Correlations of Plasma Biomarkers and Imaging Characteristics of Cerebral Small Vessel Disease
Abstract
:1. Introduction
2. Search Strategy
2.1. Correlation between Biomarkers and WMH
2.1.1. Endothelial Dysfunction-Related Biomarkers
2.1.2. Neurons Dysfunction-Related Biomarkers
2.2. Correlation between Biomarkers and EPVS
Endothelial Dysfunction-Related Biomarkers
2.3. Correlation between Biomarkers and Lacunes (of Presumed Vascular Origin)
2.3.1. Endothelial Dysfunction-Related Biomarkers
2.3.2. Microglia Dysfunction-Related Biomarkers
2.4. Correlation between Biomarkers and CMB
Endothelial Dysfunction-Related Biomarkers
2.5. Correlation between Biomarkers and RSSI
2.5.1. Endothelial Dysfunction-Related Biomarkers
2.5.2. Astrocytes Dysfunction-Related Biomarkers
2.5.3. Neurons Dysfunction-Related Biomarkers
2.6. Correlation between Biomarkers and Brain Atrophy
2.7. Correlation between Biomarkers and Combined Small Vessel Disease Score
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Duering, M.; Biessels, G.J.; Brodtmann, A.; Chen, C.; Cordonnier, C.; de Leeuw, F.E.; Debette, S.; Frayne, R.; Jouvent, E.; Rost, N.S.; et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023, 22, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.M.; Jansen, J.F.A.; Zhang, C.E.; Hoff, E.I.; Staals, J.; van Oostenbrugge, R.J.; Backes, W.H. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology 2019, 92, e1669–e1677. [Google Scholar] [CrossRef] [PubMed]
- Freeze, W.M.; Jacobs, H.I.L.; de Jong, J.J.; Verheggen, I.C.M.; Gronenschild, E.; Palm, W.M.; Hoff, E.I.; Wardlaw, J.M.; Jansen, J.F.A.; Verhey, F.R.; et al. White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed. Neurobiol. Aging 2020, 85, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Promjunyakul, N.O.; Dodge, H.H.; Lahna, D.; Boespflug, E.L.; Kaye, J.A.; Rooney, W.D.; Silbert, L.C. Baseline NAWM structural integrity and CBF predict periventricular WMH expansion over time. Neurology 2018, 90, e2119–e2126. [Google Scholar] [CrossRef] [PubMed]
- Gattringer, T.; Valdes Hernandez, M.; Heye, A.; Armitage, P.A.; Makin, S.; Chappell, F.; Pinter, D.; Doubal, F.; Enzinger, C.; Fazekas, F.; et al. Predictors of Lesion Cavitation After Recent Small Subcortical Stroke. Transl. Stroke Res. 2020, 11, 402–411. [Google Scholar] [CrossRef]
- Licata, G.; Tuttolomondo, A.; Di Raimondo, D.; Corrao, S.; Di Sciacca, R.; Pinto, A. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb. Haemost. 2009, 101, 929–937. [Google Scholar]
- Cuadrado-Godia, E.; Ois, A.; Garcia-Ramallo, E.; Giralt, E.; Jimena, S.; Rubio, M.A.; Rodríguez-Campello, A.; Jiménez-Conde, J.; Roquer, J. Biomarkers to predict clinical progression in small vessel disease strokes: Prognostic role of albuminuria and oxidized LDL cholesterol. Atherosclerosis 2011, 219, 368–372. [Google Scholar] [CrossRef]
- Satizabal, C.L.; Zhu, Y.C.; Mazoyer, B.; Dufouil, C.; Tzourio, C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: The 3C-Dijon Study. Neurology 2012, 78, 720–727. [Google Scholar] [CrossRef]
- Corbin, Z.A.; Rost, N.S.; Lorenzano, S.; Kernan, W.N.; Parides, M.K.; Blumberg, J.B.; Milbury, P.E.; Arai, K.; Hartdegen, S.N.; Lo, E.H.; et al. White matter hyperintensity volume correlates with matrix metalloproteinase-2 in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014, 23, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.B.; Liu, L.F.; Li, Z.G.; Sun, H.R.; Jü, X.H. Associations between biomarkers of renal function with cerebral microbleeds in hypertensive patients. Am. J. Hypertens. 2015, 28, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Elkind, M.S.; Luna, J.M.; McClure, L.A.; Zhang, Y.; Coffey, C.S.; Roldan, A.; Del Brutto, O.H.; Pretell, E.J.; Pettigrew, L.C.; Meyer, B.C.; et al. C-reactive protein as a prognostic marker after lacunar stroke: Levels of inflammatory markers in the treatment of stroke study. Stroke 2014, 45, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Trollor, J.N.; Brown, D.A.; Crawford, J.D.; Thalamuthu, A.; Smith, E.; Breit, S.N.; Liu, T.; Brodaty, H.; Baune, B.T.; et al. An inverse relationship between serum macrophage inhibitory cytokine-1 levels and brain white matter integrity in community-dwelling older individuals. Psychoneuroendocrinology 2015, 62, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Preis, S.R.; Beiser, A.; DeCarli, C.; Wollert, K.C.; Wang, T.J.; Januzzi, J.L., Jr.; Vasan, R.S.; Seshadri, S. Associations of Circulating Growth Differentiation Factor-15 and ST2 Concentrations with Subclinical Vascular Brain Injury and Incident Stroke. Stroke 2015, 46, 2568–2575. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Sze, S.K. Data for iTRAQ profiling of micro-vesicular plasma specimens: In search of potential prognostic circulatory biomarkers for Lacunar infarction. Data Brief 2015, 4, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Bergua, A.; Riba-Llena, I.; Vanhooren, V.; Dewaele, S.; Libert, C.; Penalba, A.; Montaner, J.; Delgado, P. N-glycome Profile Levels Relate to Silent Brain Infarcts in a Cohort of Hypertensives. J. Am. Heart Assoc. 2015, 4, e002669. [Google Scholar] [CrossRef]
- Wiseman, S.J.; Doubal, F.N.; Chappell, F.M.; Valdés-Hernández, M.C.; Wang, X.; Rumley, A.; Lowe, G.D.; Dennis, M.S.; Wardlaw, J.M. Plasma Biomarkers of Inflammation, Endothelial Function and Hemostasis in Cerebral Small Vessel Disease. Cerebrovasc. Dis. 2015, 40, 157–164. [Google Scholar] [CrossRef]
- Chai, Y.L.; Hilal, S.; Chong, J.P.C.; Ng, Y.X.; Liew, O.W.; Xu, X.; Ikram, M.K.; Venketasubramanian, N.; Richards, A.M.; Lai, M.K.P.; et al. Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine 2016, 95, e4566. [Google Scholar] [CrossRef]
- Boehme, A.K.; McClure, L.A.; Zhang, Y.; Luna, J.M.; Del Brutto, O.H.; Benavente, O.R.; Elkind, M.S. Inflammatory Markers and Outcomes After Lacunar Stroke: Levels of Inflammatory Markers in Treatment of Stroke Study. Stroke 2016, 47, 659–667. [Google Scholar] [CrossRef]
- Yang, L.; Lv, P.; Ai, W.; Li, L.; Shen, S.; Nie, H.; Shan, Y.; Bai, Y.; Huang, Y.; Liu, H. Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 3211–3222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chai, Y.L.; Hilal, S.; Ikram, M.K.; Venketasubramanian, N.; Wong, B.S.; Chen, C.P.; Lai, M.K. Serum IL-8 is a marker of white-matter hyperintensities in patients with Alzheimer’s disease. Alzheimer’s Dement. 2017, 7, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Gattringer, T.; Pinter, D.; Enzinger, C.; Seifert-Held, T.; Kneihsl, M.; Fandler, S.; Pichler, A.; Barro, C.; Gröbke, S.; Voortman, M.; et al. Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology 2017, 89, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.W.; Kwon, H.M.; Jeong, H.Y.; Park, J.H.; Kim, S.H.; Jeong, S.M.; Yoo, T.G.; Kim, S. High neutrophil to lymphocyte ratio is associated with white matter hyperintensity in a healthy population. J. Neurol. Sci. 2017, 380, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Yang, S.; Li, Y.; Yin, J.; Qin, W.; Yang, L.; Yuan, J.; Hu, W. Assessment of Homocysteine as a Diagnostic and Early Prognostic Biomarker for Patients with Acute Lacunar Infarction. Eur. Neurol. 2018, 79, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Guoxiang, H.; Hui, L.; Yong, Z.; Xunming, J.; Zhuo, C. Association between Cystatin C and SVD in Chinese population. Neurol. Sci. 2018, 39, 2197–2202. [Google Scholar] [CrossRef] [PubMed]
- Staszewski, J.; Piusińska-Macoch, R.; Brodacki, B.; Skrobowska, E.; Stępień, A. IL-6, PF-4, sCD40 L, and homocysteine are associated with the radiological progression of cerebral small-vessel disease: A 2-year follow-up study. Clin. Interv. Aging 2018, 13, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Pinter, D.; Gattringer, T.; Enzinger, C.; Seifert-Held, T.; Kneihsl, M.; Fandler, S.; Pichler, A.; Barro, C.; Eppinger, S.; Pirpamer, L.; et al. Longitudinal MRI dynamics of recent small subcortical infarcts and possible predictors. J. Cereb. Blood Flow Metab. 2019, 39, 1669–1677. [Google Scholar] [CrossRef]
- Cox, S.R.; Allerhand, M.; Ritchie, S.J.; Muñoz Maniega, S.; Valdés Hernández, M.; Harris, S.E.; Dickie, D.A.; Anblagan, D.; Aribisala, B.S.; Morris, Z.; et al. Longitudinal serum S100β and brain aging in the Lothian Birth Cohort 1936. Neurobiol. Aging 2018, 69, 274–282. [Google Scholar] [CrossRef]
- van Leijsen, E.M.C.; Kuiperij, H.B.; Kersten, I.; Bergkamp, M.I.; van Uden, I.W.M.; Vanderstichele, H.; Stoops, E.; Claassen, J.; van Dijk, E.J.; de Leeuw, F.E.; et al. Plasma Aβ (Amyloid-β) Levels and Severity and Progression of Small Vessel Disease. Stroke 2018, 49, 884–890. [Google Scholar] [CrossRef]
- Wei, W.; Chen, Y.; Lei, D.; Zhang, Y.; Weng, X.; Zhou, Y.; Zhang, L. Plasma brain natriuretic peptide is a biomarker for screening ischemic cerebral small vessel disease in patients with hypertension. Medicine 2018, 97, e12088. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hilal, S.; Chai, Y.L.; Ikram, M.K.; Venketasubramanian, N.; Chen, C.P.; Lai, M.K.P. Serum Hepatocyte Growth Factor Is Associated with Small Vessel Disease in Alzheimer’s Dementia. Front. Aging Neurosci. 2018, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- McGrath, E.R.; Himali, J.J.; Levy, D.; Conner, S.C.; DeCarli, C.; Pase, M.P.; Ninomiya, T.; Ohara, T.; Courchesne, P.; Satizabal, C.L.; et al. Growth Differentiation Factor 15 and NT-proBNP as Blood-Based Markers of Vascular Brain Injury and Dementia. J. Am. Heart Assoc. 2020, 9, e014659. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tan, L.; Xu, W.; Wang, Z.T.; Hu, H.; Li, J.Q.; Dong, Q.; Tan, L.; Yu, J.T. Plasma Neurofilament Light and Longitudinal Progression of White Matter Hyperintensity in Elderly Persons Without Dementia. J. Alzheimer’s Dis. 2020, 75, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xin, J.; Song, L.; Chen, Y.; Ma, J.; Liu, L.; Qi, Z.; Pan, X.; Zhou, S. Serum miR-133 as a Potential Biomarker in Acute Cerebral Infarction Patients. Clin. Lab. 2020, 66, 10. [Google Scholar] [CrossRef] [PubMed]
- Dobrynina, L.A.; Alexandrova, E.V.; Zabitova, M.R.; Kalashnikova, L.A.; Krotenkova, M.V.; Akhmetzyanov, B.M. Anti-NR2 glutamate receptor antibodies as an early biomarker of cerebral small vessel disease. Clin. Biochem. 2021, 96, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Tan, C.C.; Shen, X.N.; Li, H.Q.; Cui, M.; Tan, L.; Dong, Q.; Yu, J.T. Association of Plasma Neurofilament Light with Small Vessel Disease Burden in Nondemented Elderly: A Longitudinal Study. Stroke 2021, 52, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Fohner, A.E.; Bartz, T.M.; Tracy, R.P.; Adams, H.H.H.; Bis, J.C.; Djousse, L.; Satizabal, C.L.; Lopez, O.L.; Seshadri, S.; Mukamal, K.J.; et al. Association of Serum Neurofilament Light Chain Concentration and MRI Findings in Older Adults: The Cardiovascular Health Study. Neurology 2022, 98, e903–e911. [Google Scholar] [CrossRef]
- Gyanwali, B.; Lai, M.K.P.; Lui, B.; Liew, O.W.; Venketasubramanian, N.; Richards, A.M.; Chen, C.; Hilal, S. Blood-Based Cardiac Biomarkers and the Risk of Cognitive Decline, Cerebrovascular Disease, and Clinical Events. Stroke 2021, 52, 2275–2283. [Google Scholar] [CrossRef]
- Jiménez-Balado, J.; Pizarro, J.; Riba-Llena, I.; Penalba, A.; Faura, J.; Palà, E.; Montaner, J.; Hernández-Guillamon, M.; Delgado, P. New candidate blood biomarkers potentially associated with white matter hyperintensities progression. Sci. Rep. 2021, 11, 14324. [Google Scholar] [CrossRef]
- Chai, Y.L.; Chong, J.R.; Raquib, A.R.; Xu, X.; Hilal, S.; Venketasubramanian, N.; Tan, B.Y.; Kumar, A.P.; Sethi, G.; Chen, C.P.; et al. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment. Sci. Rep. 2021, 11, 4010. [Google Scholar] [CrossRef] [PubMed]
- da Silva-Candal, A.; Custodia, A.; López-Dequidt, I.; Rodríguez-Yáñez, M.; Alonso-Alonso, M.L.; Ávila-Gómez, P.; Pumar, J.M.; Castillo, J.; Sobrino, T.; Campos, F.; et al. sTWEAK is a leukoaraiosis biomarker associated with neurovascular angiopathy. Ann. Clin. Transl. Neurol. 2022, 9, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, S.; Overmars, L.M.; van Es, B.; de Bresser, J.; Bron, E.E.; Hoefer, I.E.; Kappelle, L.J.; Teunissen, C.E.; Biessels, G.J.; Haitjema, S. A cluster of blood-based protein biomarkers reflecting coagulation relates to the burden of cerebral small vessel disease. J. Cereb. Blood Flow Metab. 2022, 42, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, N.; Koyama, T.; Ozaki, E.; Saito, S.; Ihara, M.; Matsui, D.; Watanabe, I.; Kondo, M.; Marunaka, Y.; Takada, A.; et al. Association Between Cerebral Microbleeds and Circulating Levels of Mid-Regional Pro-Adrenomedullin. J. Alzheimer’s Dis. 2022, 88, 731–741. [Google Scholar] [CrossRef] [PubMed]
- McCarter, S.J.; Lesnick, T.G.; Lowe, V.J.; Rabinstein, A.A.; Przybelski, S.A.; Algeciras-Schimnich, A.; Ramanan, V.K.; Jack, C.R.; Petersen, R.C.; Knopman, D.S.; et al. Association Between Plasma Biomarkers of Amyloid, Tau, and Neurodegeneration with Cerebral Microbleeds. J. Alzheimer’s Dis. 2022, 87, 1537–1547. [Google Scholar] [CrossRef]
- Huss, A.; Abdelhak, A.; Mayer, B.; Tumani, H.; Müller, H.P.; Althaus, K.; Kassubek, J.; Otto, M.; Ludolph, A.C.; Yilmazer-Hanke, D.; et al. Association of Serum GFAP with Functional and Neurocognitive Outcome in Sporadic Small Vessel Disease. Biomedicines 2022, 10, 1869. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Zhang, M.; Wei, J.; Li, X.; Pan, X.; Ma, A. Blood Neutrophil-to-Lymphocyte Ratio as a Predictor of Cerebral Small-Vessel Disease. Med. Sci. Monit. 2022, 28, e935516. [Google Scholar] [CrossRef]
- Zhang, D.D.; Cao, Y.; Mu, J.Y.; Liu, Y.M.; Gao, F.; Han, F.; Zhai, F.F.; Zhou, L.X.; Ni, J.; Yao, M.; et al. Inflammatory biomarkers and cerebral small vessel disease: A community-based cohort study. Stroke Vasc. Neurol. 2022, 7, 302–309. [Google Scholar] [CrossRef]
- Datta, A.; Chen, C.; Gao, Y.G.; Sze, S.K. Quantitative Proteomics of Medium-Sized Extracellular Vesicle-Enriched Plasma of Lacunar Infarction for the Discovery of Prognostic Biomarkers. Int. J. Mol. Sci. 2022, 23, 11670. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhou, X.; Wu, L.; Zhang, Y.; Yu, Z.; Wang, M.; Huang, H.; Luo, X.; Pan, D. Serum Cortisol Is Associated with Cerebral Small Vessel Disease-Related Brain Changes and Cognitive Impairment. Front. Aging Neurosci. 2021, 13, 809684. [Google Scholar] [CrossRef]
- Gattringer, T.; Enzinger, C.; Pinter, D.; Fandler-Höfler, S.; Kneihsl, M.; Haidegger, M.; Eppinger, S.; Demjaha, R.; Buchmann, A.; Jerkovic, A.; et al. Serum glial fibrillary acidic protein is sensitive to acute but not chronic tissue damage in cerebral small vessel disease. J. Neurol. 2023, 270, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.R.; Hilal, S.; Ashton, N.J.; Karikari, T.K.; Reilhac, A.; Vrooman, H.; Schöll, M.; Zetterberg, H.; Blennow, K.; Chen, C.P.; et al. Brain atrophy and white matter hyperintensities are independently associated with plasma neurofilament light chain in an Asian cohort of cognitively impaired patients with concomitant cerebral small vessel disease. Alzheimer’s Dement. 2023, 15, e12396. [Google Scholar] [CrossRef] [PubMed]
- Salai, K.H.T.; Wu, L.Y.; Chong, J.R.; Chai, Y.L.; Gyanwali, B.; Robert, C.; Hilal, S.; Venketasubramanian, N.; Dawe, G.S.; Chen, C.P.; et al. Elevated Soluble TNF-Receptor 1 in the Serum of Predementia Subjects with Cerebral Small Vessel Disease. Biomolecules 2023, 13, 525. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.J.; Yin, R.H.; Wang, Y.; Wang, Z.; Ma, A.J. Exosomal miR-320e as a Novel Potential Biomarker for Cerebral Small Vessel Disease. Int. J. Gen. Med. 2023, 16, 641–655. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, X.; Jiang, N.; Liu, Y.; Wang, Q.; Jiang, G.; Li, X.; Zhao, L.; Zhai, Q. Plasma Lipoprotein-Associated Phospholipase A2 Affects Cognitive Impairment in Patients with Cerebral Microbleeds. Neuropsychiatr. Dis. Treat. 2023, 19, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.Y.; Hsu, Y.C.; Chou, K.W.; Chang, K.S.; Wong, C.H.; Hsu, Y.H.; Cheng, H.M.; Chen, C.W.; Chen, P.Y. Neutrophil-Lymphocyte Ratio as a Predictor of Cerebral Small Vessel Disease in a Geriatric Community: The I-Lan Longitudinal Aging Study. Brain Sci. 2023, 13, 1087. [Google Scholar] [CrossRef]
- Rajani, R.M.; Quick, S.; Ruigrok, S.R.; Graham, D.; Harris, S.E.; Verhaaren, B.F.J.; Fornage, M.; Seshadri, S.; Atanur, S.S.; Dominiczak, A.F.; et al. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med. 2018, 10, eaam9507. [Google Scholar] [CrossRef]
- Imtiaz, F.; Shafique, K.; Mirza, S.S.; Ayoob, Z.; Vart, P.; Rao, S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 2012, 5, 2. [Google Scholar] [CrossRef]
- Sodhi, C.P.; Phadke, S.A.; Batlle, D.; Sahai, A. Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: Potentiation by high glucose. Diabetes 2001, 50, 1482–1490. [Google Scholar] [CrossRef]
- Hedtjärn, M.; Mallard, C.; Hagberg, H. Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2004, 24, 1333–1351. [Google Scholar] [CrossRef]
- Al Dera, H. Neuroprotective effect of resveratrol against late cerebral ischemia reperfusion induced oxidative stress damage involves upregulation of osteopontin and inhibition of interleukin-1beta. J. Physiol. Pharmacol. 2017, 68, 47–56. [Google Scholar] [PubMed]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, Z.; Gao, W. Growth differentiation factor 15 in cardiovascular diseases: From bench to bedside. Biomarkers 2011, 16, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, R.F.; Schneider, A.L.; Zhou, Y.; Coresh, J.; Green, E.; Gupta, N.; Knopman, D.S.; Mintz, A.; Rahmim, A.; Sharrett, A.R.; et al. Association Between Midlife Vascular Risk Factors and Estimated Brain Amyloid Deposition. JAMA 2017, 317, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Thomas, G.; McLendon, C.; Sutton, T.; Mullan, M. beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996, 380, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Toda, N.; Nakanishi-Toda, M. How mental stress affects endothelial function. Pflugers Arch. 2011, 462, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Stephan, D.; Sbai, O.; Wen, J.; Couraud, P.O.; Putterman, C.; Khrestchatisky, M.; Desplat-Jégo, S. TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. J. Neuroinflamm. 2013, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Krizbai, I.A.; Deli, M.A.; Pestenácz, A.; Siklós, L.; Szabó, C.A.; András, I.; Joó, F. Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res. 1998, 54, 814–819. [Google Scholar] [CrossRef]
- Dambinova, S.A.; Bettermann, K.; Glynn, T.; Tews, M.; Olson, D.; Weissman, J.D.; Sowell, R.L. Diagnostic potential of the NMDA receptor peptide assay for acute ischemic stroke. PLoS ONE 2012, 7, e42362. [Google Scholar] [CrossRef]
- Barro, C.; Chitnis, T.; Weiner, H.L. Blood neurofilament light: A critical review of its application to neurologic disease. Ann. Clin. Transl. Neurol. 2020, 7, 2508–2523. [Google Scholar] [CrossRef]
- Fransen, N.L.; Hsiao, C.C.; van der Poel, M.; Engelenburg, H.J.; Verdaasdonk, K.; Vincenten, M.C.J.; Remmerswaal, E.B.M.; Kuhlmann, T.; Mason, M.R.J.; Hamann, J.; et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 2020, 143, 1714–1730. [Google Scholar] [CrossRef] [PubMed]
- Ouanes, S.; Popp, J. High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Front. Aging Neurosci. 2019, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Mehra, A.; Guérit, S.; Macrez, R.; Gosselet, F.; Sevin, E.; Lebas, H.; Maubert, E.; De Vries, H.E.; Bardou, I.; Vivien, D.; et al. Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. J. Neurosci. 2020, 40, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, T.; Kerkhofs, D.; Mizuno, T.; Steinbusch, H.W.M.; Foulquier, S. Vessel-Associated Immune Cells in Cerebrovascular Diseases: From Perivascular Macrophages to Vessel-Associated Microglia. Front. Neurosci. 2019, 13, 1291. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yang, L.; He, P.; Li, R.; Shen, Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer’s disease and non-demented patients. J. Alzheimers Dis. 2010, 19, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.; Besselmann, M.; Leonhard, C.; Mueller, M.; Ringelstein, E.B.; Kiefer, R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: A study in green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 2003, 183, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, N.; Ihara, M.; Mizuno, T.; Ozaki, E.; Matsui, D.; Watanabe, I.; Koyama, T.; Kondo, M.; Tokuda, T.; Tamura, A.; et al. Association between Mid-Regional Proadrenomedullin Levels and Progression of Deep White Matter Lesions in the Brain Accompanying Cognitive Decline. J. Alzheimer’s Dis. 2017, 56, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Wijsman, L.W.; de Craen, A.J.; Trompet, S.; Sabayan, B.; Muller, M.; Stott, D.J.; Ford, I.; Welsh, P.; Westendorp, R.G.; Jukema, J.W.; et al. High-sensitivity cardiac troponin T is associated with cognitive decline in older adults at high cardiovascular risk. Eur. J. Prev. Cardiol. 2016, 23, 1383–1392. [Google Scholar] [CrossRef]
- Mishra, R.K.; Li, Y.; Ricardo, A.C.; Yang, W.; Keane, M.; Cuevas, M.; Christenson, R.; deFilippi, C.; Chen, J.; He, J.; et al. Association of N-terminal pro-B-type natriuretic peptide with left ventricular structure and function in chronic kidney disease (from the Chronic Renal Insufficiency Cohort [CRIC]). Am. J. Cardiol. 2013, 111, 432–438. [Google Scholar] [CrossRef]
- Abdelhak, A.; Foschi, M.; Abu-Rumeileh, S.; Yue, J.K.; D’Anna, L.; Huss, A.; Oeckl, P.; Ludolph, A.C.; Kuhle, J.; Petzold, A.; et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat. Rev. Neurol. 2022, 18, 158–172. [Google Scholar] [CrossRef]
- Gorelick, P.B. Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials. Ann. N. Y. Acad. Sci. 2010, 1207, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Unsicker, K.; Spittau, B.; Krieglstein, K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013, 24, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.; Breda, C.; Smalley, J.L.; Butterworth, M.; Farrow, S.N.; Giorgini, F.; Cohen, G.M. The transrepression arm of glucocorticoid receptor signaling is protective in mutant huntingtin-mediated neurodegeneration. Cell Death Differ. 2015, 22, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yin, X.S.; Guo, H.; Han, R.K.; He, R.D.; Chi, L.J. Elevated osteopontin levels in mild cognitive impairment and Alzheimer’s disease. Mediat. Inflamm. 2013, 2013, 615745. [Google Scholar] [CrossRef] [PubMed]
- Coant, N.; Sakamoto, W.; Mao, C.; Hannun, Y.A. Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv. Biol. Regul. 2017, 63, 122–131. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Huang, Y.; Li, B.; Gong, C.X.; Schuchman, E.H. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging 2010, 31, 398–408. [Google Scholar] [CrossRef]
- Giorgi Silveira, R.; Perelló Ferrúa, C.; do Amaral, C.C.; Fernandez Garcia, T.; de Souza, K.B.; Nedel, F. MicroRNAs expressed in neuronal differentiation and their associated pathways: Systematic review and bioinformatics analysis. Brain Res. Bull. 2020, 157, 140–148. [Google Scholar] [CrossRef]
- Dolati, S.; Aghebati-Maleki, L.; Ahmadi, M.; Marofi, F.; Babaloo, Z.; Ayramloo, H.; Jafarisavari, Z.; Oskouei, H.; Afkham, A.; Younesi, V.; et al. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J. Cell. Physiol. 2018, 233, 5222–5230. [Google Scholar] [CrossRef]
- Vinters, H.V.; Zarow, C.; Borys, E.; Whitman, J.D.; Tung, S.; Ellis, W.G.; Zheng, L.; Chui, H.C. Review: Vascular dementia: Clinicopathologic and genetic considerations. Neuropathol. Appl. Neurobiol. 2018, 44, 247–266. [Google Scholar] [CrossRef]
- Proulx, S.T. Cerebrospinal fluid outflow: A review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 2021, 78, 2429–2457. [Google Scholar] [CrossRef]
Year | Author | Sample | Participants | Blood Biomarkers | Neuroimaging Markers |
---|---|---|---|---|---|
2009 | Giuseppe Licata [8] | 46 | lacunar stroke | TNF-α, IL-6, IL-1β | RSSI |
2011 | Elisa Cuadrado-Godia [9] | 127 | lacunar stroke | vWF, ox-LDL | RSSI |
2012 | C.L. Satizabal [10] | 1841 | elderly participants aged 65 to 80 years | IL-6, CRP | WMH, RSSI, brain atrophy |
2013 | Zachary A. Corbin [11] | 405 | acute ischemic stroke | MMPs, F2-isoprostane | WMH |
2014 | Jin-biao Zhang [12] | 568 | hypertension | eGFR, Cystatin C | CMB |
2014 | Mitchell S.V. Elkind [13] | 1244 | lacunar stroke | CRP | RSSI |
2015 | Jiyang Jiang [14] | 327 | elderly participants aged 70 to 90 years | MIC-1/GDF15 | WMH |
2015 | Charlotte Andersson [15] | 3374 | Framingham Offspring | GDF15, ST2 | WMH, brain atrophy |
2015 | Arnab Datta [16] | 45 | lacunar stroke | proteomic | RSSI |
2015 | Andrea Vilar-Bergua [17] | 972 | hypertension | N-glycome Profile | WMH |
2015 | Stewart J. Wiseman [18] | 65 | lacunar stroke | inflammation and endothelial activation biomarkers | RSSI |
2016 | Yuek Ling Chai [19] | 324 | CIND; AD | GDF15 | WMH, RSSI, lacune |
2016 | Amelia K. Boehme [20] | 1244 | lacunar stroke | IL-6, amyloid A, TNFR1, CD40L, MCP1 | RSSI |
2017 | Li Yang [21] | 56 | lacunar stroke | Lipidomic | RSSI |
2017 | Yanan Zhu [22] | 315 | CIND; AD t | IL-6, IL-8, TNF-α | WMH, RSSI, lacune |
2017 | Thomas Gattringer [23] | 579 | RSSI | NfL | WMH, RSSI |
2017 | Ki-Woong Nam [24] | 2875 | people with a health check-up | NLR | WMH |
2018 | Huimin Fan [25] | 389 | lacunar stroke | Homocysteine | RSSI |
2018 | Huang Guoxiang [26] | 408 | noncritically ill hospitalized patients | Cystatin C | WMH |
2018 | Jacek Staszewski [27] | 123 | CSVD | vascular and systemic inflammation biomarkers | WMH, lacune |
2018 | Daniela Pinter [28] | 78 | RSSI | NfL | RSSI |
2018 | Simon R. Cox [29] | 593 | elderly participants aged 73 to 76 years | S100β | WMH |
2018 | Esther M.C. van Leijsen [30] | 487 | CSVD | Aβ | WMH, CMB, lacune |
2018 | Weimin Wei [31] | 346 | hypertension | BNP | WMH, CMB, RSSI |
2018 | Yanan Zhu [32] | 310 | CIND; AD | HGF | WMH, CMB, RSSI, lacune |
2020 | Emer R. McGrath [33] | 1603 | Framingham Offspring | GDF-15, NT-proBNP | WMH, brain atrophy |
2020 | Yan Sun [34] | 1029 | CIND | NfL | WMH |
2020 | Peng Xu [35] | 12 | lacunar stroke | miR-133, IL-6, IL-8, CRP, TNF-α | RSSI |
2021 | Larisa A. Dobrynina [36] | 70 | CSVD | NR2ab | WMH, lacune |
2021 | Yi Qu [37] | 496 | CIND | NfL | WMH, CMB, RSSI, CSVD burden |
2021 | Alison E Fohner [38] | 1362 | elderly participants aged 65 years or older | NfL, total Tau, GFAP, UCH-L1 | WMH |
2021 | Bibek Gyanwali [39] | 434 | CIND | NT-proBNP, hs-cTnT, GDF-15 | WMH, CMB, RSSI, lacune |
2021 | Joan Jiménez-Balado [40] | 24 | hypertension | proteomic | WMH |
2021 | Yuek Ling Chai [41] | 384 | CIND; AD | OPN | WMH, brain atrophy |
2021 | Andres da Silva-Candal [42] | 624 | hypertension or diabetes w | TWEAK | WMH |
2022 | Sanne Kuipers [43] | 494 | Vascular Cognitive Impairment, Carotid Occlusive Disease, heart failure | OLINK cardiovascular III panel | WMH, CMB, RSSI, EPVS |
2022 | Nagato Kuriyama [44] | 214 | people with check-up for dementia | MR-proADM | CMB |
2022 | Stuart J. McCarter [45] | 712 | elderly participants | Aβ40, Aβ42, t-tau, NfL | CMB |
2022 | André Huss [46] | 42 | CSVD | NfL, GFAP | WMH |
2022 | Yuan Wang [47] | 879 | CSVD | NLR | WMH, CMB, RSSI, CSVD burden |
2022 | Ding-Ding Zhang [48] | 960 | participants aged 35 years or older | systemic, endothelial, and media-related inflammation biomarkers | WMH, CMB, EPVS, lacune |
2022 | Arnab Datta [49] | 62 | lacunar stroke | proteomic | RSSI |
2022 | Qianwen Qiu [50] | 158 | people with a health check-up | cortisol | WMH, CMB, EPVS, lacune, CSVD burden |
2022 | Thomas Gattringer [51] | 162 | RSSI | GFAP | WMH, CMB, RSSI, EPVS, lacune, CSVD burden |
2023 | Joyce R. Chong [52] | 208 | CIND; AD | NfL | WMH, CMB, lacune, brain atrophy |
2023 | Kaung H. T. Salai [53] | 206 | CIND | TNF-R1 | WMH, CMB, RSSI |
2023 | Ke-Jin Gao [54] | 230 | CSVD | exosomes | WMH, CSVD burden |
2023 | Lu Liu [55] | 213 | CMB | Lp-PLA2 | CMB |
2023 | Shao-Yuan Chuang [56] | 720 | elderly participants aged 50 years or older | NLR | WMH, CMB, lacune, CSVD burden |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Q.; Xie, X.; Wang, Z.; Zhang, Y.; Zhou, X.; Wu, L.; Yu, Z.; Huang, H.; Luo, X. Correlations of Plasma Biomarkers and Imaging Characteristics of Cerebral Small Vessel Disease. Brain Sci. 2024, 14, 269. https://doi.org/10.3390/brainsci14030269
Kong Q, Xie X, Wang Z, Zhang Y, Zhou X, Wu L, Yu Z, Huang H, Luo X. Correlations of Plasma Biomarkers and Imaging Characteristics of Cerebral Small Vessel Disease. Brain Sciences. 2024; 14(3):269. https://doi.org/10.3390/brainsci14030269
Chicago/Turabian StyleKong, Qianqian, Xinxin Xie, Ziyue Wang, Yi Zhang, Xirui Zhou, Lingshan Wu, Zhiyuan Yu, Hao Huang, and Xiang Luo. 2024. "Correlations of Plasma Biomarkers and Imaging Characteristics of Cerebral Small Vessel Disease" Brain Sciences 14, no. 3: 269. https://doi.org/10.3390/brainsci14030269