossRef]
- Wu, J.Q.; Chen, D.C.; Tan, Y.L.; Xiu, M.H.; De Yang, F.; Soares, J.C.; Zhang, X.Y. Cognitive impairments in first-episode drug-naive and chronic medicated schizophrenia: MATRICS consensus cognitive battery in a Chinese Han population. Psychiatry Res. 2016, 238, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Sirivichayakul, S.; Kanchanatawan, B.; Carvalho, A.F. In schizophrenia, psychomotor retardation is associated with executive and memory impairments, negative and psychotic symptoms, neurotoxic immune products and lower natural IgM to malondialdehyde. World J. Biol. Psychiatry 2020, 21, 383–401. [Google Scholar] [CrossRef]
- Reddy, L.F.; Waltz, J.A.; Green, M.F.; Wynn, J.K.; Horan, W.P. Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms. Schizophr. Bull. 2016, 42, 942–951. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Li, Y. Investigating cognitive flexibility deficit in schizophrenia using task-based whole-brain functional connectivity. Front. Psychiatry 2022, 13, 1069036. [Google Scholar] [CrossRef]
- Saleh, Y.; Jarratt-Barnham, I.; Petitet, P.; Fernandez-Egea, E.; Manohar, S.G.; Husain, M. Negative symptoms and cognitive impairment are associated with distinct motivational deficits in treatment resistant schizophrenia. Mol. Psychiatry 2023, 28, 4831–4841. [Google Scholar] [CrossRef]
- Lesh, T.A.; Niendam, T.A.; Minzenberg, M.J.; Carter, C.S. Cognitive control deficits in schizophrenia: Mechanisms and meaning. Neuropsychopharmacology 2011, 36, 316–338. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, R.A.; Keefe, R.S.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.; Hollander, P.; Raucher-Chéné, D.; Lepage, M.; Lavigne, K.M. Structural brain correlates of cognitive function in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2022, 132, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Geisler, D.; Walton, E.; Naylor, M.; Roessner, V.; Lim, K.O.; Schulz, S.C.; Gollub, R.L.; Calhoun, V.D.; Sponheim, S.R.; Ehrlich, S. Brain structure and function correlates of cognitive subtypes in schizophrenia. Psychiatry Res. Neuroimaging 2015, 234, 74–83. [Google Scholar] [CrossRef]
- Yasuda, Y.; Okada, N.; Nemoto, K.; Fukunaga, M.; Yamamori, H.; Ohi, K.; Koshiyama, D.; Kudo, N.; Shiino, T.; Morita, S. Brain morphological and functional features in cognitive subgroups of schizophrenia. Psychiatry Clin. Neurosci. 2020, 74, 191–203. [Google Scholar] [CrossRef]
- Guo, P.; Hu, S.; Jiang, X.; Zheng, H.; Mo, D.; Cao, X.; Zhu, J.; Zhong, H. Associations of neurocognition and social cognition with brain structure and function in early-onset schizophrenia. Front. Psychiatry 2022, 13, 798105. [Google Scholar] [CrossRef]
- Goel, T.; Varaprasad, S.A.; Tanveer, M.; Pilli, R. Investigating white matter abnormalities associated with schizophrenia using deep learning model and voxel-based morphometry. Brain Sci. 2023, 13, 267. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Ma, C.; Chen, X.; Cheng, C. Investigating Connectivity Gradients in Schizophrenia: Integrating Functional, Structural, and Genetic Perspectives. Brain Sci. 2025, 15, 179. [Google Scholar] [CrossRef]
- Brandt, C.L.; Doan, N.T.; Tonnesen, S.; Agartz, I.; Hugdahl, K.; Melle, I.; Andreassen, O.A.; Westlye, L.T. Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis. Neuroimage Clin. 2015, 9, 253–263. [Google Scholar] [CrossRef]
- Stanley, J.A.; Daugherty, A.M.; Richter Gorey, C.; Thomas, P.; Khatib, D.; Chowdury, A.; Rajan, U.; Haddad, L.; Amirsadri, A.; Diwadkar, V.A. Basal glutamate in the hippocampus and the dorsolateral prefrontal cortex in schizophrenia: Relationships to cognitive proficiency investigated with structural equation modelling. World J. Biol. Psychiatry 2023, 24, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, J.M.; Repovs, G.; Harms, M.P.; Carter, C.S.; Gold, J.M.; MacDonald, A.W., 3rd; Daniel Ragland, J.; Silverstein, S.M.; Godwin, D.; Barch, D.M. Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia 2015, 73, 82–93. [Google Scholar] [CrossRef]
- Kanchanatawan, B.; Thika, S.; Sirivichayakul, S.; Carvalho, A.F.; Geffard, M.; Maes, M. In Schizophrenia, Depression, Anxiety, and Physiosomatic Symptoms Are Strongly Related to Psychotic Symptoms and Excitation, Impairments in Episodic Memory, and Increased Production of Neurotoxic Tryptophan Catabolites: A Multivariate and Machine Learning Study. Neurotox. Res. 2018, 33, 641–655. [Google Scholar] [CrossRef]
- Jirsaraie, R.J.; Sheffield, J.M.; Barch, D.M. Neural correlates of global and specific cognitive deficits in schizophrenia. Schizophr. Res. 2018, 201, 237–242. [Google Scholar] [CrossRef]
- Kruiper, C.; Fagerlund, B.; Nielsen, M.O.; During, S.; Jensen, M.H.; Ebdrup, B.H.; Glenthoj, B.Y.; Oranje, B. Associations between P3a and P3b amplitudes and cognition in antipsychotic-naive first-episode schizophrenia patients. Psychol. Med. 2019, 49, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.C.; Huang, C.C.; Chung, Y.A.; Park, S.Y.; Im, J.J.; Lin, Y.Y.; Ma, C.C.; Tzeng, N.S.; Chang, H.A. Resting-State EEG Connectivity at High-Frequency Bands and Attentional Performance Dysfunction in Stabilized Schizophrenia Patients. Medicina 2023, 59, 737. [Google Scholar] [CrossRef] [PubMed]
- Alden, E.C.; Smith, M.J.; Reilly, J.L.; Wang, L.; Csernansky, J.G.; Cobia, D.J. Shape features of working memory-related deep-brain regions differentiate high and low community functioning in schizophrenia. Schizophr. Res. Cogn. 2022, 29, 100250. [Google Scholar] [CrossRef]
- Wang, J.; Kochunov, P.; Sampath, H.; Hatch, K.S.; Ryan, M.C.; Xue, F.; Neda, J.; Paul, T.; Hahn, B.; Gold, J.; et al. White matter brain aging in relationship to schizophrenia and its cognitive deficit. Schizophr. Res. 2021, 230, 9–16. [Google Scholar] [CrossRef]
- Soyka, M.; Kagerer, S.; Brunnauer, A.; Laux, G.; Möller, H.-J. Driving ability in schizophrenic patients: Effects of neuroleptics. Int. J. Psychiatry Clin. Pract. 2005, 9, 168–174. [Google Scholar] [CrossRef]
- Brunnauer, A.; Laux, G.; Geiger, E.; Möller, H.-J. The impact of antipsychotics on psychomotor performance with regards to car driving skills. J. Clin. Psychopharmacol. 2004, 24, 155–160. [Google Scholar] [CrossRef]
- Soyka, M.; Winter, C.; Kagerer, S.; Brunnauer, M.; Laux, G.; Möller, H.-J. Effects of haloperidol and risperidone on psychomotor performance relevant to driving ability in schizophrenic patients compared to healthy controls. J. Psychiatr. Res. 2005, 39, 101–108. [Google Scholar] [CrossRef]
- Rajji, T.K.; Mulsant, B.H.; Davies, S.; Kalache, S.M.; Tsoutsoulas, C.; Pollock, B.G.; Remington, G. Prediction of working memory performance in schizophrenia by plasma ratio of clozapine to N-desmethylclozapine. Am. J. Psychiatry 2015, 172, 579–585. [Google Scholar] [CrossRef]
- Dale, C.L.; Brown, E.G.; Fisher, M.; Herman, A.B.; Dowling, A.F.; Hinkley, L.B.; Subramaniam, K.; Nagarajan, S.S.; Vinogradov, S. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia. Schizophr. Bull. 2016, 42, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Hochberger, W.C.; Thomas, M.L.; Joshi, Y.B.; Molina, J.; Treichler, E.B.H.; Nungaray, J.; Cardoso, L.; Sprock, J.; Swerdlow, N.; Light, G.A. Oscillatory biomarkers of early auditory information processing predict cognitive gains following targeted cognitive training in schizophrenia patients. Schizophr. Res. 2020, 215, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, I.S.; Fryer, S.; Boos, A.; Roach, B.J.; Fisher, M.; Loewy, R.; Vinogradov, S.; Mathalon, D.H. Response to Targeted Cognitive Training Correlates with Change in Thalamic Volume in a Randomized Trial for Early Schizophrenia. Neuropsychopharmacology 2018, 43, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Rispaud, S.G.; Rose, J.; Kurtz, M.M. The relationship between change in cognition and change in functional ability in schizophrenia during cognitive and psychosocial rehabilitation. Psychiatry Res. 2016, 244, 145–150. [Google Scholar] [CrossRef]
- Bak, N.; Ebdrup, B.H.; Oranje, B.; Fagerlund, B.; Jensen, M.H.; During, S.W.; Nielsen, M.O.; Glenthoj, B.Y.; Hansen, L.K. Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and electrophysiology. Transl. Psychiatry 2017, 7, e1087. [Google Scholar] [CrossRef]
- Shaw, J.; Bajaj, J.S. Covert hepatic encephalopathy: Can my patient drive? J. Clin. Gastroenterol. 2017, 51, 118–126. [Google Scholar] [CrossRef]
- Mahmood, S.; Chithiramohan, T.; Omotoso, O.; Khokhar, W. Protecting Lives: A Quality Improvement Project to Improve Adherence to Fitness to Drive Policy in Mental Health Setting. BJPsych Open 2025, 11, S143–S144. [Google Scholar] [CrossRef]
- Parekh, V.; McMinn, J.; Brkic, A.; Heldon, C.; Laidler, A. Something to see here: ACT Police referrals for impaired driving due to medical conditions. J. Forensic Leg. Med. 2025, 109, 102797. [Google Scholar] [CrossRef]
- Savoie, C.; Voyer, P.; Bouchard, S.; Lavallière, M. The healthcare professionals’ role in older adults’ road safety in primary care settings in Canada: A qualitative study. BMC Health Serv. Res. 2025, 25, 852. [Google Scholar] [CrossRef]
- Hamann, C.J.; Davis, J.A.; Pae, G.; Zhu, M.; Shill, G.H.; Tefft, B.; Cavanaugh, J.E. Impact of driver licensing renewal policies on older driver crash involvement and injury rates in 13 states, 2000–2019. Inj. Epidemiol. 2025, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Field, A.P.; Gillett, R. How to do a meta-analysis. Br. J. Math. Stat. Psychol. 2010, 63, 665–694. [Google Scholar] [CrossRef] [PubMed]
- Plakias, S. Review Articles on Soccer Performance Analysis: A Bibliometric Analysis of Current Trends and Emerging Themes. Sports 2025, 13, 131. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Individuals diagnosed with schizophrenia | Studies in animals |
English language | Studies in minors, in healthy populations, in populations with other diseases |
Full text research articles | Secondary analyses, reviews, guidelines, meeting summaries, comments, unpublished abstracts |
Studies published within the last ten years, specifically between 2015 and 2025 |
Q1. Were the Criteria for Inclusion in the Sample Clearly Defined? | Q2. Were the Study Subjects and the Setting Described in Detail? | Q3. Was the Exposure Measured in a Valid and Reliable Way? | Q4. Were Objective Standard Criteria Used for Measurement of the Condition? | Q5. Were Confounding Factors Identified? | Q6. Were Strategies to Deal with Confounding Factors Stated? | Q7. Were the Outcomes Measured in a Valid and Reliable Way? | Q8. Was Appropriate Statistical Analysis Used? | |
---|---|---|---|---|---|---|---|---|
1. Okada et al., 2025 [31] | √ | √ | √ | √ | √ | √ | √ | √ |
2. Biedermann et al., 2022 [14] | √ | √ | √ | √ | √ | √ | √ | √ |
3. Noh et al., 2020 [32] | √ | √ | √ | P | P | √ | √ | √ |
4. Okada et al., 2024 [33] | √ | √ | √ | √ | √ | √ | √ | √ |
5. Steinert et al., 2015 [34] | √ | √ | √ | √ | √ | √ | √ | √ |
6. Fuermaier et al., 2018 [35] | √ | √ | √ | √ | √ | X | √ | √ |
Overall appraisal | I | I | I | I | I | I | I | I |
First Author, (Year) | Study Origin | Patients’ N (Male/Female) | Patients’ Age (Mean ± SD) | Control (Y/N) | Controls’ N (Male/Female) |
---|---|---|---|---|---|
1. Okada et al., 2025 [31] | Asia (Japan) | 20 (12M-8F) | 46.3 ± 11.1 | Y | 20 (12M-8F) |
2. Biedermann et al., 2022 [14] | Europe (Germany) | 50 (28M-22F) | 43.1 ± 10.5 | N | NA |
3. Noh et al., 2020 [32] | Asia (South Korea) | 102 (49M-53F) | 45 | N | NA |
4. Okada et al., 2024 [33] | Asia (Japan) | 42 (29M-13F) | 42.7 ± 7.8 | N | NA |
5. Steinert et al., 2015 [34] | Europe (Germany) | 150 (94M-56F) | 45.2 ± 12.3 | N | NA |
6. Fuermaier et al., 2018 [35] | Europe (Germany) | 31 (22M-9F) | 29.9 ± 7.9 | Y | 31 (16M-15F) |
First Author, (Year) | Cognitive Deficits and Other Difficulties | Clinical and Neuropsychological Testing | Driving Assessment | Brain Scan and Findings | Main Findings |
---|---|---|---|---|---|
1. Okada et al., 2025 [31] | Sustained attention, visual processing speed, divided attention, and selective attention, Cognitive errors | PANSS, DIEPSS, TMT-A, CPT, WMS, ZMT, UFOV, SLOF | On-road | No |
|
2. Biedermann et al., 2022 [14] | Μild residual symptomatology, disorganization | PANSS, MSAS, Vienna Test System | Simulator | No |
|
3. Noh et al., 2020 [32] | Attention, Memory, Depth Perception, Executive Functioning | PANSS, CPAD | Simulator | No |
|
4. Okada et al., 2024 [33] | Processing Speed, Executive Function, Βrake Reaction Time, Memory, Disorganized | PANSS, TMT-A/B, WMS-R, ZMT | Simulator | Yes (fNIR) Reduced prefrontal cerebral blood flow |
|
5. Steinert et al., 2015 [34] | Cognitive dysfunction in attention, visuomotor coordination, processing speed | TMT-A, GAF | Self-reported questionnaire | No |
|
6. Fuermaier et al., 2018 [35] | Divided Attention, Working Memory, Inhibition, Processing Speed, Planning, Hazard Perception | COGBAT, WAFS, WAFG, TMT, ToL, HPT, N-Back, Go/No-Go, VTS, MCVT-B | Simulator | No |
|
Cognitive Domain | Main Associations with Driving |
---|---|
Attention (sustained, selective, divided) | Related to driving violations, delayed responses, and reduced situational awareness |
Processing Speed | Associated with slower reactions and difficulties in merging or adapting to traffic flow |
Executive Functions (planning, inhibition, decision-making) | Linked to impaired lane control, risk anticipation, and driving errors |
Memory (working/visual) | Influenced steering control, adaptation to unexpected events |
Visuospatial Skills | Associated with depth perception and distance judgment while driving |
Hazard Perception | Connected to increased collision risk and reduced hazard anticipation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakitsiou, G.; Plakias, S.; Arvaniti, A.; Katsikidou, M.; Kedraka, K.; Samakouri, M. Driving Performance in Schizophrenia: The Role of Neurocognitive Correlates—A Systematic Review. Brain Sci. 2025, 15, 1094. https://doi.org/10.3390/brainsci15101094
Karakitsiou G, Plakias S, Arvaniti A, Katsikidou M, Kedraka K, Samakouri M. Driving Performance in Schizophrenia: The Role of Neurocognitive Correlates—A Systematic Review. Brain Sciences. 2025; 15(10):1094. https://doi.org/10.3390/brainsci15101094
Chicago/Turabian StyleKarakitsiou, Georgia, Spyridon Plakias, Aikaterini Arvaniti, Magdalini Katsikidou, Katerina Kedraka, and Maria Samakouri. 2025. "Driving Performance in Schizophrenia: The Role of Neurocognitive Correlates—A Systematic Review" Brain Sciences 15, no. 10: 1094. https://doi.org/10.3390/brainsci15101094
APA StyleKarakitsiou, G., Plakias, S., Arvaniti, A., Katsikidou, M., Kedraka, K., & Samakouri, M. (2025). Driving Performance in Schizophrenia: The Role of Neurocognitive Correlates—A Systematic Review. Brain Sciences, 15(10), 1094. https://doi.org/10.3390/brainsci15101094