Advancing Obsessive–Compulsive Disorder Research: Insights from Transgenic Animal Models and Innovative Therapies
Abstract
1. Introduction
2. Biological Basis of OCD
2.1. Clinical Features of OCD
2.2. Current Research on Animal Models of OCD
2.3. Transgenic Mouse Models of OCD
2.3.1. Hoxb8-Knockout Mouse
2.3.2. Slc1a1-Knockout Mouse
2.3.3. Sapap3-Knockout Mouse
2.3.4. Slitrk5-Knockout Mouse
2.3.5. Spred2-Knockout Mouse
3. Treatment Strategies for OCD
3.1. Psychotherapy and Pharmacotherapy
3.2. Neuromodulation and Neurosurgery
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fawcett, E.J.; Power, H.; Fawcett, J.M. Women Are at Greater Risk of OCD Than Men: A Meta-Analytic Review of OCD Prevalence Worldwide. J. Clin. Psychiatry 2020, 81, 19r13085. [Google Scholar] [CrossRef] [PubMed]
- Ruscio, A.M.; Stein, D.J.; Chiu, W.T.; Kessler, R.C. The Epidemiology of Obsessive-Compulsive Disorder in the National Comorbidity Survey Replication. Mol. Psychiatry 2010, 15, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Goodman, W.K.; Grice, D.E.; Lapidus, K.A.B.; Coffey, B.J. Obsessive-Compulsive Disorder. Psychiatr. Clin. N. Am. 2014, 37, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Fenske, J.N.; Petersen, K. Obsessive-Compulsive Disorder: Diagnosis and Management. Am. Fam. Physician 2015, 92, 896–903. [Google Scholar]
- Wilson, C.; Gattuso, J.J.; Hannan, A.J.; Renoir, T. Mechanisms of Pathogenesis and Environmental Moderators in Preclinical Models of Compulsive-like Behaviours. Neurobiol. Dis. 2023, 185, 106223. [Google Scholar] [CrossRef]
- Öst, L.-G.; Havnen, A.; Hansen, B.; Kvale, G. Cognitive Behavioral Treatments of Obsessive-Compulsive Disorder. A Systematic Review and Meta-Analysis of Studies Published 1993-2014. Clin Psychol Rev 2015, 40, 156–169. [Google Scholar] [CrossRef]
- McGuire, J.F.; Piacentini, J.; Lewin, A.B.; Brennan, E.A.; Murphy, T.K.; Storch, E.A. A meta-analysis of cognitive behavior therapy and medication for child obsessive-compulsive disorder: Moderators of treatment efficacy, response, and remission. Depress. Anxiety 2015, 32, 580–593. [Google Scholar] [CrossRef]
- Soomro, G.M.; Altman, D.; Rajagopal, S.; Oakley-Browne, M. Selective Serotonin Re-Uptake Inhibitors (SSRIs) versus Placebo for Obsessive Compulsive Disorder (OCD). Cochrane Database Syst. Rev. 2008, 2008, CD001765. [Google Scholar] [CrossRef]
- Erzegovesi, S.; Cavallini, M.C.; Cavedini, P.; Diaferia, G.; Locatelli, M.; Bellodi, L. Clinical Predictors of Drug Response in Obsessive-Compulsive Disorder. J. Clin. Psychopharmacol. 2001, 21, 488–492. [Google Scholar] [CrossRef]
- Robbins, T.W.; Vaghi, M.M.; Banca, P. Obsessive-Compulsive Disorder: Puzzles and Prospects. Neuron 2019, 102, 27–47. [Google Scholar] [CrossRef]
- Williams, K.A.; Swedo, S.E. Post-Infectious Autoimmune Disorders: Sydenham’s Chorea, PANDAS and Beyond. Brain Res. 2015, 1617, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, B.L.; Ahmari, S.E. Animal Models for OCD Research. In The Neurobiology and Treatment of OCD: Accelerating Progress; Fineberg, N.A., Robbins, T.W., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 55–96. ISBN 978-3-030-75393-1. [Google Scholar]
- Monteiro, P.; Feng, G. Learning From Animal Models of Obsessive-Compulsive Disorder. Biol. Psychiatry 2016, 79, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Pauls, D.L.; Abramovitch, A.; Rauch, S.L.; Geller, D.A. Obsessive–Compulsive Disorder: An Integrative Genetic and Neurobiological Perspective. Nat. Rev. Neurosci. 2014, 15, 410–424. [Google Scholar] [CrossRef]
- Jalal, B.; Chamberlain, S.R.; Sahakian, B.J. Obsessive-Compulsive Disorder: Etiology, Neuropathology, and Cognitive Dysfunction. Brain Behav. 2023, 13, e3000. [Google Scholar] [CrossRef]
- Chohan, M.O.; Kopelman, J.M.; Yueh, H.; Fazlali, Z.; Greene, N.; Harris, A.Z.; Balsam, P.D.; Leonardo, E.D.; Kramer, E.R.; Veenstra-VanderWeele, J.; et al. Developmental Impact of Glutamate Transporter Overexpression on Dopaminergic Neuron Activity and Stereotypic Behavior. Mol. Psychiatry 2022, 27, 1515–1526. [Google Scholar] [CrossRef]
- Shakeri, J.; Farnia, V.; Karimi, A.R.; Tatari, F.; Juibari, T.A.; Alikhani, M.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. The Prevalence and Clinical Features of Amphetamine-Induced Obsessive Compulsive Disorder. Drug Alcohol. Depend. 2016, 160, 157–162. [Google Scholar] [CrossRef]
- Baldan, L.C.; Williams, K.A.; Gallezot, J.-D.; Pogorelov, V.; Rapanelli, M.; Crowley, M.; Anderson, G.M.; Loring, E.; Gorczyca, R.; Billingslea, E.; et al. Histidine Decarboxylase Deficiency Causes Tourette Syndrome: Parallel Findings in Humans and Mice. Neuron 2014, 81, 77–90. [Google Scholar] [CrossRef]
- Mattheisen, M.; Samuels, J.F.; Wang, Y.; Greenberg, B.D.; Fyer, A.J.; McCracken, J.T.; Geller, D.A.; Murphy, D.L.; Knowles, J.A.; Grados, M.A.; et al. Genome-Wide Association Study in Obsessive-Compulsive Disorder: Results from the OCGAS. Mol. Psychiatry 2015, 20, 337–344. [Google Scholar] [CrossRef]
- International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Revealing the Complex Genetic Architecture of Obsessive-Compulsive Disorder Using Meta-Analysis. Mol. Psychiatry 2018, 23, 1181–1188. [Google Scholar] [CrossRef]
- Peng, S.; He, C.-Y.; Zhang, Q.; Wang, M.; Sheng, X.; Gao, J.; Ge, L.; Zhang, Z.; Wang, H.; Hu, X.-Z. Acquisition and Extinction of Active Avoidance Compulsive-like Behavior in Mice. J. Psychiatr. Res. 2023, 168, 91–99. [Google Scholar] [CrossRef]
- Voyiaziakis, E.; Evgrafov, O.; Li, D.; Yoon, H.-J.; Tabares, P.; Samuels, J.; Wang, Y.; Riddle, M.A.; Grados, M.A.; Bienvenu, O.J.; et al. Association of SLC6A4 Variants with Obsessive-Compulsive Disorder in a Large Multi-Center US Family Study. Mol. Psychiatry 2011, 16, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Endrass, T.; Ullsperger, M. Specificity of Performance Monitoring Changes in Obsessive-Compulsive Disorder. Neurosci. Biobehav. Rev. 2014, 46, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.E.; Mayerfeld, C.; Arnold, P.D.; Crane, J.R.; O’Dushlaine, C.; Fagerness, J.A.; Yu, D.; Scharf, J.M.; Chan, E.; Kassam, F.; et al. Meta-Analysis of Association between Obsessive-Compulsive Disorder and the 3′ Region of Neuronal Glutamate Transporter Gene SLC1A1. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 367–379. [Google Scholar] [CrossRef]
- Zike, I.D.; Chohan, M.O.; Kopelman, J.M.; Krasnow, E.N.; Flicker, D.; Nautiyal, K.M.; Bubser, M.; Kellendonk, C.; Jones, C.K.; Stanwood, G.; et al. OCD Candidate Gene SLC1A1/EAAT3 Impacts Basal Ganglia-Mediated Activity and Stereotypic Behavior. Proc. Natl. Acad. Sci. USA 2017, 114, 5719–5724. [Google Scholar] [CrossRef]
- van den Heuvel, O.A.; van Wingen, G.; Soriano-Mas, C.; Alonso, P.; Chamberlain, S.R.; Nakamae, T.; Denys, D.; Goudriaan, A.E.; Veltman, D.J. Brain Circuitry of Compulsivity. Eur. Neuropsychopharmacol. 2016, 26, 810–827. [Google Scholar] [CrossRef]
- Furtado, M.; Katzman, M.A. Neuroinflammatory Pathways in Anxiety, Posttraumatic Stress, and Obsessive Compulsive Disorders. Psychiatry Res. 2015, 229, 37–48. [Google Scholar] [CrossRef]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2020, 14, 601939. [Google Scholar] [CrossRef]
- Felix-Ortiz, A.C.; Burgos-Robles, A.; Bhagat, N.D.; Leppla, C.A.; Tye, K.M. Bidirectional Modulation of Anxiety-Related and Social Behaviors by Amygdala Projections to the Medial Prefrontal Cortex. Neuroscience 2016, 321, 197–209. [Google Scholar] [CrossRef]
- Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L.; et al. The NHGRI GWAS Catalog, a Curated Resource of SNP-Trait Associations. Nucleic Acids Res. 2014, 42, D1001–D1006. [Google Scholar] [CrossRef]
- D’Amico, D.; Estivill, X.; Terriente, J. Switching to Zebrafish Neurobehavioral Models: The Obsessive–Compulsive Disorder Paradigm. Eur. J. Pharmacol. 2015, 759, 142–150. [Google Scholar] [CrossRef]
- Borba, J.V.; Canzian, J.; Resmim, C.M.; Silva, R.M.; Duarte, M.C.F.; Mohammed, K.A.; Schoenau, W.; Adedara, I.A.; Rosemberg, D.B. Towards Zebrafish Models to Unravel Translational Insights of Obsessive-Compulsive Disorder: A Neurobehavioral Perspective. Neurosci. Biobehav. Rev. 2024, 162, 105715. [Google Scholar] [CrossRef] [PubMed]
- Langen, M.; Kas, M.J.H.; Staal, W.G.; van Engeland, H.; Durston, S. The Neurobiology of Repetitive Behavior: Of Mice…. Neurosci. Biobehav. Rev. 2011, 35, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Bedingfield, J.B.; Calder, L.D.; Thai, D.K.; Karler, R. The Role of the Striatum in the Mouse in Behavioral Sensitization to Amphetamine. Pharmacol. Biochem. Behav. 1997, 56, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Ernst, A.M.; Smelik, P.G. Site of Action of Dopamine and Apomorphine on Compulsive Gnawing Behaviour in Rats. Experientia 1966, 22, 837–838. [Google Scholar] [CrossRef] [PubMed]
- Saka, E.; Goodrich, C.; Harlan, P.; Madras, B.K.; Graybiel, A.M. Repetitive Behaviors in Monkeys Are Linked to Specific Striatal Activation Patterns. J. Neurosci. 2004, 24, 7557–7565. [Google Scholar] [CrossRef]
- Korff, S.; Stein, D.J.; Harvey, B.H. Stereotypic Behaviour in the Deer Mouse: Pharmacological Validation and Relevance for Obsessive Compulsive Disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 348–355. [Google Scholar] [CrossRef]
- Theron, V.; Lochner, C.; Stein, D.J.; Harvey, B.H.; Wolmarans, D.W. The Deer Mouse (Peromyscus Maniculatus Bairdii) as a Model Organism to Explore the Naturalistic Psychobiological Mechanisms Contributing to Compulsive-like Rigidity: A Narrative Overview of Advances and Opportunities. Compr. Psychiatry 2025, 136, 152545. [Google Scholar] [CrossRef]
- Greer, J.M.; Capecchi, M.R. Hoxb8 Is Required for Normal Grooming Behavior in Mice. Neuron 2002, 33, 23–34. [Google Scholar] [CrossRef]
- Nagarajan, N.; Capecchi, M.R. Optogenetic Stimulation of Mouse Hoxb8 Microglia in Specific Regions of the Brain Induces Anxiety, Grooming, or Both. Mol. Psychiatry 2023, 29, 1726–1740. [Google Scholar] [CrossRef]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef]
- Chen, S.-K.; Tvrdik, P.; Peden, E.; Cho, S.; Wu, S.; Spangrude, G.; Capecchi, M.R. Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice. Cell 2010, 141, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Kanai, Y.; Hediger, M.A. The Glutamate/Neutral Amino Acid Transporter Family SLC1: Molecular, Physiological and Pharmacological Aspects. Pflug. Arch. 2004, 447, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Wendland, J.R.; Moya, P.R.; Timpano, K.R.; Anavitarte, A.P.; Kruse, M.R.; Wheaton, M.G.; Ren-Patterson, R.F.; Murphy, D.L. A Haplotype Containing Quantitative Trait Loci for SLC1A1 Gene Expression and Its Association with Obsessive-Compulsive Disorder. Arch. Gen. Psychiatry 2009, 66, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Samuels, J.; Wang, Y.; Riddle, M.A.; Greenberg, B.D.; Fyer, A.J.; McCracken, J.T.; Rauch, S.L.; Murphy, D.L.; Grados, M.A.; Knowles, J.A.; et al. Comprehensive Family-Based Association Study of the Glutamate Transporter Gene SLC1A1 in Obsessive-Compulsive Disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 472–477. [Google Scholar] [CrossRef]
- Shugart, Y.Y.; Wang, Y.; Samuels, J.F.; Grados, M.A.; Greenberg, B.D.; Knowles, J.A.; McCracken, J.T.; Rauch, S.L.; Murphy, D.L.; Rasmussen, S.A.; et al. A Family-Based Association Study of the Glutamate Transporter Gene SLC1A1 in Obsessive-Compulsive Disorder in 378 Families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009, 150B, 886–892. [Google Scholar] [CrossRef]
- Stewart, S.E.; Fagerness, J.A.; Platko, J.; Smoller, J.W.; Scharf, J.M.; Illmann, C.; Jenike, E.; Chabane, N.; Leboyer, M.; Delorme, R.; et al. Association of the SLC1A1 Glutamate Transporter Gene and Obsessive-Compulsive Disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 1027–1033. [Google Scholar] [CrossRef]
- Nieoullon, A.; Canolle, B.; Masmejean, F.; Guillet, B.; Pisano, P.; Lortet, S. The Neuronal Excitatory Amino Acid Transporter EAAC1/EAAT3: Does It Represent a Major Actor at the Brain Excitatory Synapse? J. Neurochem. 2006, 98, 1007–1018. [Google Scholar] [CrossRef]
- Delgado-Acevedo, C.; Estay, S.F.; Radke, A.K.; Sengupta, A.; Escobar, A.P.; Henríquez-Belmar, F.; Reyes, C.A.; Haro-Acuña, V.; Utreras, E.; Sotomayor-Zárate, R.; et al. Behavioral and Synaptic Alterations Relevant to Obsessive-Compulsive Disorder in Mice with Increased EAAT3 Expression. Neuropsychopharmacology 2019, 44, 1163–1173. [Google Scholar] [CrossRef]
- González, L.F.; Henríquez-Belmar, F.; Delgado-Acevedo, C.; Cisternas-Olmedo, M.; Arriagada, G.; Sotomayor-Zárate, R.; Murphy, D.L.; Moya, P.R. Neurochemical and Behavioral Characterization of Neuronal Glutamate Transporter EAAT3 Heterozygous Mice. Biol. Res. 2017, 50, 29. [Google Scholar] [CrossRef]
- Bellini, S.; Fleming, K.E.; De, M.; McCauley, J.P.; Petroccione, M.A.; D’Brant, L.Y.; Tkachenko, A.; Kwon, S.; Jones, L.A.; Scimemi, A. Neuronal Glutamate Transporters Control Dopaminergic Signaling and Compulsive Behaviors. J. Neurosci. 2018, 38, 937–961. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Cong, J.; Zhang, X. Association Between the SLC1A1 Glutamate Transporter Gene and Obsessive-Compulsive Disorder in the Chinese Han Population. Neuropsychiatr. Dis. Treat. 2021, 17, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.M.; Lu, J.; Rodriguiz, R.M.; Trotta, N.C.; Peca, J.; Ding, J.-D.; Feliciano, C.; Chen, M.; Adams, J.P.; Luo, J.; et al. Cortico-Striatal Synaptic Defects and OCD-like Behaviours in Sapap3-Mutant Mice. Nature 2007, 448, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.M.; Wang, D.; Feng, G. Differential mRNA Expression and Protein Localization of the SAP90/PSD-95-Associated Proteins (SAPAPs) in the Nervous System of the Mouse. J. Comp. Neurol. 2004, 472, 24–39. [Google Scholar] [CrossRef]
- Soto, J.S.; Jami-Alahmadi, Y.; Chacon, J.; Moye, S.L.; Diaz-Castro, B.; Wohlschlegel, J.A.; Khakh, B.S. Astrocyte-Neuron Subproteomes and Obsessive-Compulsive Disorder Mechanisms. Nature 2023, 616, 764–773. [Google Scholar] [CrossRef]
- Chen, X.; Levy, J.M.; Hou, A.; Winters, C.; Azzam, R.; Sousa, A.A.; Leapman, R.D.; Nicoll, R.A.; Reese, T.S. PSD-95 Family MAGUKs Are Essential for Anchoring AMPA and NMDA Receptor Complexes at the Postsynaptic Density. Proc. Natl. Acad. Sci. USA 2015, 112, E6983–E6992. [Google Scholar] [CrossRef]
- Naaz, S.; Balachander, S.; Srinivasa Murthy, N.; Ms, B.; Sud, R.; Saha, P.; Narayanaswamy, J.C.; Reddy Yc, J.; Jain, S.; Purushottam, M.; et al. Association of SAPAP3 Allelic Variants with Symptom Dimensions and Pharmacological Treatment Response in Obsessive-Compulsive Disorder. Exp. Clin. Psychopharmacol. 2022, 30, 106–112. [Google Scholar] [CrossRef]
- Stewart, S.E.; Yu, D.; Scharf, J.M.; Neale, B.M.; Fagerness, J.A.; Mathews, C.A.; Arnold, P.D.; Evans, P.D.; Gamazon, E.R.; Davis, L.K.; et al. Genome-Wide Association Study of Obsessive-Compulsive Disorder. Mol. Psychiatry 2013, 18, 788–798. [Google Scholar] [CrossRef]
- St. Laurent, R.; Kusche, K.M.; Rein, B.; Raymond, K.B.; Kreitzer, A.C.; Malenka, R.C. St. Laurent, R.; Kusche, K.M.; Rein, B.; Raymond, K.B.; Kreitzer, A.C.; Malenka, R.C. Intercalated Amygdala Dysfunction Drives Avoidance Extinction Deficits in the Sapap3 Mouse Model of Obsessive-Compulsive Disorder. Biol. Psychiatry 2024. [Google Scholar] [CrossRef]
- Ehmer, I.; Feenstra, M.; Willuhn, I.; Denys, D. Instrumental Learning in a Mouse Model for Obsessive-Compulsive Disorder: Impaired Habit Formation in Sapap3 Mutants. Neurobiol. Learn. Mem. 2020, 168, 107162. [Google Scholar] [CrossRef]
- Manning, E.E.; Wang, A.Y.; Saikali, L.M.; Winner, A.S.; Ahmari, S.E. Disruption of Prepulse Inhibition Is Associated with Compulsive Behavior Severity and Nucleus Accumbens Dopamine Receptor Changes in Sapap3 Knockout Mice. Sci. Rep. 2021, 11, 9442. [Google Scholar] [CrossRef]
- Lamothe, H.; Schreiweis, C.; Mondragón-González, L.S.; Rebbah, S.; Lavielle, O.; Mallet, L.; Burguière, E. The Sapap3−/− Mouse Reconsidered as a Comorbid Model Expressing a Spectrum of Pathological Repetitive Behaviours. Transl. Psychiatry 2023, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Hadjas, L.C.; Schartner, M.M.; Cand, J.; Creed, M.C.; Pascoli, V.; Lüscher, C.; Simmler, L.D. Projection-Specific Deficits in Synaptic Transmission in Adult Sapap3-Knockout Mice. Neuropsychopharmacology 2020, 45, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Burguière, E.; Monteiro, P.; Feng, G.; Graybiel, A.M. Optogenetic Stimulation of Lateral Orbitofronto-Striatal Pathway Suppresses Compulsive Behaviors. Science 2013, 340, 1243–1246. [Google Scholar] [CrossRef]
- Mintzopoulos, D.; Gillis, T.E.; Robertson, H.R.; Dalia, T.; Feng, G.; Rauch, S.L.; Kaufman, M.J. Striatal Magnetic Resonance Spectroscopy Abnormalities in Young Adult SAPAP3 Knockout Mice. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 39–48. [Google Scholar] [CrossRef]
- Manning, E.E.; Dombrovski, A.Y.; Torregrossa, M.M.; Ahmari, S.E. Impaired Instrumental Reversal Learning Is Associated with Increased Medial Prefrontal Cortex Activity in Sapap3 Knockout Mouse Model of Compulsive Behavior. Neuropsychopharmacology 2019, 44, 1494–1504. [Google Scholar] [CrossRef]
- Malgady, J.M.; Baez, A.; Hobel, Z.B.; Jimenez, K.; Goldfried, J.; Prager, E.M.; Wilking, J.A.; Zhang, Q.; Feng, G.; Plotkin, J.L. Pathway-Specific Alterations in Striatal Excitability and Cholinergic Modulation in a SAPAP3 Mouse Model of Compulsive Motor Behavior. Cell Rep. 2023, 42, 113384. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Ai, M.; Xia, D.; Chen, H.; Pang, R.; Mei, R.; Zhong, L.; Chen, L. Upregulation of SLITRK5 in Patients with Epilepsy and in a Rat Model. Synapse 2023, 77, e22266. [Google Scholar] [CrossRef]
- Ko, J. The Leucine-Rich Repeat Superfamily of Synaptic Adhesion Molecules: LRRTMs and Slitrks. Mol. Cells 2012, 34, 335–340. [Google Scholar] [CrossRef]
- Round, J.; Ross, B.; Angel, M.; Shields, K.; Lom, B. Slitrk Gene Duplication and Expression in the Developing Zebrafish Nervous System. Dev. Dyn. 2014, 243, 339–349. [Google Scholar] [CrossRef]
- Beaubien, F.; Cloutier, J.-F. Differential Expression of Slitrk Family Members in the Mouse Nervous System. Dev. Dyn. 2009, 238, 3285–3296. [Google Scholar] [CrossRef]
- Aruga, J.; Mikoshiba, K. Identification and Characterization of Slitrk, a Novel Neuronal Transmembrane Protein Family Controlling Neurite Outgrowth. Mol. Cell Neurosci. 2003, 24, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Aruga, J.; Yokota, N.; Mikoshiba, K. Human SLITRK Family Genes: Genomic Organization and Expression Profiling in Normal Brain and Brain Tumor Tissue. Gene 2003, 315, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Shmelkov, S.V.; Hormigo, A.; Jing, D.; Proenca, C.C.; Bath, K.G.; Milde, T.; Shmelkov, E.; Kushner, J.S.; Baljevic, M.; Dincheva, I.; et al. Slitrk5 Deficiency Impairs Corticostriatal Circuitry and Leads to Obsessive-Compulsive-like Behaviors in Mice. Nat. Med. 2010, 16, 598–602. [Google Scholar] [CrossRef]
- Ullrich, M.; Weber, M.; Post, A.M.; Popp, S.; Grein, J.; Zechner, M.; Guerrero González, H.; Kreis, A.; Schmitt, A.G.; Üçeyler, N.; et al. OCD-like Behavior Is Caused by Dysfunction of Thalamo-Amygdala Circuits and Upregulated TrkB/ERK-MAPK Signaling as a Result of SPRED2 Deficiency. Mol. Psychiatry 2018, 23, 444–458. [Google Scholar] [CrossRef]
- Wang, T.; Gao, T.; Fujisawa, M.; Ohara, T.; Sakaguchi, M.; Yoshimura, T.; Matsukawa, A. SPRED2 Is a Novel Regulator of Autophagy in Hepatocellular Carcinoma Cells and Normal Hepatocytes. Int. J. Mol. Sci. 2024, 25, 6269. [Google Scholar] [CrossRef]
- Wakioka, T.; Sasaki, A.; Kato, R.; Shouda, T.; Matsumoto, A.; Miyoshi, K.; Tsuneoka, M.; Komiya, S.; Baron, R.; Yoshimura, A. Spred Is a Sprouty-Related Suppressor of Ras Signalling. Nature 2001, 412, 647–651. [Google Scholar] [CrossRef]
- Kato, R.; Nonami, A.; Taketomi, T.; Wakioka, T.; Kuroiwa, A.; Matsuda, Y.; Yoshimura, A. Molecular Cloning of Mammalian Spred-3 Which Suppresses Tyrosine Kinase-Mediated Erk Activation. Biochem. Biophys. Res. Commun. 2003, 302, 767–772. [Google Scholar] [CrossRef]
- Hepbasli, D.; Gredy, S.; Ullrich, M.; Reigl, A.; Abeßer, M.; Raabe, T.; Schuh, K. Genotype- and Age-Dependent Differences in Ultrasound Vocalizations of SPRED2 Mutant Mice Revealed by Machine Deep Learning. Brain Sci. 2021, 11, 1365. [Google Scholar] [CrossRef]
- Tuduce, I.L.; Schuh, K.; Bundschu, K. Spred2 Expression during Mouse Development. Dev. Dyn. 2010, 239, 3072–3085. [Google Scholar] [CrossRef]
- Tränkner, D.; Boulet, A.; Peden, E.; Focht, R.; Van Deren, D.; Capecchi, M. A Microglia Sublineage Protects from Sex-Linked Anxiety Symptoms and Obsessive Compulsion. Cell Rep. 2019, 29, 791–799.e3. [Google Scholar] [CrossRef]
- Hienert, M.; Gryglewski, G.; Stamenkovic, M.; Kasper, S.; Lanzenberger, R. Striatal Dopaminergic Alterations in Tourette’s Syndrome: A Meta-Analysis Based on 16 PET and SPECT Neuroimaging Studies. Transl. Psychiatry 2018, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Exome Sequencing in Obsessive-Compulsive Disorder Reveals a Burden of Rare Damaging Coding Variants—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/34183866/ (accessed on 25 December 2024).
- Song, M.; Mathews, C.A.; Stewart, S.E.; Shmelkov, S.V.; Mezey, J.G.; Rodriguez-Flores, J.L.; Rasmussen, S.A.; Britton, J.C.; Oh, Y.-S.; Walkup, J.T.; et al. Rare Synaptogenesis-Impairing Mutations in SLITRK5 Are Associated with Obsessive Compulsive Disorder. PLoS ONE 2017, 12, e0169994. [Google Scholar] [CrossRef]
- Rajkumar, R.P. SAPAP3, SPRED2, and Obsessive-Compulsive Disorder: The Search for Fundamental Phenotypes. Front. Mol. Neurosci. 2023, 16, 1095455. [Google Scholar] [CrossRef]
- Romanelli, R.J.; Wu, F.M.; Gamba, R.; Mojtabai, R.; Segal, J.B. Behavioral Therapy and Serotonin Reuptake Inhibitor Pharmacotherapy in the Treatment of Obsessive-Compulsive Disorder: A Systematic Review and Meta-Analysis of Head-to-Head Randomized Controlled Trials. Depress. Anxiety 2014, 31, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Nezgovorova, V.; Reid, J.; Fineberg, N.A.; Hollander, E. Optimizing First Line Treatments for Adults with OCD. Compr. Psychiatry 2022, 115, 152305. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.F.; Orr, S.P.; Essoe, J.K.-Y.; McCracken, J.T.; Storch, E.A.; Piacentini, J. Extinction Learning in Childhood Anxiety Disorders, Obsessive Compulsive Disorder and Post-Traumatic Stress Disorder: Implications for Treatment. Expert. Rev. Neurother. 2016, 16, 1155–1174. [Google Scholar] [CrossRef]
- Goodman, W.K.; Storch, E.A.; Sheth, S.A. Harmonizing the Neurobiology and Treatment of Obsessive-Compulsive Disorder. Am. J. Psychiatry 2021, 178, 17–29. [Google Scholar] [CrossRef]
- Del Casale, A.; Sorice, S.; Padovano, A.; Simmaco, M.; Ferracuti, S.; Lamis, D.A.; Rapinesi, C.; Sani, G.; Girardi, P.; Kotzalidis, G.D.; et al. Psychopharmacological Treatment of Obsessive-Compulsive Disorder (OCD). Curr. Neuropharmacol. 2019, 17, 710–736. [Google Scholar] [CrossRef]
- Skapinakis, P.; Caldwell, D.M.; Hollingworth, W.; Bryden, P.; Fineberg, N.A.; Salkovskis, P.; Welton, N.J.; Baxter, H.; Kessler, D.; Churchill, R.; et al. Pharmacological and Psychotherapeutic Interventions for Management of Obsessive-Compulsive Disorder in Adults: A Systematic Review and Network Meta-Analysis. Focus (Am. Psychiatr. Publ.) 2021, 19, 457–467. [Google Scholar] [CrossRef]
- Jenike, M.A. Obsessive–compulsive disorder. N. Eng. J. Med. 2004, 350, 259–265. [Google Scholar] [CrossRef]
- Pallanti, S.; Quercioli, L. Treatment-Refractory Obsessive-Compulsive Disorder: Methodological Issues, Operational Definitions and Therapeutic Lines. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2006, 30, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Simpson, H.B.; Huppert, J.D.; Petkova, E.; Foa, E.B.; Liebowitz, M.R. Response versus Remission in Obsessive-Compulsive Disorder. J. Clin. Psychiatry 2006, 67, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-D.; Shi, D.-D.; Wang, Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci. Bull. 2024, 40, 1975–1994. [Google Scholar] [CrossRef] [PubMed]
- Roh, D.; Jang, K.W.; Kim, C.-H. Clinical Advances in Treatment Strategies for Obsessive-Compulsive Disorder in Adults. Clin. Psychopharmacol. Neurosci. 2023, 21, 676–685. [Google Scholar] [CrossRef]
- Xie, L.; Hu, P.; Guo, Z.; Chen, M.; Wang, X.; Du, X.; Li, Y.; Chen, B.; Zhang, J.; Zhao, W.; et al. Immediate and Long-Term Efficacy of Transcranial Direct Current Stimulation (tCDS) in Obsessive-Compulsive Disorder, Posttraumatic Stress Disorder and Anxiety Disorders: A Systematic Review and Meta-Analysis. Transl. Psychiatry 2024, 14, 343. [Google Scholar] [CrossRef]
- Greenberg, B.D.; Rauch, S.L.; Haber, S.N. Invasive Circuitry-Based Neurotherapeutics: Stereotactic Ablation and Deep Brain Stimulation for OCD. Neuropsychopharmacology 2010, 35, 317–336. [Google Scholar] [CrossRef]
- Goodman, W.K.; Insel, T.R. Deep Brain Stimulation in Psychiatry: Concentrating on the Road Ahead. Biol. Psychiatry 2009, 65, 263–266. [Google Scholar] [CrossRef]
- Goodman, W.K.; Alterman, R.L. Deep Brain Stimulation for Intractable Psychiatric Disorders. Annu. Rev. Med. 2012, 63, 511–524. [Google Scholar] [CrossRef]
- Alonso, P.; Cuadras, D.; Gabriëls, L.; Denys, D.; Goodman, W.; Greenberg, B.D.; Jimenez-Ponce, F.; Kuhn, J.; Lenartz, D.; Mallet, L.; et al. Deep Brain Stimulation for Obsessive-Compulsive Disorder: A Meta-Analysis of Treatment Outcome and Predictors of Response. PLoS ONE 2015, 10, e0133591. [Google Scholar] [CrossRef]
- Martinho, F.P.; Duarte, G.S.; Couto, F.S. do Efficacy, Effect on Mood Symptoms, and Safety of Deep Brain Stimulation in Refractory Obsessive-Compulsive Disorder: A Systematic Review and Meta-Analysis. J. Clin. Psychiatry 2020, 81, 19r12821. [Google Scholar] [CrossRef]
- Hageman, S.B.; van Rooijen, G.; Bergfeld, I.O.; Schirmbeck, F.; de Koning, P.; Schuurman, P.R.; Denys, D. Deep Brain Stimulation versus Ablative Surgery for Treatment-Refractory Obsessive-Compulsive Disorder: A Meta-Analysis. Acta Psychiatr. Scand. 2021, 143, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C.; Pollak, P. Optogenetically Inspired Deep Brain Stimulation: Linking Basic with Clinical Research. Swiss Med. Wkly. 2016, 146, w14278. [Google Scholar] [CrossRef] [PubMed]
- Kiverstein, J.; Rietveld, E.; Slagter, H.A.; Denys, D. Obsessive Compulsive Disorder: A Pathology of Self-Confidence? Trends Cogn. Sci. 2019, 23, 369–372. [Google Scholar] [CrossRef] [PubMed]
Clinical Feature | Molecular Mechanisms | Neural Circuits Involved |
---|---|---|
Obsessions (Intrusive Thoughts) | Dysregulation of serotonin transporter genes (e.g., SLC6A4) [22] | CSTC circuit (OFC, caudate nucleus) [23] |
Compulsions (Repetitive Behaviors) | Alterations in glutamate receptor genes (e.g., GRIN2B and SLC1A1) [24,25] | CSTC circuit (ACC, dorsolateral striatum) [26] |
Emotional Dysregulation (Anxiety) | Elevated cortisol due to HPA axis dysfunction [27,28] | Limbic system (amygdala) [29], vmPFC |
Model | Phenotype | Putative Mechanism |
---|---|---|
Genetic | ||
Hoxb8 knockout mouse | Excessive self-grooming and anxiety | Neuronal development, immune involvement |
SLcla1 knockout mouse | Decreased self-grooming and AMPH response | Decreased AMPH-induced c-Fos, D1R density, and basal extracellular dopamine in DS |
Sapap3 knockout mouse | Excessive self-grooming, anxiety, and skin lesions | Striatal neuronal differentiation and neurotransmission |
Slitrk5 knockout mouse | Excessive self-grooming, anxiety | Postsynaptic scaffolding protein at excitatory synapses highly expressed in the striatum |
Spred2 knockout mouse | Excessive self-grooming, anxiety | Increased EPSCs in DLS and LA Putative release of inhibition of Ras/ERK-MAPK signaling pathway |
Gene | Defects in OCD | Mouse Model | Phenotype | Comparison |
---|---|---|---|---|
HOXB8 | Linked to OCD-like behavior and anxiety [81] | Hoxb8-KO mouse | Excessive self-grooming, anxiety | Similar repetitive behaviors, but mice lack the full spectrum of human obsessions. |
SLC1A1 | Affecting glutamate uptake transporter [16] | SLcla1-KO mouse | Decreased self-grooming and AMPH response | Similar glutamate dysregulation, but also related to human TS [82]. |
SAPAP3 | Synaptic protein mutations linked to OCD | Sapap3-KO mouse | Excessive grooming, anxiety, and skin lesions | Phenotype matches with human OCD symptomatology [62]. |
SLITRK5 | Implicated in synapse formation abnormalities [83] | Slitrk5-KO mouse | Excessive self-grooming, anxiety | Impair synaptogenic activity [84]; in humans, symptoms are more diverse. |
SPRED2 | Dysregulation of Ras/MAPK pathway | Spred2-KO mouse | Excessive self-grooming, anxiety | Behavioral overlap; additional impacts in humans remain unexplored [85]. |
Therapy | Mechanism | Benefits | Limitations |
---|---|---|---|
CBT | Cognitive restructuring | Non-invasive | Requires patient compliance |
SSRIs | Serotonin reuptake inhibition | Effective for many patients | Limited efficacy in some cases |
tDCS | Modulate brain activity | Portable and low-cost | Early-stage research |
Stereotactic Ablation | Irreversible lesioning of specific brain regions | Effective for highly treatment | Risk of cognitive side effects |
DBS | Targeted brain stimulation | Reversible, adjustable | Expensive, requires surgery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Xiao, L.; Wang, M.; Wu, Y.; Deng, H.; Wang, W. Advancing Obsessive–Compulsive Disorder Research: Insights from Transgenic Animal Models and Innovative Therapies. Brain Sci. 2025, 15, 43. https://doi.org/10.3390/brainsci15010043
Huang X, Xiao L, Wang M, Wu Y, Deng H, Wang W. Advancing Obsessive–Compulsive Disorder Research: Insights from Transgenic Animal Models and Innovative Therapies. Brain Sciences. 2025; 15(1):43. https://doi.org/10.3390/brainsci15010043
Chicago/Turabian StyleHuang, Xinyuejia, Linglong Xiao, Mengqi Wang, Yang Wu, Hao Deng, and Wei Wang. 2025. "Advancing Obsessive–Compulsive Disorder Research: Insights from Transgenic Animal Models and Innovative Therapies" Brain Sciences 15, no. 1: 43. https://doi.org/10.3390/brainsci15010043
APA StyleHuang, X., Xiao, L., Wang, M., Wu, Y., Deng, H., & Wang, W. (2025). Advancing Obsessive–Compulsive Disorder Research: Insights from Transgenic Animal Models and Innovative Therapies. Brain Sciences, 15(1), 43. https://doi.org/10.3390/brainsci15010043