Quattrocelli, S.; Russo, E.F.; Gatta, M.T.; Filoni, S.; Pellegrino, R.; Cangelmi, L.; Cardone, D.; Merla, A.; Perpetuini, D.
Integrating Machine Learning with Robotic Rehabilitation May Support Prediction of Recovery of the Upper Limb Motor Function in Stroke Survivors. Brain Sci. 2024, 14, 759.
https://doi.org/10.3390/brainsci14080759
AMA Style
Quattrocelli S, Russo EF, Gatta MT, Filoni S, Pellegrino R, Cangelmi L, Cardone D, Merla A, Perpetuini D.
Integrating Machine Learning with Robotic Rehabilitation May Support Prediction of Recovery of the Upper Limb Motor Function in Stroke Survivors. Brain Sciences. 2024; 14(8):759.
https://doi.org/10.3390/brainsci14080759
Chicago/Turabian Style
Quattrocelli, Sara, Emanuele Francesco Russo, Maria Teresa Gatta, Serena Filoni, Raffaello Pellegrino, Leonardo Cangelmi, Daniela Cardone, Arcangelo Merla, and David Perpetuini.
2024. "Integrating Machine Learning with Robotic Rehabilitation May Support Prediction of Recovery of the Upper Limb Motor Function in Stroke Survivors" Brain Sciences 14, no. 8: 759.
https://doi.org/10.3390/brainsci14080759
APA Style
Quattrocelli, S., Russo, E. F., Gatta, M. T., Filoni, S., Pellegrino, R., Cangelmi, L., Cardone, D., Merla, A., & Perpetuini, D.
(2024). Integrating Machine Learning with Robotic Rehabilitation May Support Prediction of Recovery of the Upper Limb Motor Function in Stroke Survivors. Brain Sciences, 14(8), 759.
https://doi.org/10.3390/brainsci14080759