Functional Magnetic Resonance Imaging-Based Analysis of Functional Connectivity in Chronic Stress: A Comparison of Stress-Induced and Recovery States
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Selection of Stress-Induced Task
2.3. Experimental Design
2.4. Functional MRI Acquisition
2.5. Functional Brain Imaging Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison of Network Analysis Results upon Stress Induction in a Group with Chronic Stress
4.2. Comparison of Network Analysis Results in the Recovery Phase in a Group with Chronic Stress
4.3. Comparison of Network Changes Between Stress Induction and Recovery in Chronic Stress Group
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Menon, V. Large-Scale Brain Networks and Psychopathology: A Unifying Triple Network Model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Hermans, E.J.; van Marle, H.J.F.; Ossewaarde, L.; Henckens, M.J.A.G.; Qin, S.; van Kesteren, M.T.R.; Schoots, V.C.; Cousijn, H.; Rijpkema, M.; Oostenveld, R.; et al. Stress-Related Noradrenergic Activity Prompts Large-Scale Neural Network Reconfiguration. Science 2011, 334, 1151–1153. [Google Scholar] [CrossRef]
- van Marle, H.J.F.; Hermans, E.J.; Qin, S.; Fernández, G. Enhanced Resting-State Connectivity of Amygdala in the Immediate Aftermath of Acute Psychological Stress. NeuroImage 2010, 53, 348–354. [Google Scholar] [CrossRef]
- Segal, A.; Charquero-Ballester, M.; Vaisvasser, S.; Cabral, J.; Ben-Zion, Z.; Vidaurre, D.; Stark, E.; McManners, H.; Woolrich, M.; Ehlers, A.; et al. Brain network dynamics following induced acute stress: A neural marker of psychological vulnerability to real-life chronic stress. Psychol. Med. 2025, 55, e187. [Google Scholar]
- Dedovic, K.; D’Aguiar, C.; Pruessner, J.C. What Stress Does to Your Brain: A Review of Neuroimaging Studies. Can. J. Psychiatry 2009, 54, 6–15. [Google Scholar] [CrossRef]
- Liston, C.; McEwen, B.S.; Casey, B.J. Psychosocial Stress Reversibly Disrupts Prefrontal Processing and Attentional Control. Proc. Natl. Acad. Sci. USA 2009, 106, 912–917. [Google Scholar] [CrossRef]
- Afek, N.; Harmatiuk, D.; Gawłowska, M.; Ferreira, J.M.A.; Golonka, K.; Tukaiev, S.; Popov, A.; Marek, T. Functional connectivity in burnout syndrome: A resting-state EEG study. Front. Hum. Neurosci. 2025, 19, 1481760. [Google Scholar] [CrossRef]
- Lupinsky, D.; Nasseef, M.T.; Parent, C.; Craig, K.; Diorio, J.; Zhang, T.Y.; Meaney, M.J. Resting-state fMRI reveals altered functional connectivity associated with resilience and susceptibility to chronic social defeat stress in mouse brain. Mol. Psychiatry 2025, 30, 2943–2954. [Google Scholar] [CrossRef]
- Wang, H.; Mou, S.; Pei, X.; Zhang, X.; Shen, S.; Zhang, J.; Shen, X.; Shen, Z. The power spectrum and functional connectivity characteristics of resting-state EEG in patients with generalized anxiety disorder. Sci. Rep. 2025, 15, 5991. [Google Scholar] [CrossRef] [PubMed]
- Langhammer, T.; Hilbert, K.; Adolph, D.; Arolt, V.; Bischoff, S.; Böhnlein, J.; Cwik, J.C.; Dannlowski, U.; Deckert, J.; Domschke, K.; et al. Resting-state functional connectivity in anxiety disorders: A multicenter fMRI study. Mol. Psychiatry 2025, 30, 1548–1557. [Google Scholar] [CrossRef]
- Chu, L.H.; Chau, C.Q.; Kamel, N.; Thanh, H.H.T.; Yahya, N. Functional excitation-inhibition ratio for social anxiety analysis and severity assessment. Front. Psychiatry 2024, 15, 1461290. [Google Scholar] [CrossRef]
- Cohen, S.; Janicki-Deverts, D. Who’s Stressed? Distributions of Psychological Stress in the United States in Probability Samples from 1983, 2006, and 2009. J. Appl. Soc. Psychol. 2012, 42, 1320–1334. [Google Scholar] [CrossRef]
- Choi, M.-H. A Pilot Study: Extraction of a Neural Network and Feature Extraction of Generation and Reduction Mechanisms Due to Acute Stress. Brain Sci. 2023, 13, 519. [Google Scholar] [CrossRef]
- Choi, M.-H.; Choi, J.-S. Comparing Brain Activation Patterns in Stress-Induced and Post-Stress Recovery States of Highly and Moderately Stressed Individuals. Appl. Sci. 2024, 14, 9261. [Google Scholar] [CrossRef]
- Lee, E.H. Review of the Psychometric Evidence of the Perceived Stress Scale. Asian Nurs. Res. 2012, 6, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Dedovic, K.; Renwick, R.; Mahani, N.K.; Engert, V.; Lupien, S.J.; Pruessner, J.C. The Montreal Imaging Stress Task: Using Functional Imaging to Investigate the Effects of Perceiving and Processing Psychosocial Stress in the Human Brain. J. Psychiatry Neurosci. 2005, 30, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Kaldewaij, R.; Hashemi, M.M.; Koch, S.B.J.; Smit, A.; van Ast, V.A.; Beckmann, C.F.; Klumpers, F.; Roelofs, K. Acute-Stress-Induced Change in Salience Network Coupling Prospectively Predicts Post-Trauma Symptom Development. Transl. Psychiatry 2022, 12, 63. [Google Scholar] [CrossRef]
- Clemens, B.; Wagels, L.; Bauchmüller, M.; Bergs, R.; Habel, U.; Kohn, N. Alerted Default Mode: Functional Connectivity Changes in the Aftermath of Social Stress. Sci. Rep. 2017, 7, 40180. [Google Scholar] [CrossRef]
- Van Oort, J.; Tendolkar, I.; Hermans, E.J.; Mulders, P.C.; Beckmann, C.F.; Schene, A.H.; Fernández, G.; van Eijndhoven, P.F. How the Brain Connects in Response to Acute Stress: A Review at the Human Brain Systems Level. Neurosci. Biobehav. Rev. 2017, 83, 281–297. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Suo, X.; Zhang, X.; Pan, N.; Kemp, G.J.; Gong, Q.; Wang, S. Psychological Resilience Mediates the Protective Role of Default-Mode Network Functional Connectivity Against COVID-19 Vicarious Traumatization. Transl. Psychiatry 2023, 13, 231. [Google Scholar] [CrossRef]
- Chan, A.; Harvey, P.; Hernandez-Cardenache, R.; Alperin, N.; Lee, S.; Hunt, C.; Petersen, N.; Northoff, G.; Robertson, N.; Ouyang, J.; et al. Trauma and the Default Mode Network: Review and Exploratory Study. Front. Behav. Neurosci. 2024, 18, 1499408. [Google Scholar] [CrossRef]
- Hermans, E.J.; Henckens, M.J.A.G.; Joëls, M.; Fernández, G. Dynamic Adaptation of Large-Scale Brain Networks in Response to Acute Stressors. Trends Neurosci. 2014, 37, 304–314. [Google Scholar] [CrossRef]
- Goldfarb, E.V.; Scheinost, D.; Fogelman, N.; Seo, D.; Sinha, R. High-Risk Drinkers Engage Distinct Stress-Predictive Brain Networks. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 805–813. [Google Scholar] [CrossRef]
Analysis Unit | Statistic | ||
---|---|---|---|
Cluster 1/11 Mass = 571.34 | p-FDR | p-FWE | |
Salience.AInsula (R) (47,14,0)-Salience.AInsula (L) (−44,13,1) | T(35) = 7.48 | 0.000000 | 0.000002 |
Salience.AInsula (L) (−44,13,1)-Salience.ACC (0,22,35) | T(35) = 7.00 | 0.000000 | 0.000003 |
Salience.RPFC (L) (−32,45,27)-Salience.RPFC (R) (32,46,27) | T(35) = 6.54 | 0.000000 | 0.000009 |
Salience.RPFC (L) (−32,45,27)-FrontoParietal.LPFC (L) (−43,33,28) | T(35) = 6.21 | 0.000000 | 0.000017 |
Salience.ACC (0,22,35)-Salience.RPFC (L) (−32,45,27) | T(35) = 5.66 | 0.000002 | 0.000061 |
Salience.AInsula (R) (47,14,0)-Salience.ACC (0,22,35) | T(35) = 4.14 | 0.000211 | 0.003960 |
Salience.ACC (0,22,35)-Salience.RPFC (R) (32,46,27) | T(35) = 4.11 | 0.000224 | 0.003960 |
Salience.RPFC (L) (−32,45,27)-FrontoParietal.LPFC (R) (41,38,30) | T(35) = 3.40 | 0.001714 | 0.016891 |
Salience.AInsula (L) (−44,13,1)-Salience.RPFC (L) (−32,45,27) | T(35) = 3.38 | 0.001816 | 0.016891 |
Salience.ACC (0,22,35)-FrontoParietal.LPFC (L) (−43,33,28) | T(35) = 3.20 | 0.002934 | 0.021810 |
Cluster 2/11 Mass = 140.14 | |||
DorsalAttention.IPS (R) (39,−42,54)-Salience.SMG (R) (62,−35,32) | T(35) = 3.92 | 0.000395 | 0.005573 |
DorsalAttention.IPS (R) (39,−42,54)-FrontoParietal.PPC (R) (52,−52,45) | T(35) = 3.55 | 0.001117 | 0.012729 |
FrontoParietal.PPC (R) (52,−52,45)-DefaultMode.LP (R) (47,−67,29) | T(35) = 3.36 | 0.001877 | 0.016891 |
Salience.SMG (R) (62,−35,32)-DefaultMode.LP (R) (47,−67,29) | T(35) = 3.29 | 0.002290 | 0.018904 |
DorsalAttention.IPS (R) (39,−42,54)-DefaultMode.LP (R) (47,−67,29) | T(35) = 3.28 | 0.002375 | 0.018904 |
Salience.SMG (R) (62,−35,32)-FrontoParietal.PPC (R) (52,−52,45) | T(35) = 3.04 | 0.004488 | 0.030700 |
Cluster 3/11 Mass = 104.81 | |||
FrontoParietal.LPFC (R) (41,38,30)-Salience.RPFC (R) (32,46,27) | T(35) = 5.76 | 0.000002 | 0.000056 |
FrontoParietal.LPFC (R) (41,38,30)-DefaultMode.PCC (1,−61,38) | T(35) = 3.38 | 0.001790 | 0.016891 |
FrontoParietal.LPFC (R) (41,38,30)-DefaultMode.MPFC (1,55,−3) | T(35) = 2.80 | 0.008196 | 0.051479 |
Cluster 4/11 Mass = 74.35 | |||
FrontoParietal.LPFC (L) (−43,33,28)-DorsalAttention.IPS (L) (−39,−43,52) | T(35) = 4.54 | 0.000064 | 0.001561 |
Salience.RPFC (L) (−32,45,27)-Salience.SMG (L) (−60,−39,31) | T(35) = 2.99 | 0.005043 | 0.033165 |
FrontoParietal.LPFC (L) (−43,33,28)-Salience.SMG (L) (−60,−39,31) | T(35) = 2.76 | 0.009178 | 0.054120 |
Analysis Unit | Statistic | ||
---|---|---|---|
Cluster 1/5 Mass = 1450.45 | p-FDR | p-FWE | |
Salience.RPFC (R) (32,46,27)-FrontoParietal.LPFC (R) (41,38,30) | T(35) = 9.46 | 0 | 0 |
Salience.RPFC (L) (−32,45,27)-Salience.RPFC (R) (32,46,27) | T(35) = 9.37 | 0 | 0 |
Salience.AInsula (L) (−44,13,1)-Salience.AInsula (R) (47,14,0) | T(35) = 9.23 | 0 | 0 |
FrontoParietal.LPFC (L) (−43,33,28)-Salience.RPFC (L) (−32,45,27) | T(35) = 8.23 | 0 | 0 |
DorsalAttention.IPS (R) (39,−42,54)-Salience.SMG (R) (62,−35,32) | T(35) = 7.10 | 0 | 0.000001 |
FrontoParietal.LPFC (R) (41,38,30)-DorsalAttention.IPS (R) (39,−42,54) | T(35) = 6.45 | 0 | 0.000006 |
Salience.ACC (0,22,35)-Salience.RPFC (R) (32,46,27) | T(35) = 6.18 | 0 | 0.000011 |
Salience.ACC (0,22,35)-Salience.RPFC (L) (−32,45,27) | T(35) = 5.83 | 0.000001 | 0.000027 |
Salience.RPFC (L) (−32,45,27)-FrontoParietal.LPFC (R) (41,38,30) | T(35) = 5.78 | 0.000002 | 0.000029 |
Salience.AInsula (L) (−44,13,1)-Salience.ACC (0,22,35) | T(35) = 5.53 | 0.000003 | 0.000054 |
Salience.SMG (R) (62,−35,32)-FrontoParietal.PPC (R) (52,−52,45) | T(35) = 5.06 | 0.000013 | 0.000208 |
Salience.AInsula (L) (−44,13,1)-Salience.RPFC (L) (−32,45,27) | T(35) = 4.35 | 0.000113 | 0.001377 |
FrontoParietal.LPFC (L) (−43,33,28)-Salience.RPFC (R) (32,46,27) | T(35) = 4.09 | 0.000244 | 0.002778 |
DorsalAttention.IPS (R) (39,−42,54)-FrontoParietal.PPC (R) (52,−52,45) | T(35) = 4.01 | 0.000302 | 0.003224 |
Salience.ACC (0,22,35)-FrontoParietal.LPFC (R) (41,38,30) | T(35) = 3.61 | 0.000937 | 0.008897 |
Salience.ACC (0,22,35)-FrontoParietal.LPFC (L) (−43,33,28) | T(35) = 3.50 | 0.001291 | 0.01162 |
Salience.AInsula (R) (47,14,0)-Salience.RPFC (L) (−32,45,27) | T(35) = 3.48 | 0.001361 | 0.011635 |
Salience.AInsula (R) (47,14,0)-Salience.ACC (0,22,35) | T(35) = 3.41 | 0.00163 | 0.01327 |
Salience.RPFC (R) (32,46,27)-DorsalAttention.IPS (R) (39,−42,54) | T(35) = 3.01 | 0.004835 | 0.035948 |
Salience.AInsula (L) (−44,13,1)-FrontoParietal.LPFC (L) (−43,33,28) | T(35) = 20.87 | 0.00695 | 0.044014 |
Salience.AInsula (R) (47,14,0)-FrontoParietal.LPFC (R) (41,38,30) | T(35) = 2.84 | 0.007526 | 0.044377 |
Salience.AInsula (R) (47,14,0)-Salience.RPFC (R) (32,46,27) | T(35) = 2.76 | 0.00906 | 0.050975 |
Salience.SMG (R) (62,−35,32)-DefaultMode.LP (R) (47,−67,29) | T(35) = 2.76 | 0.009241 | 0.050975 |
Cluster 2/5 Mass = 93.77 | |||
FrontoParietal.LPFC (R) (41,38,30)-DefaultMode.PCC (1,−61,38) | T(35) = 4.90 | 0.000022 | 0.00031 |
FrontoParietal.LPFC (R) (41,38,30)-DefaultMode.MPFC (1,55,−3) | T(35) = 3.78 | 0.000585 | 0.005889 |
Salience.RPFC (R) (32,46,27)-DefaultMode.PCC (1,−61,38) | T(35) = 2.93 | 0.005908 | 0.04182 |
Cluster 3/5 Mass = 76.97 | |||
Salience.SMG (L) (−60,−39,31)-DorsalAttention.IPS (L) (−39,−43,52) | T(35) = 4.68 | 0.000042 | 0.000557 |
DefaultMode.LP (L) (−39,−77,33)-FrontoParietal.PPC (L) (−46,−58,49) | T(35) = 20.92 | 0.006114 | 0.04182 |
FrontoParietal.PPC (L) (−46,−58,49)-Salience.SMG (L) (−60,−39,31) | T(35) = 2.84 | 0.007384 | 0.044377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.-H.; Kim, J. Functional Magnetic Resonance Imaging-Based Analysis of Functional Connectivity in Chronic Stress: A Comparison of Stress-Induced and Recovery States. Brain Sci. 2025, 15, 1025. https://doi.org/10.3390/brainsci15101025
Choi M-H, Kim J. Functional Magnetic Resonance Imaging-Based Analysis of Functional Connectivity in Chronic Stress: A Comparison of Stress-Induced and Recovery States. Brain Sciences. 2025; 15(10):1025. https://doi.org/10.3390/brainsci15101025
Chicago/Turabian StyleChoi, Mi-Hyun, and Jaehui Kim. 2025. "Functional Magnetic Resonance Imaging-Based Analysis of Functional Connectivity in Chronic Stress: A Comparison of Stress-Induced and Recovery States" Brain Sciences 15, no. 10: 1025. https://doi.org/10.3390/brainsci15101025
APA StyleChoi, M.-H., & Kim, J. (2025). Functional Magnetic Resonance Imaging-Based Analysis of Functional Connectivity in Chronic Stress: A Comparison of Stress-Induced and Recovery States. Brain Sciences, 15(10), 1025. https://doi.org/10.3390/brainsci15101025