Clinical and Linguistic Correlates of Functional Communication Abilities After Stroke: A Longitudinal Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Language and Functional Assessment
3. Statistical Analysis
4. Results
5. Discussion
5.1. Limitations
5.2. Clinical Implications and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
I-CETI | Italian version of Communicative Effectiveness Index questionnaire |
BEL-II | Brief Exam of Language version II |
ADL | Activities of Daily Life |
IADL | Instrumental Activities of Daily Life |
DOSS | Dysphagic Outcome and Severity Scale |
Appendix A
Clinical Scales | Male Median (Min–Max) N = 28 | Female Median (Min–Max) N = 25 | U-Mann–Whitney | p Value |
---|---|---|---|---|
Age | 63 (18–75) | 67 (31–75) | 310.5 | 0.481 |
Disease Duration (days) | 17 (5–95) | 18 (6–81) | 313 | 0.509 |
Etiology (H/I) | 9/19 | 7/18 | 0.108 | 0.743 |
Dysphagic (y/n) | 17/11 | 17/8 | 0.305 | 0.581 |
DOSS | 6 (1–7) | 4 (1–7) | 278.5 | 0.196 |
I-CETI | 19.8 (0.1–93) | 4.4 (0.1–70) | 250 | 0.071 |
Token score | 7 (0–34) | 1.5 (0–30) | 245 | 0.257 |
BEL II—Verbal expression | 8.30 (0.1–96.6) | 0.1 (0.1–80) | 338 | 0.811 |
Oral comprehension | 51.6 (0.1–100) | 15 (0.1–100) | 263 | 0.117 |
Repetition | 18.3 (0.1–100) | 0.1 (0.1–100) | 284.5 | 0.206 |
Writing | 0.1 (0.1–97.3) | 0.1 (0.1–100) | 310 | 0.296 |
Reading comprehension | 25.0 (0.1–100) | 0.1 (0.1–100) | 291 | 0.259 |
Reading | 0.1 (0.1–97) | 0.1 (0.1–100) | 289.5 | 0.185 |
Dictation | 0.1 (0.1–100) | 0.1 (0.1–100) | 304 | 0.263 |
Copy | 40.0 (0.1–100) | 0.00 (100) | 255 | 0.051 |
ADRS | 6.8 (1–5) | 7.2 (1–5) | 0.585 | 0.562 |
ADL | 1 (0–6) | 0.1 (0–6) | 263 | 0.081 |
IADL | 0.1 (0–3) | 0.1 (0–4) | 313 | 0.395 |
∆CETI | 30 (0.1–74.32) | 25.2 (0.1–87) | 338 | 0.830 |
∆BEL II -Verbal expression | 0.1 (−13.3–86.6) | 0.1 (−15–89.9) | 297 | 0.235 |
∆BEL II—Oral expression | 25 (−3.3–89.4) | 11.6 (0.1–100) | 347 | 0.957 |
∆BEL II—Repetition | 6 (−15–95) | 0.8 (−23.4–100) | 327.5 | 0.679 |
∆BEL II—Writing | 5 (−3.4–100) | 0.1 (0.1–100) | 226.5 | 0.012 |
∆BEL II—Reading comprehension | 10 (−5.7–100) | 0.1 (−2–95) | 260.5 | 0.102 |
∆BEL II—Reading | 8.40 (−23.3–100) | 0.1 (−19.4–76.7) | 200.5 | 0.05 |
∆BEL II—Dictation | 1.60 (0.1–100) | 0.1 (0.1–90) | 258 | 0.073 |
∆BEL II—Copy | 20.0 (−30–100) | 0.1 (0–100) | 347.5 | 0.62 |
∆ADL | 1 (−5–6) | 1 (−5–6) | 340 | 0.854 |
∆IADL | 1 (−2–6) | 0.1 (−4–5) | 311 | 0.461 |
Clinical Scales | Haemorrhagic Median (Min–Max) N = 18 | Ischemic Median (Min–Max) N = 35 | U-Mann–Whitney | p Value |
---|---|---|---|---|
Age | 63 (35–75) | 65 (18–75) | 197.5 | 0.56 |
Disease Duration | 26.5 (8–81) | 15 (5–95) | 158.0 | 0.007 |
Sex (m/f) | 9/7 | 19/18 | 0.108 | 0.743 |
Dysphagic (y/n) | 10/6 | 24/13 | 0.027 | 0.869 |
DOSS | 4 (1–7) | 5.0 (1–7) | 268 | 0.582 |
Token score | 4 (0–28) | 5 (0–34) | 2.57.5 | 0.886 |
I-CETI | 48 (0.1–100) | 55.3 (0.1–100) | 224.5 | 0.161 |
BELII—Verbal expression | 33.3 (0.1–75) | 0.1 (0.1–96.6) | 257 | 0.398 |
BELII—Oral comprehension | 20 (0.1–100) | 30 (0.1–100) | 279.5 | 0.747 |
BELII—Repetition | 5 (0.1–100) | 0.1 (0.1–100) | 290 | 0.900 |
BELII—Writing | 0.1 (0.1–60) | 0.1 (0.1–100) | 265 | 0.379 |
BELII—Reading comprehension | 0.1 (0.1–100) | 3 (0.1–100) | 271.5 | 0.610 |
BELII—Reading | 0.1 (0.1–96.6) | 0.1 (0.1–100) | 295 | 0.981 |
BELII—Dictation | 0.1 (0.1–100) | 0.1 (0.1–100) | 287 | 0.812 |
BELII—Copy | 40.1 (0.1–100) | 68 (0.1–98) | 250 | 0.304 |
ADRS | 6.3 (1–5) | 7.1 (1–5) | 0.547 | 0.592 |
ADL | 0.1 (0–6) | 1 (0–6) | 223 | 0.111 |
IADL | 0.1 (0–3) | 0.1 (0–4) | 272.5 | 0.557 |
∆CETI | 30 (0.1–68) | 25.3 (0.1–87.06) | 258.5 | 0.467 |
∆BEL II—Verbal expression | 0.1 (0.1–86.6) | 0.1 (−15–89.9) | 290 | 0.884 |
∆BEL II—Oral comprehension | 35 (0.1–85) | 11.6 (−3.3–100) | 233 | 0.217 |
∆BEL II—Repetition | 6.6 (−16.7–95) | 0.1 (−23.4–100) | 256 | 0.424 |
∆BEL II—Writing | 0.1 (0.1–100) | 0.1 (−3.4–100) | 264 | 0.477 |
∆BEL II—Reading comprehension | 7.5 (0.1–100) | 3.4 (−5.70–100) | 282.5 | 0.789 |
∆BEL II—Reading | 1.6 (−10–100) | 0.1 (−23.33–96.6) | 286 | 0.893 |
∆BEL II—Dictation | 0.1 (0.1–100) | 0.1 (0.1–100) | 274 | 0.641 |
∆BEL II—Copy | 60 (0.1–100) | 0.1 (−30–100) | 196.5 | 0.039 |
∆ADL | 1 (0–5) | 1 (−5–6) | 221 | 0.134 |
∆IADL | 1 (0–5) | 0.1 (−4–6) | 233 | 0.195 |
Clinical Scales | Dysphagic Median (Min–Max) N = 34 | Non-Dysphagic Median (Min-Max) N= 19 | U-Mann–Whitney | p Value |
---|---|---|---|---|
Age | 66 (36–75) | 56 (18–75) | 182.0 | 0.009 |
Sex (m/f) | 17/17 | 11/8 | 0.305 | 0.581 |
Disease Duration | 16.5 (5–95) | 20 (6–81) | 315.5 | 0.889 |
Etiology (H/I) | 10/24 | 6/13 | 0.027 | 0.869 |
DOSS | 3 (1–6) | 6 (5–7) | 15.5 | 0.001 |
Token | 0.1 (0.1–34) | 8 (0.1–30) | 159.5 | 0.015 |
I-CETI | 50 (0.1–96) | 70 (10–100) | 199.5 | 0.02 |
BELII–Verbal expression | 0.1 (0.1—96.6) | 9 (0.1–80) | 238.0 | 0.078 |
BELII—Oral comprehension | 15 (0.1–100) | 65 (0.1–100) | 187.5 | 0.011 |
BELII—Repetition | 0.1 (0.1–100) | 60 (0.1–100) | 191.0 | 0.008 |
BELII—Writing | 0.1 (0.1–97.3) | 0.1 (0.1–100) | 235.5 | 0.017 |
BELII—Reading comprehension | 0.1 (0.1–100) | 43.3 (0.1–100) | 217.0 | 0.035 |
BELII—Reading | 0.1 (0.1–97) | 16.6 (0.1–100) | 201.5 | 0.006 |
BELII—Dictation | 0.1 (0.1–100) | 0.1 (0–100) | 231.0 | 0.02 |
BELII—Copy | 0.1 (0.1–100) | 50 (0.1–100) | 196.5 | 0.007 |
ADRS | 6.4 (1–5) | 6.9 (1–5) | 0.524 | 0.602 |
ADL | 0.1 (0–6) | 1 (0–6) | 171.5 | 0.002 |
IADL | 0.1 (0–2) | 1 (0–4) | 186.0 | 0.001 |
∆CETI | 30 (0.1–87.06) | 28 (0.93–74.3) | 314.5 | 0.875 |
∆BEL II—Verbal expression | 0.1 (−3.3–89.40) | 0.1 (0.1–89.9) | 190.5 | 0.002 |
∆BEL II—Oral expression | 18.4 (−80–89.4) | 10 (0–100) | 319.0 | 0.940 |
∆BEL II—Repetition | 0.1 (−23.4–91.6) | 22.7 (−1.7 −100) | 215.0 | 0.039 |
∆BEL II–Writing | 0.1 (−3.4–100) | 13.3 (0.1–100) | 182.0 | 0.003 |
∆BEL II—Reading comprehension | 0.1 (−5.7–100) | 5 (−2–100) | 233.0 | 0.087 |
∆BEL II—Reading | 0.1 (−10.7–90) | 11.6 (−23–100) | 203.0 | 0.019 |
∆BEL II—Dictation | 0.1 (0.1–100) | 20 (0.1–100) | 229.0 | 0.056 |
∆BEL II—Copy | 0.1 (−30–100) | 30 (−20–100) | 262.5 | 0.230 |
∆ADL | 1 (−5–6) | 1 (−5–5) | 289.0 | 0.515 |
∆IADL | 0.1 (−2–4) | 0.1 (−4–6) | 321.5 | 0.976 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Age | 1 | ||||||||||||||||
2. Disease duration | −0.311 * | 1 | |||||||||||||||
3. Token score | −0.085 | −0.186 | 1 | ||||||||||||||
4. DOSS | −0.369 ** | −0.173 | 0.453 ** | 1 | |||||||||||||
5. ADL | −0.139 | −0.195 | 0.489 ** | 0.546 ** | 1 | ||||||||||||
6. IADL | −0.094 | −0.082 | 0.573 ** | 0.494 ** | 0.783 ** | 1 | |||||||||||
7. BEL-II VE | −0.026 | −0.039 | 0.692 ** | 0.433 ** | 0.427 ** | 0.678 ** | 1 | ||||||||||
8. BEL-II OC | −0.140 | −0.099 | 0.820 ** | 0.400 ** | 0.525 ** | 0.545 ** | 0.605 ** | 1 | |||||||||
9. BEL-II R | −0.087 | −0.087 | 0.390 ** | 0.424 ** | 0.385 ** | 0.442 ** | 0.726 ** | 0.391 ** | 1 | ||||||||
10. BEL-II W | −0.030 | −0.117 | 0.650 ** | 0.294 * | 0.395 ** | 0.546 ** | 0.777 ** | 0.499 ** | 0.348 ** | 1 | |||||||
11. BEL-II RC | −0.122 | −0.199 | 0.761 ** | 0.406 ** | 0.593 ** | 0.651 ** | 0.729 ** | 0.828 ** | 0.398 ** | 0.630 ** | 1 | ||||||
12. BEL-II R | −0.108 | −0.005 | 0.596 ** | 0.413 ** | 0.415 ** | 0.567 ** | 0.767 ** | 0.542 ** | 0.780 ** | 0.577 ** | 0.625 ** | 1 | |||||
13. BEL-II D | −0.012 | −0.204 | 0.681 ** | 0.323 ** | 0.418 ** | 0.577 ** | 0.610 ** | 0.511 ** | 0.413 ** | 0.787 ** | 0.610 ** | 0.532 ** | 1 | ||||
14. BEL-II C | −0.184 | −0.211 | 0.715 ** | 0.396 ** | 0.559 ** | 0.636 ** | 0.643 ** | 0.661 ** | 0.304 * | 0.744 ** | 0.834 ** | 0.596 ** | 0.681 ** | 1 | |||
15. ADRS | −0.199 | −0.145 | 0.258 | 0.228 | −0.188 | 0.409 * | 0.106 | 0.126 | 0.147 | 0.062 | 0.380 | 0.558 ** | 0.072 | 0.064 | 1 | ||
16. I-CETI | −0.066 | −0.300 * | 0.737 ** | 0.453 ** | 0.672 ** | 0.667 ** | 0.613 ** | 0.793 ** | 0.371 ** | 0.523 ** | 0.765 ** | 0.521 ** | 0.509 ** | 0.670 ** | 0.314 * | 1 | |
17. ∆CETI | −0.164 | −0.328 * | 0.524 ** | 0.364 ** | 0.496 ** | 0.490 ** | 0.473 ** | 0.604 ** | 0.367 ** | 0.325 * | 0.584 ** | 0.409 ** | 0.449 ** | 0.475 ** | 0.127 | 0.652 ** | 1 |
References
- Vitti, E.; Hillis, A.E. Treatment of post-stroke aphasia: A narrative review for stroke neurologists. Int. J. Stroke. 2021, 16, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Meier, E.L.; Johnson, J.P.; Villard, S.; Kiran, S. Does naming therapy make ordering in a restaurant easier? Dynamics of co-occurring change in cognitive-linguistic and functional communication skills in aphasia. Am. J. Speech Lang. Pathol. 2017, 26, 266–280. [Google Scholar] [CrossRef]
- Spaccavento, S.; Craca, A.; Del Prete, M.; Falcone, R.; Colucci, A.; Di Palma, A.; Loverre, A. Quality of life measurement and outcome in aphasia. Neuropsychiatr. Dis. Treat. 2014, 10, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Guerra, N.; Provencio, M.; Tarifa-Rodríguez, A.; Navarro, A.; Sempere-Iborra, C.; Jordi, P.; de Celis-Ruiz, E.; Alonso de Leciñana, M.; Martín-Alonso, M.; Rigual, R.; et al. Impact of post-stroke aphasia on functional communication, quality of life, perception of health and depression: A case-control study. Eur. J. Neurol. 2024, 31, e16184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Irwin, W.H.; Wertz, R.T.; Avent, J.R. Relationship among language impairment, functional communication, and pragmatic performance in aphasia. Aphasiology 2002, 16, 823–835. [Google Scholar] [CrossRef]
- Rofes, A.; Capasso, R.; Miceli, G. Verb production tasks in the measurment of communicative abilities in aphasia. J. Clin. Exp. Neuropsychol. 2015, 37, 483–502. [Google Scholar] [CrossRef]
- Brandeburg, C.; Worrall, L.; Copland, D.; Rodriguez, A. An exploratory investigation of the daily talk time of people with non-fluent aphasia and non-aphasic peers. Int. J. Speech Lang. Pathol. 2017, 19, 418–429. [Google Scholar] [CrossRef]
- Doedens, W.J.; Meteyard, L. What is Functional Communication? A Theoretical Framework for Real-World Communication Applied to Aphasia Rehabilitation. Neuropsychol. Rev. 2022, 32, 937–973. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, L.L. Attention and other cognitive deficits in aphasia: Presence and relation to language and communication measure. Am. J. Speech Lang. Pathol. 2012, 21, S51–S64. [Google Scholar] [CrossRef]
- Fernandes, A.; Fraga-Maia, H.; Maso, I.; Matos, I.G.; Gomes, L.; Mato, M.; Santana, A.; Oliveira-Filho, J.; de Jesus, P.A.; Pinto, E.B. Predictors of functional communication in peopèle with aphasia after stroke. Arq. Neuropsiquiatr. 2022, 80, 681–688. [Google Scholar]
- Jacobs, M.; Evans, E.; Ellis, C. Exploring the association between social determinants and aphasia impairment: A retrospective data integration approach. PLoS ONE 2015, 19, e0299979. [Google Scholar] [CrossRef] [PubMed]
- Hammond, L.; Christensen, T.; Fridriksson, J.; den Ouden, D.B. Assessing Functional Communication in Persons With Aphasia: A Scoping Review of Formal and Informal Measures. Int. J. Lang. Commun. Disord. 2025, 60, e70051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frattali, C.M.; Thompson, C.K.; Holland, A.L.; Wohl, C.B.; Wenck, C.J.; Slater, S.C.; Paul, D. Functional Assessment of Communication Skills for Adults (ASHA-FACS); American Speech-Language-Hearing Association: Rockville, MD, USA, 1995. [Google Scholar]
- Paul, D.R.; Frattali, C.; Holland, A.L.; Thompson, C.K.; Caperton, C.J.; Slater, S.C. Quality of Communication Life Scale: Manual; American Speech-Language Hearing Association: Rockville, MD, USA, 2004. [Google Scholar]
- Muò, R.; Cancialosi, P.; Galimberti, L.; Cacciola, B.C.; Gilardone, M.; Schindler, A. Validation of the Italian version of the American Speech-Language and Hearing Association—Functional Assessment of Communication Skills for adults (I-ASHA-FACS). Aphasiology 2015, 29, 1110–1130. [Google Scholar] [CrossRef]
- Glueckauf, R.L.; Blonder, L.X.; Ecklund-Johnson, E.; Maher, L.; Crosson, B.; Gonzalez-Rothi, L. Functional outcome questionnaire for aphasia: Overview and preliminary psychometric evaluation. NeuroRehabilitation 2003, 18, 281–290. [Google Scholar] [CrossRef]
- Spaccavento, S.; Cafforio, E.; Cellamare, F.; Colucci, A.; Di Palma, A.; Falcone, R.; Craca, A.; Loverre, A.; Nardulli, R.; Glueckauf, R.L. Italian adaptation of the functional outcome questionnaire—Aphasia: Initial psychometric evaluation. Disabil. Rehabil. 2018, 40, 2925–2930. [Google Scholar] [CrossRef]
- Lomas, J.; Pickard, L.; Bester, S.; Elbard, H.; Finlayson, A.; Zoghaib, C. The communicative effectiveness index: Development and psychometric evaluation of a funzional communication measure for adult aphasia. J. Speech Hear. Disord. 1989, 54, 113–124. [Google Scholar] [CrossRef]
- Moretta, P.; Lanzillo, A.; Lo Sapio, M.D.; Spaccavento, S.; Cellamare, F.; Nisoli, F.; Ianni, A.; Pain, D.; Ferolsi, S.; Forlani, C.A.; et al. The Italian validation of the Communicative Effectiveness Index Questionnaire: A multicentric study. Neurol. Sci. 2021, 42, 2283–2290. [Google Scholar] [CrossRef]
- Gialanella, B.; Santoro, R.; Ferlucci, C. Predicting outcome after stroke: The role of basic activities of daily living predicting outcome after stroke. Eur. J. Phys. Rehabil. Med. 2013, 49, 629–637. [Google Scholar]
- Kim, G.; Min, D.; Lee, E.O.; Kang, E.K. Impact of Co-occurring dysarthria and aphasia on functional recovery in post-stroke patients. Ann. Rehabil. Med. 2016, 40, 1010–1017. [Google Scholar] [CrossRef]
- Schumacher, R.; Bruehl, S.; Halai, A.D.; Ralph, M.A.L. The verbal, non-verbal and structural bases of functional communication abilities in aphasia. Brain Commun. 2020, 2, fcaa118. [Google Scholar] [CrossRef]
- Adler, A. The Bobath method in the treatment of cerebral palsy. Harefuah 1964, 66, 62–63. [Google Scholar]
- Howard, D.; Hatfield, F.M. Aphasia Therapy; LEA: London, UK, 1987. [Google Scholar]
- Ciurli, P.; Marangolo, P.; Basso, A. Esame del Linguaggio-II; Giunti Organizzazioni Speciali: Firenze, Italy, 1996. [Google Scholar]
- DeRenzi, E.; Vignolo, L.A. The token test: A sensitive test to detect receptive disturbances in aphasics. Brain 1962, 85, 665–678. [Google Scholar] [CrossRef]
- Benaim, C.; Cailly, B.; Perennou, D.; Pelissier, J. Validation of the aphasic depression rating scale. Stroke 2004, 35, 1692–1696. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Selfmaintaining and instrumental activities of daily living. Gerontologist 1989, 9, 179–186. [Google Scholar] [CrossRef]
- O’Neil, K.H.; Purdy, M.; Falk, J.; Gallo, L. The dysphagia outcome and severity scale. Dysphagia 1999, 14, 139–145. [Google Scholar] [CrossRef]
- Simos, P.G.; Kasselimis, D.; Potagas, C.; Evdokimids, I. Verbal comprehension ability in aphasia: Demographic and lexical knowledge effects. Behav. Neurol. 2014, 2014, 258303. [Google Scholar] [CrossRef][Green Version]
- Knollman-Porter, K.; Dietz, A.; Dahlem, K. Intensive Auditory Comprehension Treatment for Severe Aphasia: A Feasibility Study. Am. J. Speech Lang. Pathol. 2018, 27, 936–949. [Google Scholar] [CrossRef]
- Hilari, K.; Byng, S. Health-related quality of life in people with severe aphasia. Int. J. Lang. Commun. Disord. 2009, 44, 193–205. [Google Scholar] [CrossRef]
- Watila, M.M.; Balarabe, S.A. Factors predicting post-stroke aphasia recovery. J. Neurol. Sci. 2015, 352, 12–18. [Google Scholar] [CrossRef]
- El Hachioui, H.; Lingsma, H.F.; van de Sandt-Koenderman, M.W.M.E.; Dippel, D.W.J.; Koudstaal, P.J.; Visch-Brink, E.G. Long-term prognosis of aphasia after stroke. J. Neurol. Neurosurg. Psychiatry 2013, 84, 310–315. [Google Scholar] [CrossRef]
- Glize, B.; Villain, M.; Richert, L.; Vellay, M.; de Gabory, I.; Mazaux, J.M.; Dehail, P.; Sibon, I.; Laganaro, M.; Joseph, P.A. Language features in the acute phase of poststroke severe aphasia could predict the outcome. Eur. J. Phys. Rehabil. Med. 2017, 53, 249–255. [Google Scholar] [CrossRef]
- Pisano, F.; Manfredini, A.; Castellano, A.; Caltagirone, C.; Marangolo, P. Does Executive Function Training Impact on Communication? A Randomized Controlled tDCS Study on Post-Stroke Aphasia. Brain Sci. 2022, 12, 1265. [Google Scholar] [CrossRef]
- Kaylor, S.A.; Singh, S.A. Clinical outcomes associated with speech, language and swallowing difficulties post-stroke. S. Afr. J. Commun. Disord. 2023, 70, a957. [Google Scholar] [CrossRef]
- Adjei-Nicol, S.; Sacchett, C.; Beeke, S. Evaluating the effect of a non-linguistic cognitive intervention on functional communication in global aphasia: A case series study. Int. J. Lang. Commun. Disord. 2025, 60, e13155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakagawa, Y.; Sano, Y.; Funayama, M.; Kato, M. Prognostic factors for long-term imrpovement from stroke-related aphasia with adequate linguistic rehabilitation. Neurol. Sci. 2019, 40, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
Patients = 61 | ||
---|---|---|
Gender (n) | Female/Male | 29/32 |
Mean age (±SD; years) | 61.42 ± 14.1 | |
Education (±SD; years) | 8.9 ± 5.2 | |
Stroke aetiology (n) | Ischemic/Hemorrhagic | 39/22 |
Time post onset | Less than 1 month | 46 |
1–6 months | 10 | |
More than 6 months | 5 | |
Mean disease duration (±SD; days) | 28.2 ± 30.5 | |
DOSS | 4.28 ± 2.116 |
Clinical Scales | Study Entry (Mean ± SD) N = 61 | Discharge (Mean ± SD) N = 53 | Paired T-Test | p Value |
---|---|---|---|---|
BEL-II Total score | 40.64 ± 31.9 | 55.85 ± 33.5 | 3.700 | 0.001 |
Verbal expression | 20.5 ± 33.2 | 26.3 ± 33.9 | 1.168 | 0.248 |
Oral comprehension | 42.4 ± 39.5 | 70.4 ± 35.3 | 6.652 | <0.001 |
Repetition | 30.3 ± 40.1 | 48.6 ± 42.9 | 4.269 | <0.001 |
Writing | 10.1 ± 25.9 | 27.6 ± 40.2 | 3.903 | <0.001 |
Reading comprehension | 34.2 ± 44.3 | 52.1 ± 45.1 | 3.634 | 0.001 |
Reading | 18.7 ± 34.1 | 36.5 ± 43.9 | 4.129 | <0.001 |
Dictation | 13.1 ± 30.1 | 35.3 ± 42.5 | 4.662 | <0.001 |
Copy | 30.4 ± 42.1 | 62.6 ± 45.1 | 5.383 | <0.001 |
TOKEN | 10.1 ± 10.9 | 16.1 ± 12.1 | 6.077 | <0.001 |
ADRS | 6.8 ± 4.4 | 7.21 ± 4.26 | 0.585 | 0.562 |
ADL | 1.2 ± 2.1 | 2.3 ± 2.1 | −3.015 | 0.004 |
IADL | 0.56 ± 1.0 | 1.3 ± 1.8 | −3.221 | 0.002 |
I-CETI | 22.4 ± 27.2 | 52.3 ± 31.2 | −8.221 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretta, P.; Marcuccio, L.; Cavallo, N.D.; Galetta, R.; Falcone, R.; Masiello, V.; Cavaliere, G.; Miccio, C.; Picciola, E.; Losavio, E.; et al. Clinical and Linguistic Correlates of Functional Communication Abilities After Stroke: A Longitudinal Study. Brain Sci. 2025, 15, 1027. https://doi.org/10.3390/brainsci15101027
Moretta P, Marcuccio L, Cavallo ND, Galetta R, Falcone R, Masiello V, Cavaliere G, Miccio C, Picciola E, Losavio E, et al. Clinical and Linguistic Correlates of Functional Communication Abilities After Stroke: A Longitudinal Study. Brain Sciences. 2025; 15(10):1027. https://doi.org/10.3390/brainsci15101027
Chicago/Turabian StyleMoretta, Pasquale, Laura Marcuccio, Nicola Davide Cavallo, Roberta Galetta, Rosanna Falcone, Vittorio Masiello, Gerardo Cavaliere, Carlo Miccio, Emilia Picciola, Ernesto Losavio, and et al. 2025. "Clinical and Linguistic Correlates of Functional Communication Abilities After Stroke: A Longitudinal Study" Brain Sciences 15, no. 10: 1027. https://doi.org/10.3390/brainsci15101027
APA StyleMoretta, P., Marcuccio, L., Cavallo, N. D., Galetta, R., Falcone, R., Masiello, V., Cavaliere, G., Miccio, C., Picciola, E., Losavio, E., & Spaccavento, S. (2025). Clinical and Linguistic Correlates of Functional Communication Abilities After Stroke: A Longitudinal Study. Brain Sciences, 15(10), 1027. https://doi.org/10.3390/brainsci15101027