Transcranial Magnetic Intermittent Theta-Burst Stimulation (iTBS) Enhances Physical Performance in Mixed Martial Arts Athletes: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants’ Characteristics and Baseline Measures
2.3. Procedures
2.3.1. Familiarization and Standardization
2.3.2. Testing Protocol
2.3.3. Warm-Up
2.3.4. Blood Sampling
2.3.5. The iTBS Intervention
2.3.6. Left Dorsolateral Prefrontal Cortex (DLPFC) Localization and Preparation
2.3.7. Determination of Motor Threshold
2.3.8. Randomization and Group Allocation
2.3.9. Stimulation Parameters
2.4. Measures
2.4.1. Multiple Frequency Speed of Kick Test (MFSKT)
2.4.2. Progressive Speed Kick Test (PSKT)
2.4.3. Blood Collection
2.4.4. Plasma Oxidative-Stress Biomarkers
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira Müller, V.; De Albuquerque Maurício, C.; Cunha de Mello Pedreiro, R.; José Brito, C.; Valenzuela Pérez, D.; Aedo Muñoz, E.; Nóbrega, O.D.T.; Miarka, B. Repetitive transcranial magnetic stimulation (rTMS) in the treatment and diagnosis of eating disorders in athletes and patients: A systematic review. Retos 2024, 60, 1036–1048. [Google Scholar] [CrossRef]
- Conforto, A.B.; Marie, S.K.; Cohen, L.G.; Scaff, M. Estimulação magnética transcraniana. Arq. Neuropsiquiatr. 2003, 61, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Zavorotnyy, M.; Zöllner, R.; Rekate, H.; Dietsche, P.; Bopp, M.; Sommer, J.; Meller, T.; Krug, A.; Nenadić, I. Intermittent theta-burst stimulation moderates interaction between increment of N-Acetyl-Aspartate in anterior cingulate and improvement of unipolar depression. Brain Stimul. 2020, 13, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Deng, Y.; Zheng, X.; Liu, Y. Transcranial direct current stimulation with halo sport enhances repeated sprint cycling and cognitive performance. Front. Physiol. 2019, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Di Lazzaro, V.; Pilato, F.; Saturno, E.; Oliviero, A.; Dileone, M.; Mazzone, P.; Insola, A.; Tonali, P.A.; Ranieri, F.; Huang, Y.Z.; et al. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J. Physiol. 2005, 565, 945–950. [Google Scholar] [CrossRef]
- Iwabuchi, S.J.; Raschke, F.; Auer, D.P.; Liddle, P.F.; Lankappa, S.T.; Palaniyappan, L. Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA. Neuroimage 2017, 146, 395–403. [Google Scholar] [CrossRef]
- Matsuta, H.; Shimomura, T.; Kouchiyama, T.; Fujiki, M. Continuous theta-burst stimulation to the sensorimotor cortex affects contralateral gamma-aminobutyric acid level and resting-state networks. PLoS ONE 2022, 17, e0272268. [Google Scholar] [CrossRef]
- Burke, M.J.; Fried, P.J.; Pascual-Leone, A. Transcranial magnetic stimulation: Neurophysiological and clinical applications. Handb. Clin. Neurol. 2019, 163, 73–92. [Google Scholar] [CrossRef]
- Chu, H.T.; Cheng, C.M.; Liang, C.S.; Chang, W.H.; Juan, C.H.; Huang, Y.Z.; Jeng, J.S.; Bai, Y.M.; Tsai, S.J.; Chen, M.H.; et al. Efficacy and tolerability of theta-burst stimulation for major depression: A systematic review and meta-analysis. Prog. Neuropsychopharmacol Biol. Psychiatry 2021, 106, 110168. [Google Scholar] [CrossRef]
- Chen, L.; Chung, S.W.; Hoy, K.E.; Fitzgerald, P.B. Is theta burst stimulation ready as a clinical treatment for depression? Expert Rev. Neurother. 2019, 19, 1089–1102. [Google Scholar] [CrossRef]
- Janicak, P.G.; Dokucu, M.E. Transcranial magnetic stimulation for the treatment of major depression. Neuropsychiatr. Dis. Treat. 2015, 11, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.A.; Zaninotto, A.L.; Neville, I.S.; Hayashi, C.Y.; Brunoni, A.R.; Teixeira, M.J.; Paiva, W.S. Transcranial magnetic stimulation for the treatment of anxiety disorder. Neuropsychiatr. Dis. Treat. 2019, 15, 2743–2761. [Google Scholar] [CrossRef]
- Chen, L.; Thomas, E.H.X.; Kaewpijit, P.; Miljevic, A.; Hughes, R.; Hahn, L.; Kato, Y.; Gill, S.; Clarke, P.; Ng, F.; et al. Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial. Brain Stimul. 2021, 14, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, C.; Tan, J.; Ding, L.; Wang, C.; Wang, M.; Lin, Y. Clinical effects of continuous theta burst stimulation for generalized anxiety disorder and a mechanism involving α oscillations: A randomized controlled trial. J. Psychiatry Neurosci. 2022, 47, E123–E133. [Google Scholar] [CrossRef] [PubMed]
- Tavares, D.F.; Suen, P.; Rodrigues dos Santos, C.G.; Moreno, D.H.; Lane Valiengo, L.D.C.; Klein, I.; Borrione, L.; Forte, P.M.; Brunoni, A.R.; Moreno, R.A. Treatment of mixed depression with theta-burst stimulation (TBS): Results from a double-blind, randomized, sham-controlled clinical trial. Neuropsychopharmacology 2021, 46, 2257–2265. [Google Scholar] [CrossRef]
- McGirr, A.; Vila-Rodriguez, F.; Cole, J.; Torres, I.J.; Arumugham, S.S.; Keramatian, K.; Saraf, G.; Lam, R.W.; Chakrabarty, T.; Yatham, L.N. Efficacy of Active vs Sham Intermittent Theta Burst Transcranial Magnetic Stimulation for Patients with Bipolar Depression: A Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e210963. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef]
- Pereira, L.S.; Müller, V.T.; da Mota Gomes, M.; Rotenberg, A.; Fregni, F. Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review. Epilepsy Behav. 2016, 57, 167–176. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Yang, W.; Chen, Y.; Wang, B.; Chen, J.; Li, X.; Xie, L.; Huang, H.; Zeng, Y.; et al. The effectiveness of intermittent theta burst stimulation for upper limb motor recovery after stroke: A systematic review and meta-analysis of randomized controlled trials. Front. Neurosci. 2023, 17, 1272003. [Google Scholar] [CrossRef]
- Jin, Z.H.; Wang, Y.X.; Meng, D.T.; Qin, Y.; Duan, Y.N.; Fang, J.P.; Wang, R.D.; Liu, Y.J.; Liu, C.; Wang, P.; et al. Intermittent theta-burst stimulation combined with physical therapy as an optimal rehabilitation in Parkinson’s disease: Study protocol for a randomised, double-blind, controlled trial. Trials 2023, 24, 410. [Google Scholar] [CrossRef]
- Ambriz-Tututi, M.; Alvarado-Reynoso, B.; Drucker-Colín, R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics 2016, 37, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Giboin, L.S.; Thumm, P.; Bertschinger, R.; Gruber, M. Intermittent theta burst over M1 may increase peak power of a wingate anaerobic test and prevent the reduction of voluntary activation measured with transcranial magnetic stimulation. Front. Behav. Neurosci. 2016, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Toto, G.A.; Valenzano, A.; Cibelli, G.; Monda, V.; Limone, P.; Mancini, N.; Messina, A.; Marsala, G.; Messina, G.; et al. High frequencies (HF) repetitive transcranial magnetic stimulation (rTMS) increase motor coordination performances in volleyball players. BMC Neurosci. 2023, 24, 30. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, F.; Valenzano, A.; Petito, A.; Triggiani, A.I.; Ciliberti, M.A.P.; Luongo, L.; Carotenuto, M.; Esposito, M.; Messina, A.; Monda, V.; et al. Relationship between blood lactate and cortical excitability between taekwondo athletes and non-athletes after hand-grip exercise. Somatosens. Mot. Res. 2016, 33, 137–144. [Google Scholar] [CrossRef]
- Monda, V.; Valenzano, A.; Moscatelli, F.; Salerno, M.; Sessa, F.; Triggiani, A.I.; Viggiano, A.; Capranica, L.; Marsala, G.; De Luca, V.; et al. Primary motor cortex excitability in karate athletes: A transcranial magnetic stimulation study. Front. Physiol. 2017, 8, 695. [Google Scholar] [CrossRef]
- James, L.P.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Towards a Determination of the Physiological Characteristics Distinguishing Successful Mixed Martial Arts Athletes: A Systematic Review of Combat Sport Literature. Sports Med. 2016, 46, 1525–1551. [Google Scholar] [CrossRef]
- dos Santos, D.A.; Miarka, B.; dal Bello, F.; Queiroz, A.C.C.; de Carvalho, P.H.B.; Brito, C.J.; Beneke, R. 10 Years on Time–Motion and Motor Actions of Paired Mixed Martial Arts Athletes. Int. J. Sports Physiol. Perform. 2019, 14, 399–402. [Google Scholar] [CrossRef]
- Santos, J.F.D.S.; Franchini, E. Is frequency speed of kick test responsive to training? A study with taekwondo athletes. Sport Sci. Health 2016, 12, 377–382. [Google Scholar] [CrossRef]
- Santos, J.F.D.S.; Franchini, E. Frequency speed of kick test performance comparison between female taekwondo athletes of different competitive levels. J. Strength Cond. Res. 2018, 32, 2934–2938. [Google Scholar] [CrossRef]
- Hajoglou, A.; Foster, C.; De Koning, J.J.; Lucia, A.; Kernozek, T.W.; Porcari, J.P. Effect of warm-up on cycle time trial performance. Med. Sci. Sports Exerc. 2005, 37, 1608–1614. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Herwig, U.; Satrapi, P.; Schönfeldt-Lecuona, C. Using the International 10-20 EEG System for Positioning of Transcranial Magnetic Stimulation. Brain Topogr. 2003, 16, 95–99. [Google Scholar] [CrossRef]
- Rossini Rome, P.; Barker Sheffield, A.; Berardelli Rome, A.; Rome, C.; Caruso Naples, G.; Cracco Brooklyn, R.; Dimitrijević, M.; Hallett, M.; Katayama, Y.; Lücking, C.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: Basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 1994, 91, 79–92. [Google Scholar] [CrossRef]
- Miarka, B.; Brito, C.J.; Moreira, D.G.; Amtmann, J. Differences by Ending Rounds and Other Rounds in Time-Motion Analysis of Mixed Martial Arts: Implications for Assessment and Training. J. Strength Cond. Res. 2018, 32, 534–544. [Google Scholar] [CrossRef]
- Sant’ Ana, J.; Franchini, E.; Murias, J.M.; Diefenthaeler, F. Validity of a Taekwondo-Specific Test to Measure Vo 2peak and the Heart Rate Deflection Point. J. Strength Cond. Res. 2019, 33, 2523–2529. [Google Scholar] [CrossRef]
- Sant’Ana, J.; Silva JFda Guglielmo, L.G.A. Physiological Variables Identified in Progressive Specific Test for Taekwondo. Mot. J. Phys. Educ. UNESP 2009, 15, 611–620. [Google Scholar]
- Conconi, F.; Grazzi, G.; Casoni, I.; Guglielmini, C.; Borsetto, C.; Ballarin, E.; Mazzoni, G.; Patracchini, M.; Manfredini, F. The Conconi test: Methodology after 12 years of application. Int. J. Sports Med. 1996, 17, 509–519. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Janaszewska, A.; Bartosz, G. Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Andreguetti, D.; Stein, E.M.; Pereira, C.M.P.; Pinto, E.; Colepicolo, P. Antioxidant properties and uv absorbance pattern of mycosporine-like amino acids analogs synthesized in an environmentally friendly manner. J. Biochem. Mol. Toxicol. 2013, 27, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.A.F.; de Albuquerque Maurício, C.; Soto, D.A.S.; Aedo-Muñoz, E.; Brito, C.J.; Pierantozzi, E.; Miarka, B. The Dynamics of Victory: Exploring the Movement Patterns of Female Brazilian Jiu-Jitsu Athletes in Winning and Losing Combats through Time-Motion Analysis. Retos 2024, 51, 1543–1549. [Google Scholar] [CrossRef]
- Lim, J.; Luo, C.; Lee, S.; Song, Y.E.; Jung, H. Action Recognition of Taekwondo Unit- Actions Using Action Images Constructed by Time-Warped Motion Profile Action Recognition of Taekwondo Unit-Actions Using Action Images Constructed by Time-Warped Motion Profile. Sensors 2024, 24, 2595. [Google Scholar] [CrossRef]
- Antonaccio, R.F.; da Silva Santos, J.F. Relationship between maximum muscle strength and frequency speed of kick test for black belt taekwondo athletes. Braz. J. Phys. Ther. 2024, 28, 100798. [Google Scholar] [CrossRef]
- Krogh, S.; Aagaard, P.; Jønsson, A.B.; Figlewski, K.; Kasch, H. Effects of repetitive transcranial magnetic stimulation on recovery in lower limb muscle strength and gait function following spinal cord injury: A randomized controlled trial. Spinal Cord 2022, 60, 135–141. [Google Scholar] [CrossRef]
- Gao, B.; Wang, Y.; Zhang, D.; Wang, Z.; Wang, Z. Intermittent theta-burst stimulation with physical exercise improves poststroke motor function: A systemic review and meta-analysis. Front. Neurol. 2022, 13, 964627. [Google Scholar] [CrossRef]
- De Martino, E.; Seminowicz, D.A.; Schabrun, S.M.; Petrini, L.; Graven-Nielsen, T. High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain. Neuroimage 2019, 186, 93–102. [Google Scholar] [CrossRef]
- Ratel, S.; Duché, P.; Williams, C.A. Muscle fatigue during high-intensity exercise in children. Sports Med. 2006, 36, 1031–1065. [Google Scholar] [CrossRef]
- Sant’Ana, J.; Franchini, E.; da Silva, V.; Diefenthaeler, F. Effect of fatigue on reaction time, response time, performance time, and kick impact in taekwondo roundhouse kick. Sports Biomech. 2017, 16, 201–209. [Google Scholar] [CrossRef]
- Meng, Q.; Su, C.-H. The Impact of Physical Exercise on Oxidative and Nitrosative Stress: Balancing the Benefits and Risks. Antioxidants 2024, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Thirumalai, T.; Therasa, S.V.; Elumalai, E.K.; David, E. Intense and exhaustive exercise induce oxidative stress in skeletal muscle. Asian Pac. J. Trop. Dis. 2011, 1, 63–66. [Google Scholar] [CrossRef]
- Sevindi, T. Investigation of thiol/disulfide balance and IMA value before and after training in elite female weightlifters. Prog. Nutr. 2020, 22, 585–592. [Google Scholar] [CrossRef]
- Berzosa, C.; Cebrián, I.; Fuentes-Broto, L.; Gómez-Trullén, E.; Piedrafita, E.; Martínez-Ballarín, E.; López-Pingarrón, L.; Reiter, R.J.; García, J.J.; Khan, M.F. Acute exercise increases plasma total antioxidant status and antioxidant enzyme activities in untrained men. BioMed Res. Int. 2011, 2011, 540458. [Google Scholar] [CrossRef] [PubMed]
- Jakus, T.; Jurdana, M.; Žiberna, L.; Pražnikar, Z.J. Acute moderate-intensity exercise increases total antioxidant capacity and anti-inflammatory responses in competitive cyclists: The role of adiponectin. Eur. J. Inflamm. 2021, 19, 2058739221998890. [Google Scholar] [CrossRef]
- Mansoori-Ajol, A.; Taherichadorneshin, H.; Nokhodchi, N.; Abtahi-Eivary, S.H. Effects of acute taekwondo exercise on antioxidant enzyme activities, serum total antioxidant capacity, and malondialdehyde concentration in adolescent female taekwondokas. Middle East J. Rehabil. Health Stud. 2021, 8, e109896. [Google Scholar] [CrossRef]
- De Carvalho, G.N.; Barcellos, L.C.; Dos Santos, C.F.M.; Andrade, V.M.D.M.; Soto, D.A.S.; Aedo-Muñoz, E.; Brito, C.J.; Miarka, B. Analysis of acute responses from cellular injury biomarkers and oxidative stress in Brazilian jiu-jitsu combat. J. Phys. Educ. Sport 2022, 22, 1327–1332. [Google Scholar] [CrossRef]
Placebo Group (n = 5) | Experimental Group (n = 5) | |
---|---|---|
Height (cm) | 1.76 ± 0.04 | 1.75 ± 0.07 |
Weight (kg) | 76.74 ± 4.00 | 74.56 ± 7.83 |
BMI (kg·m−2) | 24.44 ± 1.52 | 24.17 ± 1.63 |
Body fat (%) | 9.90 ± 1.41 | 8.26 ± 1.24 |
Waist circumference (cm) | 95.70 ± 3.25 | 94.80 ± 4.62 |
Thigh circumference (cm) | 54.10 ± 1.32 | 53.50 ± 3.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, R.P.A.; Müller, V.T.; Gonçalves, A.F.; Maurício, C.A.; Pedreiro, R.C.d.M.; Miranda, I.E.F.; Vieira, V.; Fortunato, R.S.; Miarka, B. Transcranial Magnetic Intermittent Theta-Burst Stimulation (iTBS) Enhances Physical Performance in Mixed Martial Arts Athletes: A Pilot Study. Brain Sci. 2025, 15, 1047. https://doi.org/10.3390/brainsci15101047
Teixeira RPA, Müller VT, Gonçalves AF, Maurício CA, Pedreiro RCdM, Miranda IEF, Vieira V, Fortunato RS, Miarka B. Transcranial Magnetic Intermittent Theta-Burst Stimulation (iTBS) Enhances Physical Performance in Mixed Martial Arts Athletes: A Pilot Study. Brain Sciences. 2025; 15(10):1047. https://doi.org/10.3390/brainsci15101047
Chicago/Turabian StyleTeixeira, Rafael Pereira Azevedo, Vanessa Teixeira Müller, Aleksandro Ferreira Gonçalves, Clóvis Albuquerque Maurício, Rodrigo Cunha de Mello Pedreiro, Iordan Emanuel Ferreira Miranda, Victor Vieira, Rodrigo Soares Fortunato, and Bianca Miarka. 2025. "Transcranial Magnetic Intermittent Theta-Burst Stimulation (iTBS) Enhances Physical Performance in Mixed Martial Arts Athletes: A Pilot Study" Brain Sciences 15, no. 10: 1047. https://doi.org/10.3390/brainsci15101047
APA StyleTeixeira, R. P. A., Müller, V. T., Gonçalves, A. F., Maurício, C. A., Pedreiro, R. C. d. M., Miranda, I. E. F., Vieira, V., Fortunato, R. S., & Miarka, B. (2025). Transcranial Magnetic Intermittent Theta-Burst Stimulation (iTBS) Enhances Physical Performance in Mixed Martial Arts Athletes: A Pilot Study. Brain Sciences, 15(10), 1047. https://doi.org/10.3390/brainsci15101047