Risk of Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Randomized Clinical Trials: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search and Screening
2.2. Data Extraction and Outcomes
2.3. Risk of Bias Assessment
2.4. Statistical Analysis
3. Results
3.1. Search Results
3.2. Characteristics and Quality Assessment
Trial | Country | Location | Design | Group 1 | Group2 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Age | Male | Location | NIHSS | ASPECTS | mRS (0–2 90 Day) | 90-Day Mortality | Successful Recanalization | Door to Puncture | Total | Age | Male | Location | NIHSS | ASPECTS | mRS | 90-day Mortality | Successful Recanalization | Door to Puncture | |||||
DIRECT-MT [22] | China | A | RCT | 327 | 69 [61–76] | 189 | ic-ICA: 112/320, M1: 161/320, M2: 42/320 | 17 [12–21] | 9 [7–10] | 119 | 58 | 243/306 | 84 [67–105] | 329 | 18–60: 66; 60–80: 183; >80: 43 | 160 | ic-ICA: 114/326, M1: 178/326, M2: 33/326 | 17 [14–22] | 9 [7–10] | 121 | 62 | 267/316 | 85.5 [70–115] | |
RESILIENT [23] | Brazil | A | RCT | 11 | 65 [54–77] | 60 | left hemisphere: 64 | 18 [14–21] | 8 [7–9] | 39 | 27 | 91 | 170 [132–213] | 111 | 67 [53–73] | 57 | 63 | 18 [14–21] | 8 [7–9] | 22 | 33 | - | 161 [115–219] | |
THERAPY [24] | USA and Germany | A | RCT | 43 | 67 (11) | 27 | left hemisphere: 33; ic-ICA: 18, M1: 31, M2: 6 | 17 [13–22] | 7.5 [6–9] | 19/50 | 12% | 30/43 | - | 62 | 70 (10) | 27 | left hemisphere: 31; ic-ICA: 12, M1: 36, M2: 5 | 18 [ 14–22] | 8 [7–9] | 14/46 | 23.90% | 102 [80–154] | ||
DAWN [26] | USA | A | RCT | 107 | 69.4 (14.1) | 42 | ic-ICA: 22, M1: 83, M2: 2 | 17 [13–21] | - | 49% | 20 | 90 | 109 [76–150] | 99 | 70.7 (13.2) | 51 | ic-ICA: 19, M1: 77, M2: 3 | 17 [14–21] | - | 13% | 18 | - | - | |
RESCUE-Japan LIMIT [25] | Japan | A | RCT | 100 | 76.6 (10) | 55 | ic-ICA: 47, M1: 74, M2: 0; Tandem+M1: 20 | 22 [18–26] | 3 [3–4] | 14 | 18 | 86 | 254 [165–479] | 102 | 75.7 (10.2) | 58 | ic-ICA: 49, M1: 70, M2: 3; Tandem+M1: 20 | 22 [17–26] | 4 [3–4] | 8 | 24 | - | - | |
RESCUE BT [27] | China | A | RCT | 483 | 67 [57–75] | 294 | ic-ICA: 98, M1: 310, M2: 77 | 16 [12–19] | 8 [7–9] | 219 | 84 | 439 | 398 [246–618] | 462 | 68 [58–74] | 263 | ic-ICA: 96, M1: 305, M2: 62 | 16 [12–20] | 8 [7–9] | 228 | 82 | 427 | 400 [272–627] | |
CHOICE [28] | Spain | A | RCT | 52 | 73 [69–67] | 28 | ic-ICA: 4, M1: 20, M2: 28 | 14 [10–20] | 10 [8–10] | 33 | 8 | 52 | 356 [260–635] | 61 | 73 [71–76] | 33 | ic-ICA: 7, M1: 19, M2: 33 | 14 [8–20] | 9 [9–10] | 41 | 5 | 61 | 315 [218–680] | |
SELECT2 [29] | United States, Canada, Europe, Australia, and New Zealand | A | RCT | 178 | 66 [58–75] | 107 | ic-ICA: 80, M1: 91, M2: 7 | 19 [15–23] | 4 [3–5] | 4 [3–6] | 68 | 142 | 109 [76–138] | 174 | 67 [58–75] | 100 | ic-ICA: 66, M1: 100, M2: 8 | 19 [15–22] | 4 [4–5] | 5 [4–6] | 71 | - | - | |
SWIFT PRIME [30] | United States and Europe | A | RCT | 98 | 65 (12.5) | 54 | ic-ICA: 17, M1: 62, M2: 13 | 17 [13–20] | 9 [8–10] | 59/98 | 9% | 83% | 224 [165–275] | 97 | 66.3 (11.3) | 45 | ic-ICA: 15, M1: 72, M2: 6 | 17 [13–19] | 9 [7–10] | 33/93 | 12% | 40% | - | |
SKIP [31] | Japan | A | RCT | 101 | 74 [67–80] | 56 | ic-ICA: 41, M1: 19, M2: 41 | 19 [13–23] | 7 [6–9] | 60 | 8 | 91 | - | 103 | 76 [67–80] | 72 | ic-ICA: 36, M1: 18, M2: 49 | 17 [12–22] | 8 [6–9] | 59 | 9 | 96 | - | |
ATTENTION [32] | China | P | RCT | 226 | 66 (11.1) | 149 | VA-V4: 20, PBA: 69, MBA: 62, DBA: 74 | 24 [15–35] | 9 [8–10] | 75 | 83 | 208/223 | 5.6 [3.5–7.5] | 114 | 67.3 (10.2) | 82 | VA-V4: 6, PBA: 39, MBA: 29, DBA: 40 | 24 [14–35] | 10 [8–10] | 12 | 63 | - | - | |
DEVT [34] | China | A | RCT | 115 | 70 [60–77] | 66 | ic-ICA: 18, M1: 95, M2: 3 | 16 [12–20] | 8 [7–9] | 63 | 20 | 113 | 200 [155–247] | 117 | 70 [60–78] | 66 | ic-ICA: 17, M1: 99, M2: 2 | 16 [13–20] | 8 [7–9] | 55 | 21 | 117 | 210 [179–255] | |
DIRECT-SAFE [33] | Australia, New Zealand, China, and Vietnam | A | RCT | 148 | 70 [61–78] | 78 | ic-ICA: 33, M1: 80, M2: 21, BA: 11, Tandem-ec: 27, ic-ASD: 6 | 15 [11–20] | 10 [9–10] | 80/146 | 22 | 127/ 143 | 87 [56–113]; n:145 | 147 | 69 [60–79] | 88 | ic-ICA: 31, M1: 83, M2: 23, BA: 8, Tandem-ec: 20, ic-ASD: 8 | 15 [10–20] | 10 [9–10] | 89/147 | 24 | 130/146 | 101 [75–127]; n:147 | |
TO-ACT [35] | Netherlands, China, and Portugal | A | RCT | 33 | 43 [33–50] | 10 | cerebral venous thrombosis | 12 [7–20] | - | 12 mo: 28/33 | 6 mo: 4/33 | 22 (79%) | - | 34 | 38 [23–48] | 7 | cerebral venous thrombosis | 12 [5–20] | - | 12 mo: 28/34 | 6 mo: 1/33 | 15 (52%) | - | |
Huu An, 2022 [36] | Vietnam | A | RCT | 30 | 66.5 [59–78.5] | 21 | ICA: 33.3, M1: 60, M2: 6.7 | 12 [10–14] | 7 [7–8] | 60% | 3.30% | 90% | 69.5 [51–84] | 30 | 64 [58.75–74] | 18 | ICA: 40, M1: 50, M2: 10 | 13 [11–17.25] | 7 [7–8] | 60% | 6.70% | 86.70% | 73.0 [63.25–86] | |
THRACE [11] | France | A | RCT | 200 | 62.8 (13.0) | 115 | intracranial internal carotid artery, the M1 segment of the middle cerebral artery, or the superior third of the basilar artery | 18 [15–21] | - | 53% | 12% | - | - | 202 | 62.8 (14.4) | 102 | intracranial internal carotid artery, the M1 segment of the middle cerebral artery, or the superior third of the basilar artery | 17 [13–21] | - | 42.10% | 13% | - | - | |
DEFUSE 3 [37] | USA | A | RCT | 92 | 70 [59–79] | 46 | ICA: 35%, MCA: 65% | 16 [10–20] | 8 [7–9] | 3 [1–4] | 13 (14) | 65/83 (78) | 0:59 (0:39–1:27) | 90 | 71 [59–80] | 44 | ICA: 40%, MCA: 60% | 16 [12–21] | 8 [7–9] | 4 [3–6] | 23 (26) | 14/77 (18) | - | |
IMS 3 [38] | United States, Canada, Australia, and Europe | A | RCT | 434 | 69 (23–89) | 218 | Left hemisphere: 224 (51.6), Right hemisphere: 197 (45.4), Brain stem or cerebellum: 10 (2.3), Unknown or multiple locations: 3 (0.7) | 17 [7–40] | 247 (56.9) | 99.80% | 19.10% | - | - | 222 | 68 (23–84) | 122 | Left hemisphere: 106 (47.7), Right hemisphere: 109 (49.1), Brain stem or cerebellum: 4 (1.8), Unknown or multiple locations: 3 (1.4) | 16 [8–30] | 131 (59.0) | 100 | 21.60% | - | - | |
EXTEND-IA [39] | Australia and New Zealand | A | RCT | 35 | 68.6 (12.3) | 17 | ICA: 31%, MCA: 69% | 17 [13–20] | - | 1 [0–3] | - | 94% | - | 35 | 70.2 (11.8) | 17 | ICA: 31%, MCA: 69% | 13 [9–19] | - | 3 [1 to 5] | - | 43% | - | |
SYNTHESIS Expansion [40] | Italy | A | RCT | 181 | 66 (11) | 106 | Anterior circulation: 88%, Posterior circulation: 10% | 13 [9–17] | - | - | - | - | - | 181 | 67 (11) | 103 | Anterior circulation: 94%, Posterior circulation: 6% | 13 [9–18] | - | - | - | - | - | |
ESCAPE [41] | Canada, USA, South Korea, Ireland, UK | A | RCT | 165 | 71 [60.81] | 79 | ICA: 27.6, M1: 68.1, M2: 3.7 | 16 [13–20] | 9 [8–10] | 53% | 10.40% | 72.40% | - | 150 | 70 [60–81] | 71 | ICA: 26.5, M1: 71.4, M2: 2.0 | 17 [12–20] | 9 [8–10] | 29.30% | 19% | - | - | |
REVASCAT [42] | Spain | A | RCT | 103 | 65.7 (11.3) | 55 | ICA: 25.5, M1: 64.7, M2: 9.8 | 17.0 [14.0–20.0] | 7.0 [6.0–9.0] | 43.7 | - | - | 269 [201–340] | 103 | 67.2 (9.5) | 54 | ICA: 26.7, M1: 64.4, M2: 7.9 | 17.0 (12.0–19.0) | 8.0 [6.0–9.0] | 28.2 | - | - | - | |
BASICS [43] | Netherlands, Brazil, Germany, France, Italy, Switzerland, Czech republic | P | RCT | 154 | 66.8 (13.1) | 100 | - | 21 | - | 35.1 | 38.30% | - | 4.4 [3.3–6.2] | 146 | 67.2 (11.9) | 96 | - | 22 | - | 30.1 | 43.20% | - | - | |
MR CLEAN–NO IV [45] | Netherlands | A | RCT | 273 | 72 [62–80] | 161 | ICA: 25, M1: 57.4, M2: 16.5 | 16 [10–20] | 9 [8–10] | 49.1 | 20.5 | 78.2 | 63 [50–78] | 266 | 69 [61–77] | 144 | ICA: 18.8, M1: 65.4, M2: 15 | 16 [10–20] | 9 [8–10] | 51.1 | 15.8 | 84.7 | 64 [51–78] | |
BAOCHE [44] | China | P | RCT | 102 | 64.2 (9.6) | 80 | Basilar-artery occlusion | 20 [15–29] | 8 [7–10] | 39 | 31 | - | 153 [99–235] | 88 | 63.7 (9.8) | 79 | Basilar-artery occlusion | 19 [12–30] | 8 [7–10] | 14 | 42 | - | - | |
ANGEL-ASPECT [46] | China | A | RCT | 230 | 68 [61–73] | 135 | ICA: 36.1, M1: 63, M2: 0.9 | 16 [13–20] | 3 [3–4] | 30 | 21.70% | - | - | 225 | 67 [59–73] | 144 | ICA: 36, M1: 63.1, M2: 0.9 | 15 [12–19] | 3 [3–4] | 11.6 | 20% | - | - | |
MR RESCUE [47] | USA | A | RCT | 64 | Penumbral: 66.4 (13.2) NonPenumbral: 61.6 (12) | 30 | ICA: Penumbral: 18 NonPenumbral: 23, M1: Penumbral: 53 NonPenumbral: 70, M2: Penumbral: 29 NonPenumbral: 7 | Penumbral: 16 [12–18] NonPenumbral: 19 [17–22] | - | Penumbral: 21 NonPenumbral: 17 | - | - | - | 54 | Penumbral: 65.8 (16.9) NonPenumbral: 69.4 (15.9) | 27 | ICA: Penumbral: 15 NonPenumbral: 10, M1: Penumbral: 68 NonPenumbral: 80, M2: Penumbral: 18 NonPenumbral: 10 | Penumbral: 16 [11–18] NonPenumbral: 20.5 [17–23] | - | Penumbral: 26 NonPenumbral: 10 | - | - | - | |
TENSION [48] | Canada and Europe | A | RCT | 128 | 73 [65–81] | 59 | ICA: 41/125, M1: 83, M2: 0, MCA+ACA: 1, tandem: 8 | 19 [16–22] | - | 4 [3–6] | 40.00% | 104 | 4.2 [3.4–5.9] | 125 | 74 [64–80] | 51 | ICA: 37/127, M1: 88, M2: 1, MCA+ACA: 1, tandem: 7 | 18 [15–22] | - | 6 [4–6] | 51% | - | - | |
BEST [49] | China | P | RCT | 66 | 62 (50−74) | 48 | Vertebral artery V4 segment: 7; Basilar artery: 59 | 32 (18–38) | 8 (7–9) | 22 | 22 | 45 | 114 (66–150) | 65 | 68 (57−74) | 52 | Vertebral artery V4 segment: 5; Basilar artery: 60 | 26 (13–37) | 8 (7–9) | 18 | 25 | 9 | 111·5 (65–160) | |
LASTE [50] | France, Spain, and the United States | A | RCT | 159 | 73 (66–79) | 82 | ICA: 69; M1 MCA: 88; Other: 2 | 21 (18–24) | 2 (1–3) | 4 (3–6) | 57/158 (36.1) | 48 (31.8) | 66 (45 to 97) | 165 | 74 (65–80) | 88 (53.3) | ICA: 74; M1 MCA: 91 | 21 (18–24) | 2 (1–3) | 6 (4–6) | 91/164 (55.5) | - |
3.3. sICH Risk in the Anterior Circulation
3.3.1. Effect of Treatment Type
3.3.2. Effect of Timing
3.3.3. Effect of Core Size
3.4. Sensitivity Analysis
3.5. sICH in Anterior Versus Posterior Circulation Stroke
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zhong, Q.; Yuan, S.; Zhu, F. Global burden of stroke attributable to high systolic blood pressure in 204 countries and territories, 1990-2019. Front. Cardiovasc. Med. 2024, 11, 1339910. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, M. Global burden of stroke: Dynamic estimates to inform action. Lancet Neurol. 2024, 23, 952–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, H.; Yang, C. Global, regional, and national burden of stroke from 1990 to 2019: A temporal trend analysis based on the Global Burden of Disease Study 2019. Int. J. Stroke 2024, 19, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Jovin, T.G.; Nogueira, R.G.; Lansberg, M.G.; Demchuk, A.M.; Martins, S.O.; Mocco, J.; Ribo, M.; Jadhav, A.P.; Ortega-Gutierrez, S.; Hill, M.D.; et al. Thrombectomy for anterior circulation stroke beyond 6 h from time last known well (AURORA): A systematic review and individual patient data meta-analysis. Lancet 2022, 399, 249–258. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Jansen, I.G.H.; Mulder, M.; Goldhoorn, R.B. Endovascular treatment for acute ischaemic stroke in routine clinical practice: Prospective, observational cohort study (MR CLEAN Registry). BMJ (Clin. Res. Ed.) 2018, 360, k949. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Murray, V.; Berge, E.; Del Zoppo, G.J. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst. Rev. 2014, 2014, CD000213. [Google Scholar] [CrossRef]
- Maïer, B.; Desilles, J.P.; Mazighi, M. Intracranial Hemorrhage After Reperfusion Therapies in Acute Ischemic Stroke Patients. Front. Neurol. 2020, 11, 599908. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Yang, S.; Mofatteh, M.; Hu, Y.; Wei, H.; Lai, Y.; Zeng, Z.; Yang, Y.; Yu, J.; et al. Developing and predicting of early mortality after endovascular thrombectomy in patients with acute ischemic stroke. Front. Neurosci. 2022, 16, 1034472. [Google Scholar] [CrossRef]
- Neuberger, U.; Kickingereder, P.; Schönenberger, S.; Schieber, S.; Ringleb, P.A.; Bendszus, M.; Pfaff, J.; Möhlenbruch, M.A. Risk factors of intracranial hemorrhage after mechanical thrombectomy of anterior circulation ischemic stroke. Neuroradiology 2019, 61, 461–469. [Google Scholar] [CrossRef]
- Bracard, S.; Ducrocq, X.; Mas, J.L.; Soudant, M.; Oppenheim, C.; Moulin, T.; Guillemin, F. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): A randomised controlled trial. Lancet. Neurol. 2016, 15, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, Y.; Wang, H.; Yang, D.; Jiang, T.; Yuan, K.; Gong, P.; Xu, P.; Li, Y.; Chen, J.; et al. Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Chinese Ischemic Stroke Patients: The ASIAN Score. Stroke 2020, 51, 2690–2696. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Willey, J.Z.; Cucchiara, B.; Goldstein, J.N.; Gonzales, N.R.; Khatri, P.; Kim, L.J.; Mayer, S.A.; Sheth, K.N.; Schwamm, L.H. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017, 48, e343–e361. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Bao, Q.; Yang, M.; Li, J. Real-world safety and efficacy endovascular treatment versus standard medical treatment for basilar artery occlusion: A systematic review and meta-analysis. Clin. Neurol. Neurosurg. 2024, 236, 108096. [Google Scholar] [CrossRef]
- Pressman, E.; Goldman, H.; Wang, C.; Mhaskar, R.; Guerrero, W.R.; Mokin, M.; Vakharia, K. A meta-analysis and systematic review of endovascular thrombectomy versus medical management for acute basilar artery occlusion. Clin. Neurol. Neurosurg. 2023, 234, 107986. [Google Scholar] [CrossRef]
- Du, H.; Lei, H.; Ambler, G.; Fang, S.; He, R.; Yuan, Q.; Werring, D.J.; Liu, N. Intravenous Thrombolysis Before Mechanical Thrombectomy for Acute Ischemic Stroke: A Meta-Analysis. J. Am. Heart Assoc. 2021, 10, e022303. [Google Scholar] [CrossRef]
- Morsi, R.Z.; Zhang, Y.; Carrión-Penagos, J.; Desai, H.; Tannous, E.; Kothari, S.; Khamis, A.; Darzi, A.J.; Tarabichi, A.; Bastin, R.; et al. Endovascular Thrombectomy With or Without Thrombolysis for Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neurohospitalist 2024, 14, 23–33. [Google Scholar] [CrossRef]
- Trifan, G.; Biller, J.; Testai, F.D. Mechanical Thrombectomy vs Bridging Therapy for Anterior Circulation Large Vessel Occlusion Stroke: Systematic Review and Meta-analysis. Neurology 2022, 98, e1361–e1373. [Google Scholar] [CrossRef]
- Wang, X.; Ye, Z.; Busse, J.W.; Hill, M.D.; Smith, E.E.; Guyatt, G.H.; Prasad, K.; Lindsay, M.P.; Yang, H.; Zhang, Y.; et al. Endovascular thrombectomy with or without intravenous alteplase for acute ischemic stroke due to large vessel occlusion: A systematic review and meta-analysis of randomized trials. Stroke Vasc. Neurol. 2022, 7, 510–517. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ (Clin. Res. Ed.) 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, Y.; Zhang, L.; Zhang, Y.; Treurniet, K.M.; Chen, W.; Peng, Y.; Han, H.; Wang, J.; Wang, S.; et al. Endovascular Thrombectomy with or without Intravenous Alteplase in Acute Stroke. N. Engl. J. Med. 2020, 382, 1981–1993. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.O.; Mont’Alverne, F.; Rebello, L.C.; Abud, D.G.; Silva, G.S.; Lima, F.O.; Parente, B.S.M.; Nakiri, G.S.; Faria, M.B.; Frudit, M.E.; et al. Thrombectomy for Stroke in the Public Health Care System of Brazil. N. Engl. J. Med. 2020, 382, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Mocco, J.; Zaidat, O.O.; von Kummer, R.; Yoo, A.J.; Gupta, R.; Lopes, D.; Frei, D.; Shownkeen, H.; Budzik, R.; Ajani, Z.A.; et al. Aspiration Thrombectomy After Intravenous Alteplase Versus Intravenous Alteplase Alone. Stroke 2016, 47, 2331–2338. [Google Scholar] [CrossRef]
- Yoshimura, S.; Sakai, N.; Yamagami, H.; Uchida, K.; Beppu, M.; Toyoda, K.; Matsumaru, Y.; Matsumoto, Y.; Kimura, K.; Takeuchi, M.; et al. Endovascular Therapy for Acute Stroke with a Large Ischemic Region. N. Engl. J. Med. 2022, 386, 1303–1313. [Google Scholar] [CrossRef]
- Nogueira, R.G.; Jadhav, A.P.; Haussen, D.C.; Bonafe, A.; Budzik, R.F.; Bhuva, P.; Yavagal, D.R.; Ribo, M.; Cognard, C.; Hanel, R.A.; et al. Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct. N. Engl. J. Med. 2017, 378, 11–21. [Google Scholar] [CrossRef]
- Investigators, R.B.T. Effect of Intravenous Tirofiban vs Placebo Before Endovascular Thrombectomy on Functional Outcomes in Large Vessel Occlusion Stroke: The RESCUE BT Randomized Clinical Trial. JAMA 2022, 328, 543–553. [Google Scholar] [CrossRef]
- Renú, A.; Millán, M.; San Román, L.; Blasco, J.; Martí-Fàbregas, J.; Terceño, M.; Amaro, S.; Serena, J.; Urra, X.; Laredo, C.; et al. Effect of Intra-arterial Alteplase vs Placebo Following Successful Thrombectomy on Functional Outcomes in Patients With Large Vessel Occlusion Acute Ischemic Stroke: The CHOICE Randomized Clinical Trial. JAMA 2022, 327, 826–835. [Google Scholar] [CrossRef]
- Sarraj, A.; Hassan, A.E.; Abraham, M.G.; Ortega-Gutierrez, S.; Kasner, S.E.; Hussain, M.S.; Chen, M.; Blackburn, S.; Sitton, C.W.; Churilov, L.; et al. Trial of Endovascular Thrombectomy for Large Ischemic Strokes. N. Engl. J. Med. 2023, 388, 1259–1271. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Bonafe, A.; Diener, H.-C.; Levy, E.I.; Pereira, V.M.; Albers, G.W.; Cognard, C.; Cohen, D.J.; Hacke, W.; et al. Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke. N. Engl. J. Med. 2015, 372, 2285–2295. [Google Scholar] [CrossRef]
- Suzuki, K.; Matsumaru, Y.; Takeuchi, M.; Morimoto, M.; Kanazawa, R.; Takayama, Y.; Kamiya, Y.; Shigeta, K.; Okubo, S.; Hayakawa, M.; et al. Effect of Mechanical Thrombectomy Without vs With Intravenous Thrombolysis on Functional Outcome Among Patients With Acute Ischemic Stroke: The SKIP Randomized Clinical Trial. JAMA 2021, 325, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Nogueira, R.G.; Zhu, Y.; Sun, J.; Han, H.; Yuan, G.; Wen, C.; Zhou, P.; Chen, W.; Zeng, G.; et al. Trial of Endovascular Treatment of Acute Basilar-Artery Occlusion. N. Engl. J. Med. 2022, 387, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.J.; Yan, B.; Churilov, L.; Dowling, R.J.; Bush, S.J.; Bivard, A.; Huo, X.C.; Wang, G.; Zhang, S.Y.; Ton, M.D.; et al. Endovascular thrombectomy versus standard bridging thrombolytic with endovascular thrombectomy within 4·5 h of stroke onset: An open-label, blinded-endpoint, randomised non-inferiority trial. Lancet 2022, 400, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Zi, W.; Qiu, Z.; Li, F.; Sang, H.; Wu, D.; Luo, W.; Liu, S.; Yuan, J.; Song, J.; Shi, Z.; et al. Effect of Endovascular Treatment Alone vs Intravenous Alteplase Plus Endovascular Treatment on Functional Independence in Patients With Acute Ischemic Stroke: The DEVT Randomized Clinical Trial. JAMA 2021, 325, 234–243. [Google Scholar] [CrossRef]
- Coutinho, J.M.; Zuurbier, S.M.; Bousser, M.G.; Ji, X.; Canhão, P.; Roos, Y.B.; Crassard, I.; Nunes, A.P.; Uyttenboogaart, M.; Chen, J.; et al. Effect of Endovascular Treatment With Medical Management vs Standard Care on Severe Cerebral Venous Thrombosis: The TO-ACT Randomized Clinical Trial. JAMA Neurol. 2020, 77, 966–973. [Google Scholar] [CrossRef]
- Huu An, N.; Dang Luu, V.; Duy Ton, M.; Anh Tuan, T.; Quang Anh, N.; Hoang Kien, L.; Tat Thien, N.; Viet Phuong, D.; Minh Duc, N. Thrombectomy Alone versus Bridging Therapy in Acute Ischemic Stroke: Preliminary Results of an Experimental Trial. La. Clin. Ter. 2022, 173, 107–114. [Google Scholar] [CrossRef]
- Albers, G.W.; Marks, M.P.; Kemp, S.; Christensen, S.; Tsai, J.P.; Ortega-Gutierrez, S.; McTaggart, R.A.; Torbey, M.T.; Kim-Tenser, M.; Leslie-Mazwi, T.; et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. N. Engl. J. Med. 2018, 378, 708–718. [Google Scholar] [CrossRef]
- Broderick, J.P.; Palesch, Y.Y.; Demchuk, A.M.; Yeatts, S.D.; Khatri, P.; Hill, M.D.; Jauch, E.C.; Jovin, T.G.; Yan, B.; Silver, F.L.; et al. Endovascular Therapy after Intravenous t-PA versus t-PA Alone for Stroke. N. Engl. J. Med. 2013, 368, 893–903. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Mitchell, P.J.; Kleinig, T.J.; Dewey, H.M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R.J.; Parsons, M.W.; Oxley, T.J.; et al. Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. N. Engl. J. Med. 2015, 372, 1009–1018. [Google Scholar] [CrossRef]
- Ciccone, A.; Valvassori, L.; Nichelatti, M.; Sgoifo, A.; Ponzio, M.; Sterzi, R.; Boccardi, E. Endovascular Treatment for Acute Ischemic Stroke. N. Engl. J. Med. 2013, 368, 904–913. [Google Scholar] [CrossRef]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [PubMed]
- Langezaal, L.C.M.; van der Hoeven, E.J.R.J.; Mont’Alverne, F.J.A.; de Carvalho, J.J.F.; Lima, F.O.; Dippel, D.W.J.; van der Lugt, A.; Lo, R.T.H.; Boiten, J.; Lycklama à Nijeholt, G.J.; et al. Endovascular Therapy for Stroke Due to Basilar-Artery Occlusion. N. Engl. J. Med. 2021, 384, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Jovin, T.G.; Li, C.; Wu, L.; Wu, C.; Chen, J.; Jiang, C.; Shi, Z.; Gao, Z.; Song, C.; Chen, W.; et al. Trial of Thrombectomy 6 to 24 Hours after Stroke Due to Basilar-Artery Occlusion. N. Engl. J. Med. 2022, 387, 1373–1384. [Google Scholar] [CrossRef]
- LeCouffe, N.E.; Kappelhof, M.; Treurniet, K.M.; Rinkel, L.A.; Bruggeman, A.E.; Berkhemer, O.A.; Wolff, L.; van Voorst, H.; Tolhuisen, M.L.; Dippel, D.W.J.; et al. A Randomized Trial of Intravenous Alteplase before Endovascular Treatment for Stroke. N. Engl. J. Med. 2021, 385, 1833–1844. [Google Scholar] [CrossRef]
- Huo, X.; Ma, G.; Tong, X.; Zhang, X.; Pan, Y.; Nguyen, T.N.; Yuan, G.; Han, H.; Chen, W.; Wei, M.; et al. Trial of Endovascular Therapy for Acute Ischemic Stroke with Large Infarct. N. Engl. J. Med. 2023, 388, 1272–1283. [Google Scholar] [CrossRef]
- Kidwell, C.S.; Jahan, R.; Gornbein, J.; Alger, J.R.; Nenov, V.; Ajani, Z.; Feng, L.; Meyer, B.C.; Olson, S.; Schwamm, L.H.; et al. A Trial of Imaging Selection and Endovascular Treatment for Ischemic Stroke. N. Engl. J. Med. 2013, 368, 914–923. [Google Scholar] [CrossRef]
- Bendszus, M.; Fiehler, J.; Subtil, F.; Bonekamp, S.; Aamodt, A.H.; Fuentes, B.; Gizewski, E.R.; Hill, M.D.; Krajina, A.; Pierot, L.; et al. Endovascular thrombectomy for acute ischaemic stroke with established large infarct: Multicentre, open-label, randomised trial. Lancet 2023, 402, 1753–1763. [Google Scholar] [CrossRef]
- Liu, X.; Dai, Q.; Ye, R.; Zi, W.; Liu, Y.; Wang, H.; Zhu, W.; Ma, M.; Yin, Q.; Li, M.; et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): An open-label, randomised controlled trial. Lancet Neurol. 2020, 19, 115–122. [Google Scholar] [CrossRef]
- Costalat, V.; Jovin, T.G.; Albucher, J.F.; Cognard, C.; Henon, H.; Nouri, N.; Gory, B.; Richard, S.; Marnat, G.; Sibon, I.; et al. Trial of Thrombectomy for Stroke with a Large Infarct of Unrestricted Size. N. Engl. J. Med. 2024, 390, 1677–1689. [Google Scholar] [CrossRef]
- Majoie, C.B.; Cavalcante, F.; Gralla, J.; Yang, P.; Kaesmacher, J.; Treurniet, K.M.; Kappelhof, M.; Yan, B.; Suzuki, K.; Zhang, Y.; et al. Value of intravenous thrombolysis in endovascular treatment for large-vessel anterior circulation stroke: Individual participant data meta-analysis of six randomised trials. Lancet 2023, 402, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, B.; Thakur Hameer, S.; Bhatia, R.; Haldar, P.; Sharma, A.; Srivastava, M.V.P. Effect of endovascular therapy in large anterior circulation ischaemic strokes: A systematic review and meta-analysis of randomised controlled trials. Eur. Stroke J. 2023, 8, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Qureshi, A.I.; Yin, Y.; Li, J.; Li, R.; Xu, P.; Sun, J.; Liao, G.; Yue, X.; Shi, H.; et al. Endovascular Treatment Versus Best Medical Management in Acute Basilar Artery Occlusion Strokes: Results From the ATTENTION Multicenter Registry. Circulation 2022, 146, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Schonewille, W.J.; Wijman, C.A.; Michel, P.; Rueckert, C.M.; Weimar, C.; Mattle, H.P.; Engelter, S.T.; Tanne, D.; Muir, K.W.; Molina, C.A.; et al. Treatment and outcomes of acute basilar artery occlusion in the Basilar Artery International Cooperation Study (BASICS): A prospective registry study. Lancet Neurol. 2009, 8, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Tsivgoulis, G.; Malhotra, K.; Ishfaq, M.F.; Pandhi, A.; Frohler, M.T.; Spiotta, A.M.; Anadani, M.; Psychogios, M.; Maus, V.; et al. Medical Management vs Mechanical Thrombectomy for Mild Strokes: An International Multicenter Study and Systematic Review and Meta-analysis. JAMA Neurol. 2020, 77, 16–24. [Google Scholar] [CrossRef]
- Hou, X.; Feng, X.; Wang, H.; Li, Q. Mechanical Thrombectomy for Mild Acute Ischemic Stroke with Large-Vessel Occlusion: A Systematic Review and Meta-Analysis. Cerebrovasc. Dis. 2022, 51, 615–622. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reda, A.; Hasanzadeh, A.; Ghozy, S.; Sanjari Moghaddam, H.; Adl Parvar, T.; Motevaselian, M.; Kadirvel, R.; Kallmes, D.F.; Rabinstein, A. Risk of Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Randomized Clinical Trials: A Systematic Review and Meta-Analysis. Brain Sci. 2025, 15, 63. https://doi.org/10.3390/brainsci15010063
Reda A, Hasanzadeh A, Ghozy S, Sanjari Moghaddam H, Adl Parvar T, Motevaselian M, Kadirvel R, Kallmes DF, Rabinstein A. Risk of Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Randomized Clinical Trials: A Systematic Review and Meta-Analysis. Brain Sciences. 2025; 15(1):63. https://doi.org/10.3390/brainsci15010063
Chicago/Turabian StyleReda, Abdullah, Alireza Hasanzadeh, Sherief Ghozy, Hossein Sanjari Moghaddam, Tanin Adl Parvar, Mohsen Motevaselian, Ramanathan Kadirvel, David F. Kallmes, and Alejandro Rabinstein. 2025. "Risk of Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Randomized Clinical Trials: A Systematic Review and Meta-Analysis" Brain Sciences 15, no. 1: 63. https://doi.org/10.3390/brainsci15010063
APA StyleReda, A., Hasanzadeh, A., Ghozy, S., Sanjari Moghaddam, H., Adl Parvar, T., Motevaselian, M., Kadirvel, R., Kallmes, D. F., & Rabinstein, A. (2025). Risk of Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Randomized Clinical Trials: A Systematic Review and Meta-Analysis. Brain Sciences, 15(1), 63. https://doi.org/10.3390/brainsci15010063