Multi-Omics Integration Reveals PBDE-47 as an Environmental Risk Factor for Intracranial Aneurysm via F2R-Mediated Metabolic and Epigenetic Pathways
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Data Sources
2.3. Instrumental Variable Selection
2.4. Reverse Causal Analysis
2.5. Collection of PBDE-47 Targets
2.6. Retrieval of IA Targets
2.7. Molecular Docking
2.8. Molecular Dynamics (MD) Simulation
2.9. MM/GBSA Binding Free Energy Calculation
= ΔE_internal + ΔE_VDW + ΔE_elec + ΔG_GB + ΔG_SA
2.10. Statistical Analysis
3. Results
3.1. Genetic Causal Relationship Between UKB-PPP and IA: MR Analysis
3.2. PBDE-47 Toxicity and Target Prediction
3.3. Molecular Docking Analysis
3.4. The F2R cis-pQTL Demonstrated Its Reliability by Passing Both the SMR and HEIDI Tests
3.5. MD Simulation Analysis
3.6. Molecular Mechanics, Generalized Born, Surface Area MM-GBSA Results
3.7. F2R Mediates IA Risk Through Plasma Metabolites
3.8. miRNA-Mediated Effects on the Risk of IA Through the F2R
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brisman, J.L.; Song, J.K.; Newell, D.W. Cerebral aneurysms. N. Engl. J. Med. 2006, 355, 928–939. [Google Scholar] [CrossRef]
- Southerland, A.M.; Green, I.E.; Worrall, B.B. Cerebral aneurysms and cervical artery dissection: Neurological complications and genetic associations. Handb. Clin. Neurol. 2021, 177, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Zhang, J.J.Y.; Nguyen, V.; Han, J.; Johnson, J.N.; Kirollos, R.; Teo, M. The evolution of intracranial aneurysm treatment techniques and future directions. Neurosurg. Rev. 2022, 45, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yao, Y.; Zhu, B.; Yu, Y.; Ren, R.; Hu, Y. The novel imaging methods in diagnosis and assessment of cerebrovascular diseases: An overview. Front. Med. 2024, 11, 1269742. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, S.M. Redefining environmental exposure for disease etiology. npj Syst. Biol. Appl. 2018, 4, 30. [Google Scholar] [CrossRef]
- Dorman, D.C.; Chiu, W.; Hales, B.F.; Hauser, R.; Johnson, K.J.; Mantus, E.; Martel, S.; Robinson, K.A.; Rooney, A.A.; Rudel, R.; et al. Polybrominated diphenyl ether (PBDE) neurotoxicity: A systematic review and meta-analysis of animal evidence. J. Toxicol. Environ. Health Part B 2018, 21, 269–289. [Google Scholar] [CrossRef]
- Sun, M.H.; Li, X.H.; Xu, Y.; Xu, Y.; Sun, S.C. Exposure to PBDE47 affects mouse oocyte quality via mitochondria dysfunction-induced oxidative stress and apoptosis. Ecotoxicol. Environ. Saf. 2020, 198, 110662. [Google Scholar] [CrossRef]
- Wei, J.; Li, X.; Xiang, L.; Song, Y.; Liu, Y.; Jiang, Y.; Cai, Z. Metabolomics and lipidomics study unveils the impact of polybrominated diphenyl ether-47 on breast cancer mice. J. Hazard. Mater. 2020, 390, 121451. [Google Scholar] [CrossRef]
- Jing, L.; Sun, Y.; Wang, Y.; Liang, B.; Chen, T.; Zheng, D.; Zhao, X.; Zhou, X.; Sun, Z.; Shi, Z. Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. Chemosphere 2019, 223, 675–685. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Burren, O.S.; Sun, B.B.; Prins, B.P.; Matelska, D.; Wheeler, E.; Mitchell, J.; Oerton, E.; Hristova, V.A.; Smith, K.R.; et al. Rare variant associations with plasma protein levels in the UK biobank. Nature 2023, 622, 339–347. [Google Scholar] [CrossRef]
- Eldjarn, G.H.; Ferkingstad, E.; Lund, S.H.; Helgason, H.; Magnusson, O.T.; Gunnarsdottir, K.; Olafsdottir, T.A.; Halldorsson, B.V.; Olason, P.I.; Zink, F.; et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 2023, 622, 348–358. [Google Scholar] [CrossRef]
- Sun, B.B.; Chiou, J.; Traylor, M.; Benner, C.; Hsu, Y.H.; Richardson, T.G.; Surendran, P.; Mahajan, A.; Robins, C.; Vasquez-Grinnell, S.G.; et al. Plasma proteomic associations with genetics and health in the UK biobank. Nature 2023, 622, 329–338. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, T.; Pettersson-Kymmer, U.; Stewart, I.D.; Butler-Laporte, G.; Nakanishi, T.; Cerani, A.; Liang, K.Y.H.; Yoshiji, S.; Willett, J.D.S.; et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 2023, 55, 44–53. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Fang, H.; Yang, J. A generalized linear mixed model association tool for biobank-scale data. Nat. Genet. 2021, 53, 1616–1621. [Google Scholar] [CrossRef]
- Huan, T.; Rong, J.; Liu, C.; Zhang, X.; Tanriverdi, K.; Joehanes, R.; Chen, B.H.; Murabito, J.M.; Yao, C.; Courchesne, P.; et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat. Commun. 2015, 6, 6601. [Google Scholar] [CrossRef]
- Greenland, S. An introduction to instrumental variables for epidemiologists. Int. J. Epidemiol. 2000, 29, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Didelez, V.; Sheehan, N. Mendelian randomization as an instrumental variable approach to causal inference. Stat. Methods Med. Res. 2007, 16, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Interpreting findings from mendelian randomization using the MR-egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Qiu, R.; Su, Y.; Pan, L.; Fan, K.; Sun, Z.; Liang, Y.; Lin, X.; Zhang, Y. Causal relationship between immune mediators and parkinson’s disease: A Mendelian randomization analysis. Sci. Rep. 2025, 15, 24884. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Ma, X.; Zhu, L.; Su, L.; Wang, S.; Guo, Q.; Wan, B.; Qiu, S.; Zhang, Y.; Hu, S.; et al. Peripheral immunological characteristics of spontaneous pneumothorax: A Mendelian randomization study. J. Thorac. Dis. 2024, 16, 5559–5570. [Google Scholar] [CrossRef] [PubMed]
- Hodis, E.; Schreiber, G.; Rother, K.; Sussman, J.L. eMovie: A storyboard-based tool for making molecular movies. Trends Biochem. Sci. 2007, 32, 199–204. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Peng, C.; Wang, J.; Xu, Z.; Chen, K.; Shi, J.; Zhu, W. D3Pockets: A method and web server for systematic analysis of protein pocket dynamics. J. Chem. Inf. Model 2019, 59, 3353–3358. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Coutsias, E.A.; Wester, M.J. RMSD and symmetry. J. Comput. Chem. 2019, 40, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.S.; Allen, B.K.; Giese, T.J.; Guo, Z.; Li, P.; Lin, C.; McGee, T.D., Jr.; Pearlman, D.A.; Radak, B.K.; Tao, Y.; et al. Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery. J. Chem. Inf. Model. 2020, 60, 5595–5623. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Sagui, C.; Darden, T.A. Molecular Dynamics Simulations of Biomolecules: Long-Range Electrostatic Effects. J. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 155–179. [Google Scholar] [CrossRef]
- Kräutler, V.; van Gunsteren, W.F.; Hünenberger, P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501–508. [Google Scholar] [CrossRef]
- Larini, L.; Mannella, R.; Leporini, D. Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. J. Chem. Phys. 2007, 126, 104101. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Rastelli, G.; Del Rio, A.; Degliesposti, G.; Sgobba, M. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem. 2010, 31, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Roe, D.R.; Simmerling, C. Improved generalized born solvent model parameters for protein simulations. J. Chem. Theory Comput. 2013, 9, 2020–2034. [Google Scholar] [CrossRef]
- Weiser, J.; Shenkin, P.S.; Still, W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217–230. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, F.; Hu, H.; Bakshi, A.; Robinson, M.R.; Powell, J.E.; Montgomery, G.W.; Goddard, M.E.; Wray, N.R.; Visscher, P.M. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016, 48, 481–487. [Google Scholar] [CrossRef]
- Hesse, A.M.; Dupierris, V.; Adam, C.; Court, M.; Barthe, D.; Emadali, A.; Masselon, C.; Ferro, M.; Bruley, C. hEIDI: An intuitive application tool to organize and treat large-scale proteomics data. J. Proteome Res. 2016, 15, 3896–3903. [Google Scholar] [CrossRef]
- Mounier, N.; Kutalik, Z. Bias correction for inverse variance weighting mendelian randomization. Genet. Epidemiol. 2023, 47, 314–331. [Google Scholar] [CrossRef]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.A.; Thompson, J.R. Assessing the suitability of summary data for two-sample mendelian randomization analyses using MR-egger regression: The role of the I2 statistic. Int. J. Epidemiol. 2016, 45, 1961–1974. [Google Scholar] [CrossRef]
- Slob, E.A.W.; Burgess, S. A comparison of robust mendelian randomization methods using summary data. Genet. Epidemiol. 2020, 44, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Berghuis, S.A.; Bos, A.F.; Sauer, P.J.J.; Bocca, G. Prenatal environmental exposure to persistent organic pollutants and indices of overweight and cardiovascular risk in dutch adolescents. Nutrients 2022, 14, 2269. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Fu, J.; Sun, S.; Jin, Y.; Wang, X.; Zhang, L. BDE-209 induces autophagy and apoptosis via IRE1α/akt/mTOR signaling pathway in human umbilical vein endothelial cells. Environ. Pollut. 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Chen, J.C.; Baumert, B.O.; Li, Y.; Li, Y.; Pan, S.; Robinson, S.; Rubbo, B.; Costello, E.; He, J.; Hampson, H. Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: A systematic review and meta-analysis. Environ. Res. 2023, 239 Pt 1, 117308. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Shen, N.; Qi, X.; Li, H.; Wu, F.; Zhu, Z.; Liu, J.; Xiang, H. Association between exposure to brominated flame retardants (BFRs) and blood lipid profiles in american adults: A cross-sectional study. Lipids Health Dis. 2025, 24, 120. [Google Scholar] [CrossRef]
- Rui, Q.Y.; Li, X.; Zhang, H.B.; Guo, X.M.; Zheng, N.; Zhao, L.; Guo, L.Q.; Li, P.H.; Yue, J.J. Research on the relationship between environmental chemical pollutant exposure and epigenetics. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2020, 38, 237–240. [Google Scholar] [CrossRef]
- Gui, S.; Jiang, J.; Deng, D.; Wei, D.; Chen, X.; Tang, Y.; Lv, J.; You, W.; Chen, T.; Zhao, Y. Untargeted metabolomics to detect and identify plasma metabolic signatures associated with intracranial aneurysm and its rupture. Metab. Brain Dis. 2024, 40, 7. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Liu, Y.; Song, G.; Liu, N. A microarray for microRNA profiling in spermatozoa from adult men living in an environmentally polluted site. Bull. Environ. Contam. Toxicol. 2012, 89, 1111–1114. [Google Scholar] [CrossRef]
- Li, Q.; Kappil, M.A.; Li, A.; Dassanayake, P.S.; Darrah, T.H.; Friedman, A.E.; Friedman, M.; Lambertini, L.; Landrigan, P.; Stodgell, C.J.; et al. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the national children’s study (NCS). Epigenetics 2015, 10, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Zhang, Q.; Zhang, H.; Zhan, L.; Sun, X. MiR-130b-3p promotes colorectal cancer progression by targeting CHD9. Cell Cycle 2022, 21, 585–601. [Google Scholar] [CrossRef]
- Wu, T.; Jia, X.; Zhu, Z.; Guo, K.; Wang, Q.; Gao, Z.; Li, X.; Huang, Y.; Wu, D. Inhibition of miR-130b-3p restores autophagy and attenuates intervertebral disc degeneration through mediating ATG14 and PRKAA1. Apoptosis Int. J. Program Cell Death 2022, 27, 409–425. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, W.; Kuang, S.; Gan, Q.; Li, H.; Ma, H.; Yang, G.; Guo, J.; Tang, Y.; Yuan, W. miR-130b-3p involved in the pathogenesis of age-related hearing loss via targeting PPARγ and autophagy. Hear Res. 2024, 449, 109029. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, N.; Liu, X. Human placenta mesenchymal stem cell-derived exosome shuttling microRNA-130b-3p from gestational diabetes mellitus patients targets ICAM-1 and perturbs human umbilical vein endothelial cell angiogenesis. Acta Diabetol. 2022, 59, 1091–1107. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Lv, H.; Cui, C.; Leng, J.; Xu, K.; Yu, G.; Chen, J.; Cong, P. Identification of the miRNA-target gene regulatory network in intracranial aneurysm based on microarray expression data. Exp. Ther. Med. 2017, 13, 3239–3248. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, M.X.; Zhou, F.K.; Luo, X.M.; Zhong, S.X.; Zhou, Y.F.; Qin, Y.S.; Li, P.P.; Qin, C. Exosome-derived MiRNAs as biomarkers of the development and progression of intracranial aneurysms. J. Atheroscler. Thromb. 2020, 27, 545–610. [Google Scholar] [CrossRef]
- Jiang, Y.G. Environmental chemicals exposure and abnormal expression of non-coding RNAs. Zhonghua Yu Fang Yi Xue Za Zhi 2019, 53, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Kosnik, M.B.; Antczak, P.; Fantke, P. Data-driven characterization of genetic variability in disease pathways and pesticide-induced nervous system disease in the United States population. Environ. Health Perspect. 2024, 132, 57003. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Sun, G.H.; Yu, D.; Liu, X.Y.; Xu, G.W. New advances in exposomics-analysis methods and research paradigms based on chromatography-mass spectrometry. Se Pu Chin. J. Chromatogr. 2024, 42, 109–119. [Google Scholar] [CrossRef] [PubMed]
Ligand | PDB Identifier | Target | Affinity, kcal/mol |
---|---|---|---|
PBDE-47 | 8hnk | CXCL11 | −5.769 |
3vw7 | F2R | −5.516 | |
5l0s | F7 | −7.762 | |
1ev2 | FGFR2 | −5.961 | |
6u1u | ANGPTL4 | −6.051 | |
AF-Q76M96 | CCDC80 | −4.841 | |
7ev1 | CDH17 | −5.803 | |
4oel | CTSC | −5.747 | |
9gj2 | CTSS | −7.066 | |
AF-P12034 | FGF5 | −4.315 | |
6u66 | ADIPOQ | −6.469 | |
1dgf | CAT | −5.717 | |
2uur | COL9A1 | −5.081 | |
3ehu | CRH | −7.036 | |
5gw9 | CSF3 | −6.227 |
System Name | F2R_PBDE-47 |
---|---|
ΔEvdw | −49.21 ± 2.42 |
ΔEelec | −11.62 ± 2.09 |
ΔGGB | 27.98 ± 2.37 |
ΔGSA | −4.98 ± 0.08 |
ΔGbind | −37.85 ± 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; You, J.; Bai, J.; Khan, D.; Muhammad, S. Multi-Omics Integration Reveals PBDE-47 as an Environmental Risk Factor for Intracranial Aneurysm via F2R-Mediated Metabolic and Epigenetic Pathways. Brain Sci. 2025, 15, 1091. https://doi.org/10.3390/brainsci15101091
Liu H, You J, Bai J, Khan D, Muhammad S. Multi-Omics Integration Reveals PBDE-47 as an Environmental Risk Factor for Intracranial Aneurysm via F2R-Mediated Metabolic and Epigenetic Pathways. Brain Sciences. 2025; 15(10):1091. https://doi.org/10.3390/brainsci15101091
Chicago/Turabian StyleLiu, Hongjun, Jinliang You, Junsheng Bai, Dilaware Khan, and Sajjad Muhammad. 2025. "Multi-Omics Integration Reveals PBDE-47 as an Environmental Risk Factor for Intracranial Aneurysm via F2R-Mediated Metabolic and Epigenetic Pathways" Brain Sciences 15, no. 10: 1091. https://doi.org/10.3390/brainsci15101091
APA StyleLiu, H., You, J., Bai, J., Khan, D., & Muhammad, S. (2025). Multi-Omics Integration Reveals PBDE-47 as an Environmental Risk Factor for Intracranial Aneurysm via F2R-Mediated Metabolic and Epigenetic Pathways. Brain Sciences, 15(10), 1091. https://doi.org/10.3390/brainsci15101091